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Abstract

Relative priorities in an n-class queueing system can reduce server and customer costs.
This property is demonstrated in a single server Markovian model where the goal is to
minimize a non-linear cost function of class expected waiting times. Special attention is
given to minimizing server’s costs when the expected waiting time of each class is restricted.

1 Introduction

Control of queueing systems to maximize profits or welfare has been the subject of numerous
papers. The common methods are by setting adequate price and priority regimes. (See [10] for
a survey of such models.) In other cases, the service provider also sets and advertises waiting
time standards [1]. The common priority regime is that of (preemptive or non-preemptive)
absolute priorities, where the customer classes are ranked and customers are called to be served
according to this order.

There is a voluminous literature analyzing and comparing different priority disciplines, see
for instance the survey texts by Gelenbe and Mitrani [8] and Kleinrock [13]. A notable gen-
eralization of this concept was offered by Federgruen and Groenevelt [7] who considered work
conserving priority rules. For each rule there corresponds a performance vector giving the
expected waiting time of each customer class under the given rule. The performance space con-
sists of the collection of performance vectors achievable by the available rules. Federgruen and
Groenevelt showed that the performance space is the convex hull of the points corresponding
to the regimes. Thus, each point in this polyhedron is achievable. However, the natural way
of obtaining a given point in the performance space is, for example, by randomizing between a
set of absolute priority rules, assuming that the outcome of this randomization can be hidden
from the customers. The latter condition may often be hard to implement.

For a linear objective function of the system, that depends on the performance vector, there
is an optimal extreme point rule, in absolute priorities. For other functions this is not true, and
therefore it is of interest to identify technically feasible priority rules that optimize a nonlinear
objective over the performance space.

We consider an alternative approach, that of relative priorities, where the priority given to
a class also depends on state variables associated with other classes. We demonstrate several
new possible uses of such regimes. In particular, we show that every point in the performance
space can be achieved by a suitable choice of relative priorities. Thus, we offer a new method for
optimizing nonlinear system objective functions without the need to conceal from the customers
the details of the priority rule.
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We consider a single server and several customers. Customer i submits jobs to be processed
by the server according to a Poisson process with rate λi. The service rate is exponential with
mean 1/µ. A function f(W1, . . . ,Wn) gives the cost incurred by the system when i-jobs have
expected waiting time of Wi, i = 1, . . . , n. (By waiting time we mean the time in the system
including in service: often called sojourn time.) We also consider a variation of this model
where the service rate is a decision variable, and the cost function is extended to include the
cost associated with the chosen service rate. In both cases we give conditions under which
relative priorities reduce costs.

We elaborate on a special case of the above model, where customer i requires that the
expected time his jobs stay in the system is bounded by a constant ti. The server is free to
choose the service rate µ and a priority rule. The server incurs a cost C(µ) per unit of time if
the chosen service rate is µ. The function C is monotone non-decreasing. We investigate the
optimal choices to be made by the server, and show that the server can profit by using relative
priorities.

We consider the priority scheme called discriminatory processor sharing (DPS). Under this
model there exist nonnegative parameters xi ∈ (0, 1),

∑n
i=1 xi = 1 representing relative priority

of customers of the classes. If ni customers are present in the system, i = 1, . . . , n, an i-
customer receives a fraction xi (

∑n
i=1 nixi)

−1 of the service capacity. In particular, the total

capacity dedicated to class-i is nixi (
∑n

i=1 nixi)
−1. Of course, the limit case when xi → 1 means

that the class i obtains absolute priority.
The DPS discipline is used in several queueing models in the computer science and commu-

nication literature. In these cases firms cater to multiple customer classes or market segments
with the help of shared service facilities or processes, so as to exploit pooling benefits. Different
customer classes typically have rather disparate sensitivities to the delays encountered. Con-
versely, from the firm’s perspective it is vital to offer differentiated levels of service to different
customer classes so as to maximize (long run) profits. In many service industries, waiting time
standards are used as a primary advertised competitive instrument. For example, most major
electronic brokerage firms, (e.g., Ameritrade, Fidelity, E-trade) prominently feature the average
or median execution speed per transaction which is monitored by independent firms. Thus, in
order to improve waiting time standards often firms segment their costumers in classes and some
firms go as far as to provide an individual execution time score card as part of the customer’s
personal account statements. [2, 3, 12, 13, 17, 18].

Clearly, DPS gives more options than can be achieved by absolute priorities, and one may
claim that it is expected that by applying DPS a server should be able to achieve better
performance or profit than otherwise. However, at least in one notable case this assumption
turns to be false. Hassin and Haviv [11] considered two customer classes and a single server
who sets both prices and relative priority. They observed that it follows from Mendelson and
Whang [15] that when the server is not restricted in choosing these variables, there exists an
optimal solution with absolute priorities and thus the application of DPS doesn’t improve the
welfare achieved by the system. However, they also showed that if the server is restricted to
a given set of prices, or if the server must set a common price to both classes, then relative
priorities may be used to increase profits. Thus, it is a question of interest to identify other
settings where the use of relative priorities can be helpful.

In Section 2 we analyze how to reduce system costs by using DPS as opposed to the use
of absolute priorities. We give conditions that ensure, for a given cost function, when DPS
outperforms FCFS. Section 3 considers a model where each class fixes its aspiration level on
the waiting time and the problem is to ensure these levels at a minimum service rate. (Here
the customers are those who set the waiting time standards, and the firm adopts itself to
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minimize its costs, whereas in [1] the standards are choice variables set by the firm to maximize
its profits.) We provide explicit forms for the service rate requirements under different priority
regimes: FCFS, absolute preemptive priorities and DPS. The main results proved in this section
are: 1) A comparison of service rate requirement under different priority regimes; 2) A general
result that characterizes the existence of a DPS policy satisfying given aspiration levels for any
number of classes; 3) For n = 2 and any given aspiration levels t1, t2, we explicitly determine
the optimal priority parameters minimizing the service rate under DPS; 4) We show that for
n = 2, using DPS improves the service rate regarding the service rate under FCFS, whenever
t1 6= t2.

2 Optimizing the cost of the system using DPS

Let xi denote the relative priority given to the ith-class. The problem is:

min
x∈Sn

f(W1, . . . ,Wn), (1)

where f is a monotone nondecreasing function of its arguments and Sn = {x ∈ R
n :

∑n
i=1 xi =

1, xi ≥ 0,∀i}. Note that although x does not appear explicitly in the function to be minimized
the expected waiting times Wi, i = 1, . . . , n depends on the relative priority xi given to the
i-th class. At times, when it is necessary to understand the problem, we will make explicit the
dependence of the expected waiting times on the different parameters.

2.1 The achievable waiting times

To investigate qualitative properties of this problem we proceed to obtain the functional depen-
dence of Wi i = 1, . . . , n. A mixing priority discipline consists of multiplexing a finite set of
priority disciplines in such a way that each of them will operate during a desired percentage of
time.

Denote by Π(N) the set of permutations of the finite set N = {1, . . . , n}. Take π ∈ Π(N)
to be an ordering of the n classes. Here, π(i) represents the position which has been assigned
to class i. The smaller the position index, the higher the priority associated to the class. We
denote by W π

i the expected waiting time in the system for class i under π. It is well-known
(see, for instance Gross and Harris (1998)) that for µ > λ :=

∑n
i=1 λi, the value for a M/M/1

system is:

W π
i =

µ

(µ− ∑

j:π(j)<π(i) λj)(µ− ∑

j:π(j)≤π(i) λj)
.

We denote by W π the vector whose coordinates are given by W π
i i = 1, . . . , n, and

F(N) = conv {W π ∈ R
n : π ∈ Π(N)} .

The following theorem states a geometrical characterization of the performance space by the
family of DPS policies when the number of classes is at least three (n > 2).

Theorem 2.1 The performance space achievable by the family of DPS policies coincides with
the relative interior of F(N). This set is contained in a hyperplane of R

n.

Proof: It is known (see [6, Theorem 2]) that the entire set of performance waiting time vectors
that are achievable by some scheduling strategy coincides with F(N).4 Moreover, according to

4A scheduling strategy is the specification of the order in which the customers are served, with the only
restriction that sequencing decisions are not based on advanced knowledge of remaining service times.
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[16, Theorem 3], DPS policies are almost complete with respect to the waiting time vectors of
scheduling strategies:5 This implies that the performance space achievable by DPS policies is
F(N) without its boundary.

Since DPS strategies are work conserving and do not use advance information about indi-
vidual service times, their achievable waiting times fulfill Kleinrock’s conservation law:

n
∑

i=1

ρiWi =
1

1 − ρ

n
∑

k=1

λk
µ2
, (2)

where ρi = λi/µ and ρ = λ/µ. Hence, any achievable waiting time vector by DPS policies must
be included in the hyperplane defined by this law.

The above result describes the geometry of the performance space for n > 2. The case n = 2
is slightly simpler since this is the unique case where the extreme preemptive strategies (1, 2)
and (2, 1)6 coincide with DPS policies (1, 0) and (0, 1)7, respectively. Hence, the performance
space achievable by DPS policies coincide with F({1, 2}).

For the case of two priority classes, after some algebra, the expression (2) results in:

AW1 +BW2 −D = 0,

where A = λ1(µ− λ), B = λ2(µ− λ), and D = λ.
The bounds on W1 and W2 are obtained by setting x1 = 0, 1. The performance space, for a

given µ, is given in Corollary 2.2 and illustrated in Figure 1.

W1

W2

D
B

D
A

1
µ−λ2

µ
(µ−λ)(µ−λ2)

µ
(µ−λ)(µ−λ1)

1
µ−λ

1
µ−λ1

1
µ−λ

(WFCFS ,WFCFS)
�

Figure 1: The performance space for n = 2

Corollary 2.2 For any fixed µ, the performance space is a segment in the plane (W1,W2) with
extreme points [LO(µ), UP (µ)], where

LO(µ) =

(

1

µ− λ1
,

µ

(µ− λ)(µ− λ1)

)

, λ < µ < +∞,

5A family of policies Ψ is almost complete for a given set of performance vectors H whenever HΨ, the set of
performance vectors achievable by policies in Ψ, satisfies that HΨ equals H without its boundary.

6The standard notation for preemptive strategies specifies the permutation which gives the preemption se-
quence on the different classes. Thus, (2, 1) means that any job of class 2 will be completed before any job of
class 1.

7The notation for DPS policies gives in the i-th coordinate the relative probability assigned to class i.
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and

UP (µ) =

(

µ

(µ− λ)(µ− λ2)
,

1

µ− λ2

)

, λ < µ < +∞.

Computing the performance space for a given DPS policy is in general a hard problem. To
date, there exists a closed formula only for the case of two priority classes. The following result
is due to Fayolle, Mitrani and Iasnogorodski [9]. Let λ = λ1 + λ2 and Λ = λ1x1 + λ2x2, then

Wi =
1

µ− λ

µ− λxi
µ− Λ

, i = 1, 2. (3)

It is of interest to compare the waiting times under DPS with WFCFS = 1
µ−λ obtained under

the First-Come First-Served (FCFS) discipline. Inserting x1 = 1
2 in (3) we obtain that Λ = λ

and W1 = W2 = WFCFS. Therefore, the best result obtained under DPS is at least as good as
that obtained under FCFS. The point (W1,W2) = (WFCFS,WFCFS) is marked in Figure 1.

2.2 Optimal DPS policies

Using the characterization in Theorem 2.1 for n > 2, Problem (1) can be rewritten as:

min f(W1, . . . ,Wn) (4)

s.t.
∑

π∈Π(N)

απ = 1

Wi −
∑

π∈Π(N)

απW
π
i = 0, i = 1, . . . , n

απ ≥ 0,∀π ∈ Π(n).

For the Markovian M/M/1 system any feasible solution of (4) must satisfy Kleinrock’s
conservation law (2). The linear dependence in (2) implies that any feasible solution of (4) can
be represented by at most n out of the n! α-coefficients. Moreover, any solution that lies in
the relative boundary of F(N) can be represented by at most (n − 1) non-null α-coefficients.
These relative boundary points cannot be properly achieved by DPS policies. (But they can be
arbitrarily approximated up to any given accuracy.)

In the case of two priority classes we can give a more accurate answer. If the optimum
in Problem (1) is not attained at the extreme points of the interval then there exists a DPS
policy that outperforms the absolute priorities. Therefore natural candidates to have optimal
solutions in DPS policies are convex cost functions (and certainly concave functions never give
optimal solutions in relative priorities).

Some interesting particular instances of the above result are given below.

1. If f(W1,W2) = C1W1 +C2W2 then there is always an optimal solution in absolute prior-
ities. In addition, only if C1

C2
= A

B there also exist solutions in non absolute priorities. In
fact in this case any x1 ∈ [0, 1] is an optimal solution. (See [13] to find classical examples
of linear objective functions in the control of queues.)

2. Suppose that f(W1,W2) = max{C1W1, C2W2}, Ci > 0, i = 1, 2. Usage of this objective
function is justified when the server compensates users according to worst case perfor-
mance, as for instance in emergency systems. Then:

(a) If C1
C2

≥ 1
1−ρ then the unique optimal solution is x1 = 1.
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(b) If C1
C2

≤ 1 − ρ then the unique optimal solution is x1 = 0.

(c) If 1−ρ < C1
C2

< 1
1−ρ then there is a unique optimal solution at some x1 ∈ (0, 1). This

value of x1 solves the following two equations: AW1 +BW2 = D and C1W1 = C2W2.

2.3 The problem with variable µ

Once we have analyzed the optimization problem with fixed µ we focus on the problem with
variable µ. With two priority classes, the problem is:

min
x1∈[0,1]

λ<µ<+∞

f(µ,W1,W2).

Figure 2 represents the domain of (W1,W2) for different values of µ. In particular the
two curves are the geometrical loci of the extreme points of the segments [LO(µ), UP (µ)] as a
function of µ from µ = 3.5, . . . , 10.
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Figure 2: W1 and W2 as a function of µ for λ1 = 1 and λ2 = 2.

Are relative priorities also worth using if µ is a decision variable in the problem? The answer
depends on the form of the cost function to be considered. A way to test the better performance
of DPS is to check that its behavior outperforms the one in absolute priorities for any feasible µ
value. Of course this is only a sufficient condition. Nevertheless, this argument can be applied
in particular for f(µ,W1,W2) = C(µ) + max{C1W1, C2W2}. For this cost function we always
have that if

1 − ρ <
C1

C2
<

1

1 − ρ
, ∀µ,

then the optimal solution must be in non absolute priorities since it is the case for any µ. In
particular, this condition always holds when C1 = C2. Therefore, DPS is worth using.
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3 The aspiration problem: Minimizing the service rate

The goal of this section is to minimize the necessary service rate to ensure given aspiration
levels ti, i = 1, . . . , n on the waiting times (of the different classes). Since improving service
rate is not cost free, our goal induces a trade-off that should be solved up to optimality.

We assume that parameters ti, i = 1, . . . , n are given. Therefore, this induces the follow-
ing cost function f(W1, . . . ,Wn) = 0 if and only if Wi ≤ ti, for all i = 1, . . . , n. Otherwise
f(W1, . . . ,Wn) = ∞. Clearly f is convex. Our goal is to compare service rate requirements
under different priority regimes: FCFS, absolute preemptive priorities, and DPS.

Suppose first that the queue discipline is FCFS. The system’s requirement is now 1
µ−λ ≤

min{ti : i = 1, . . . , n}, and the minimum service rate that satisfies these requirements is

µFCFS = λ+
1

max{ti : i = 1, . . . , n} . (5)

To characterize the optimal service rate if we use absolute preemptive priorities, denote
aiπ =

∑

j:π(j)<π(i) λj and biπ =
∑

j:π(j)≤π(i) λj for i = 1, . . . , n, π ∈ Π(n). In this case we look for

the smallest µ >
∑n

i=1 λi that satisfies, for some permutation π, the following set of inequalities:

µ

(µ− aiπ)(µ− biπ)
≤ ti, ∀i = 1, . . . , n.

For a given i, the condition is equivalent to µ2 − µ
(

aiπ + biπ + 1
ti

)

+ aiπb
i
π ≥ 0, which, since

we also require µ ≥ ∑n
i=1 λi, gives

µ ≥ riπ =
1

2







aiπ + biπ +
1

ti
+

√

(

aiπ + biπ +
1

ti

)2

− 4aiπb
i
π







.

The minimum service rate that can be achieved with absolute preemptive priorities is:

µPR = min
π∈Π(N)

max
1≤i≤n

riπ. (6)

3.1 The aspiration problem with relative priorities

Let µDPS denote the minimum value of the service rate that satisfies a given aspiration level
vector T = (t1, . . . , tn) > 0 using DPS. For a given service rate µ and a permutation π ∈ Π(N)
let W µ,π

i denote the expected waiting time of class i given the absolute priority regime π. By
Theorem 2.1, µDPS is the infimum value of µ, greater than

∑n
i=1 λi, for which there exists a

nonnegative vector α = (απ) such that
∑

π∈Π(N)

απ = 1 and
∑

π∈Π(N)

απW
µ,π
i ≤ ti, i = 1, . . . , n. (7)

For any given value of µ this is a linear set of constraints on the α variables. Consequently,
if the system (7) has a solution then it has one with at most n+ 1 positive values of απ.

The optimal value µDPS is the unique solution to the following problem.

min µ (8)

s.t.
∑

π∈Π(N)
απµ

(µ−ai
π)(µ−biπ)

≤ ti, i = 1, . . . , n, (9)
∑n

i=1 λi ≤ µ
∑

π∈Π(N) απ = 1,

απ ≥ 0, ∀π ∈ Π(N).
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It is assumed that the data {aiπ}, {biπ}, {ti} are rational, where each rational data item is
represented as a ratio of two integers. Let M denote the maximum of the absolute values of all
integers in this representation.

The constraints of the problem are algebraic functions defined over the rationals. For i =
1, . . . , n, the ith constraint can be converted to a polynomial in the variables µ and {απ} by
multiplying (9) by

∏

π[(µ− aiπ)(µ− biπ)].
It follows from [4] and the references cited therein that there is an algebraic optimal solution,

µDPS, {α∗
π}. In particular, there is a minimal univariate characteristic polynomial, say P (z),

with integer data, such that P (µDPS) = 0. More specifically, from the nature of the above
constraints, the degree of P (z) is bounded above by f(n) = 2n(n!), and the absolute value of
each one of its integer coefficients is bounded above by (n!)M 2n(n!).

For each real µ, testing whether µDPS ≤ µ or µDPS > µ requires the solution of a set
of n + 1 linear constraint in the n! nonnegative variables {απ}. If µ is rational with integer
numerator and denominator bounded above by N , solving such a linear program can be done
in Q(n!, logM, logN) time, where Q is polynomial.

With the above machinery, using the results in [4] and [5], we conclude with the following:

Theorem 3.1 [19] There is a bivariate polynomial function G(x, y), such that the time to find
the characteristic polynomial P (z) of µDPS, and a rational interval [a, b], such that µDPS is the
unique root of P (z) in this interval, is bounded by G(n!, logM).

Theorem 3.1 finds an interval [a, b] containing µDPS. The optimal value µDPS can be located
by any search algorithm for the root of P (z) in [a, b] (for example, Newton’s method).

Once the solution µDPS is found we have to check whether it is attainable by DPS policies
or not. This depends on the number of non-null α∗

π variables in the optimal solution of Problem
8. (There are at most n + 1.) Recall that µDPS is attainable by DPS policies if W belongs to
the relative interior of F(N ).

Comparing the service rates requirements under the different priority regimes, simply con-
sists of comparing the values obtained by (5), (6) and Theorem 3.1.

3.2 Two classes

Consider now the case of n = 2 customer classes. Suppose the server implements a DPS with
x1, x2 = 1 − x1. The service rate should be large enough to satisfy the requirements Wi ≤ ti
i = 1, 2. Consider first i = 1. By (3), the requirement amounts to

µ− λx1 ≤ (µ− λ)(µ− Λ)t1,

and of course µ > λ. (Recall that λ = λ1 + λ2 and Λ = λ1x1 + λ2x2.) Equivalently,

t1µ
2 − [t1(Λ + λ) + 1]µ+ λ(t1Λ + x1) ≥ 0.

Let

∆1 = t21(Λ + λ)2 + 1 + 2t1(Λ + λ) − 4t1λ(t1Λ + x1)

= [t1(Λ − λ) + 1]2 + 4t1λx2.

The condition is now

µ ≥ µ1 =
t1(Λ + λ) + 1 +

√
∆1

2t1
=

Λ + λ

2
+

1 +
√

∆1

2t1
. (10)
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Similarly, the condition W2 ≤ t2 amounts to

µ ≥ µ2 =
Λ + λ

2
+

1 +
√

∆2

2t2
, (11)

where ∆2 = [t2(Λ − λ) + 1]2 + 4t2λx1. We note that ∆1 (∆2) are functions of x1 although we
do not write explicitly this dependence in its definition to simplify notation.

To satisfy both requirements, the server chooses a rate µ = max{µ1, µ2}.
Clearly, µ1 is a decreasing function of x1, and µ2 is an increasing function of x1. Therefore,

the best priority parameter is that which satisfies µ1 = µ2.
Figure 3 (left) illustrates the solution for some values of the parameters. The graphs shown

give µ as a function of the priority parameter x1. The part of the function to the left of the
minimum is µ1 and it decreases when customer 1 obtains higher priority. Similarly, the part to
the right of the minimum gives µ2 which increases when customer 1 obtains higher priority and
thus customer 2 obtains lower priority. The optimal service rate is obtained at the point where
µ1 = µ2. In this figure we see that a decrease in t1, which amounts to higher standards required
by customer 1, leads to a solution with a higher µ and x1. Of course this result is expected.
Similarly, in Figure 3 (right) we see that an increase in λ1 leads to increased value of µ, and in
this example it is coupled with a decrease in the priority allocated to this customer.

We also conclude from Figure 3 that µDPS < µPR is possible, that is, using relative priorities,
it may be possible to reduce the service rate relative to the best result that can be obtained by
any permutation of absolute priorities. This conclusion results from the observation that the
two relative priority regimes that are possible in our example are represented by the values of
the graphs at the extreme points x = 0 and x = 1. However, we see that a lower service rate is
possible if we use intermediate priority values.
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Figure 3: Required service rate as a function of x1

As noted above, the minimum value of the system requirement under DPS is achieved when
µ = µ1 = µ2. This condition applied to (10) and (11) results in:

1 +
√

∆1

t1
=

1 +
√

∆2

t2
. (12)

After some algebra (manipulate equation (12) multiplying both sides by t2, putting the 1 to
the left side, raising to the power 2, and substituting ∆2 = [t2(Λ− λ) + 1]2 + 4t2λx1, condition
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(12) turns out to be:

t22

(

[

1 +
√

∆1

]2
− (Λ − λ)2t21

)

− 2t2t1

(

1 +
√

∆1 + (Λ − λ)t1 + 2λx1t1

)

= 0.

Since t2 6= 0, the unique non-null root of the above equation is

t2 = 2t1
1 +

√
∆1 + (Λ − λ)t1 + 2λx1t1

(

1 +
√

∆1

)2 − (Λ − λ)2t21
. (13)

Lemma 3.2 The function

φ(x1) = 2t1
1 +

√
∆1 + (Λ − λ)t1 + 2λx1t1

(

1 +
√

∆1

)2 − (Λ − λ)2t21
, (14)

is continuous and increasing.

Proof: Let ψ1(x1) = 1 +
√

∆1(x1) + Λ(x1)− λ(1− 2x1) and ψ2(x1) = 1 +
√

∆1(x1) + Λ(x1) +
λ(1 − 2x1). (Notice that we have chosen in ∆1 the appropriate root so that φ(x1) goes to

infinity when x1 goes to 1.) Clearly, φ(x1) = ψ1(x1)
ψ2(x1)

for any x1 ∈ [0, 1) and its derivative φ′(x1)

is positive. Indeed, φ′(x1) = 2λt21[2−x1 +λ1t1(3−2x1)+λ2t1(5−4x1)+λ2
1t

2
1(1−x1)+λ1λ2t

2
1 +

(1 − λ2t1)
2x1 + (2 + λt1)

√

∆1(x1)]∆1(x1)
−1/2(1 +

√

∆1(x1) − (Λ − λ)2t21)
−2 > 0, since all the

terms in the numerator are non-negative and some of them are strictly positive.
On the other hand, 0 < φ(0) < 1 and lim

x1→1−
φ(x1) = +∞. Thus, φ is continuous, increasing

monotone in the interval [0, 1).

Our next result gives the optimal priority value that ensures the aspiration levels and min-
imizes the service rate.

Corollary 3.3 For any fixed value t1 > 0 the optimal priority parameter x∗1, as a function of
t2, is:

x∗1 = φ−1(t2).

Proof: The above properties (increasing monotonicity and continuity) of the function φ ensure
that it has a proper inverse function and therefore the optimal priority parameter x∗

1 can be
computed by

x∗1 = φ−1(t2).

Figure 4 shows x∗1 as a function of t2. It assumes t1 = 1, λ1 = 5 and three values of λ2.
We note that the result is not very sensitive to the value of λ2. Also note that when t2 → ∞
we naturally have x1 → 1, and that x1 = 0 is obtained for positive values of t2. The latter
property is illustrated in the right part of Figure 4 which is a magnified section of the left part.
Note that for t1 = t2, x

∗
1 = 0.5 even when λ1 6= λ2. With t2 > t1 we have that x∗1 is monotone

increasing with λ2, and the opposite holds when t2 < t1.

3.3 Comparing the disciplines

The rest of this section is devoted to comparing the required minimal service rate under the
optimal DPS priority parameter, µDPS(x∗1), with the same rate under FCFS, µFCFS.

10



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ
1
=5,  t

1
=1

λ
2
=(0.1,5,10)

op
tim

al
 p

rio
rit

y 
pa

ra
m

et
er

 x
1

service requirement t
2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

λ
1
=5,  t

1
=1

←λ
2
=0.1 ←λ

2
=5 ←λ

2
=10

op
tim

al
 p

rio
rit

y 
pa

ra
m

et
er

 x
1

service requirement t
2

Figure 4: Optimal DPS priority parameter as a function of t2

Theorem 3.4 For t2 = t1, the minimal service rate required is the same for DPS and FCFS,
but for t2 6= t1 there is a priority parameter x∗1 that guarantees µDPS(x∗1) < µFCFS.

Proof: With x1 = 1
2 ,

√
∆1 = 1 + t1

λ
2 giving that the required service rate is

µDPS(
1

2
) =

3

4
λ+ max

i=1,2

{

2 + ti
λ
2

2ti

}

= λ+ max
i=1,2

(

1

ti

)

= µFCFS,

where µFCFS is given in (5).
On the other hand, t2 = φ(1

2) if and only if t2 = t1 (substituting x1 = 1
2 in (14) gives

t1 = t2). This means that if t1 6= t2 then (12) is not satisfied for x1 = 1
2 , meaning that it is not

optimal and there is another value for x1 that gives a strictly smaller value for µ. Since x1 = 1
2

gives the FCFS value we conclude the proof.
The minimal service rate requirements for DPS and FCFS are illustrated in Figure 5. This

figure assumes that t1 is fixed at 1 whereas t2 varies. The FCFS requirement is determined by
the minimum of t1 and t2 and therefore it is constant for t2 ≥ 1. We see that the two curves
intersect when t2 = t1, but for any other value of t2 selecting the right DPS parameter allows
us to reduce the service rate - as proved in Theorem 3.4.

4 Concluding Remarks

Theorem 2.1 extends further to the case of G/M/1 systems because a work conservation law for
the long-run expected amount of work in the system exists (see e.g. [7] and [13]). However, since
no explicit formulas are known for the remaining elements in our analysis (e.g. W π

i ) in G/M/1
queues, the extension to that model, although meaningful, is currently an open question.
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