The following errors appear in the printed version of the book and are already corrected in the on-line version.

page 16 last line: \(p = \frac{3}{5} \rightarrow p = \frac{3}{5} \lambda \).
page 24 first line of section 2, Hassin [65].
page 28 line 1: increasing → decreasing.
page 29 line 6: \(g(n^* - 1) \leq \frac{R\mu}{C} < g(n^*) \rightarrow g(n^*) \leq \frac{R\mu}{C} < g(n^* + 1) \).
page 29 line 10-12: Also,
\[
g(\nu) - \nu = \frac{\rho}{(1 - \rho)^2} \left[\nu(1 - \rho) - (1 - \rho') \right].
\]
It is easy to see that this function is decreasing for \(\rho < 1 \), increasing for \(\rho > 1 \), and has a minimum value of 0 at \(\rho = 1 \).
page 31: line 9: change 0 to 1; equation (2.12) should be \(Z_O = \lambda \frac{1 - \rho^n}{1 - \rho^n + \tau} \left(R - \frac{n_C}{\mu} \right) \).
page 48 line -6: \(\lambda_\nu(0) \leq \lambda^* \rightarrow \lambda_\nu(0) \geq \lambda^* \).
page 51 remark 3.4 assumes FCFS.
page 56 line -8 and page 57 line 8: Balachandran and Schaefer [20-22].
page 57 line 18: \(\sqrt{R_j\mu} - \sqrt{C_j} \rightarrow \left(\sqrt{R_j\mu} - \sqrt{C_j} \right)^2 \).
page 64 line 13: \(\frac{\sum_{i=1}^{m_\nu} \sqrt{m_j}}{\left(\sum_{j=1}^{m_j-1} \mu_j - \Lambda \right) \sqrt{\mu_j}} \rightarrow \left(\frac{\sum_{j=1}^{m_j} \sqrt{m}}{\sum_{j=1}^{m_j-1} \mu_j - \Lambda} \right)^2 \).
page 69 lines 7, 8, and 12: Change \(\lambda_k \) to \(\lambda^k \) to avoid confusion with \(\lambda_j \).
page 79 Figure 4.2: Replace \(\theta \) by \(\frac{\theta}{R} \) (twice).
page 81 lines -5 and -3: add “ordinary” before “customers”.
page 83: delete lines 3-5. Alperstein’s model allows balking and the profit maximizing solution is also socially optimal, though this fact is not mentioned in the paper.
page 84: delete the second expression for \(f(p) \) or replace in its denominator \(\lambda \) by \(\rho \).
page 93 Eq. (4.14): \(\partial \lambda_j \) should be \(\partial \lambda_i \).
page 103 add to the numerator in (4.25) \(x \), so it becomes \(2\rho W_0x \), and in the first equation in the proof, \(W''(y(C)) \) should be \(W''(y(C)) \).
page 104 line -6: change looses to loses.
page 114 line 6: \(\lambda pCT \rightarrow \lambda qCT \).
page 116 line 12: \(\gamma = \frac{R}{C} \rightarrow \gamma = \frac{C}{R} \).
page 153 footnote 10: This statement is not correct, the existence of a threshold equilibrium for all possible parameters is still an open question. See the published version in *Stochastic Models* 20 (2004) 149-171.

Page 174 line 13, change “left-hand side” to “right-hand side.”