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DICHOTOMOUS SEARCH FOR RANDOM OBJECTS ON
AN INTERVAL*

R. HASSIN AND M. HENIG
V Tel Aviv University

A set of objects to be searched is represented by a set of points lying in an interval of
integers. We wish to identify these points within unit-intervals through a dichotomous search,
minimizing the expected cost of the search.

The optimal search strategy may depend on the information gained at each stage of the
search. It is shown here that for some cases there exists a common optimal strategy. This
strategy is generally different from the bisection procedure, and is independent of the number
of objects in the interval. As a matter of fact, at each stage of the search a partition of the
interval is given and the only information needed for searching a subinterval of this partition
is that it still contains an unidentified point.

1. Introduction. Let N be a counting function defined on the interval (0,T] of
integers.' The value N(r) denotes the number of objects in (0, ¢]. Point 7 is a jump if its
increment N(r) — N(t — 1) > 0 (N(0) = 0). We wish to idenufy the jumps of N by the
following search scheme. Let I be a function defined on subintervals of [0, T']. We call
it the information function. Initially, an information (0, T) is known and an a priori
joint distribution of the jumps i1s given. At stage m=12,... a list of points
0=1,<t,<--- <t,=Tis given and the information I(ty,t,, . . ., ,,) is obtained.
Based on the information, the joint distribution function of the jumps is updated. If all
the jumps were identified then the search terminates. Otherwise we split an interval
(t;i-\,t;)forsomei=1,..., mbyselecting t,_, < t* <.

A selection strategy is a set of rules telling us at each stage, based on the-given
information, which point to select next. Each selection strategy yields a search whose
number of stages is a random variable. A selection strategy is optimal if it minimizes
the expected number of stages.

We say that an interval (t,_,,t;] is resolved at stage m if I(t,, . . ., t,) 1dentifies all
jumps in the interval. .

We show that if certain conditions, which we specify later. hold, then the following
selection strategy is optimal:

Strategy O: In each stage arbitrarily select an unresolved interval (t;_,, t;] and split it
at t;_,+ 2" or at t; — 2"? whered = t, — t,_, and t(d) is the unique integer satisfying

3:207V < d <3219,

Notice that, according to this strategy, the only information needed is whether each-
interval is resolved or not. Notice also that d/2“’ does not converge as d increases
but fluctuates between 1.5 and 3.
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As a real life application of the model, suppose that after producing 7 items in a
production line, it was found that there are k types of defects in the last item. Suppose
that once a certain type of defect occurs it appears in all of the consecutive items. So
by examining the rth item it can be determined whether the appearance of a certain
type of defects occurred before producing the sth item, or later. We wish to identify the
first appearance of each type of defects. If we can assume that these are independently
and uniformly distributed! on (0, T] then Strategy O will minimize the expected number
of items which are examined.

The problem of locating K balls known to lie within T boxes with a minimax
objective was solved by Hassin and Megiddo [5]. The resulting algorithm supplies a
bound on the number of questions needed to solve the problem. Other existing
literature deals solely with dichotomous search for a single object on a given interval.
Morris [8] characterized the solution when the a priori distribution of the object is
uniform. Hassin [4] analyzed the problem with geometric a priori distribution and Hu
and Tucker [6] and Knuth [7] suggested an algorithm for an arbitrary distribution.
Extensions and variations were treated by Cameron and Narayanamurthy [1], Gal [3]
and Murakami [9}. [10].

2. The main theorem and examples. Suppose that the a priori joint distribution of

the jumps is given. Let R(t;_,, 4, I(tg, ..., t,) =1 if I(ty ..., ¢,) indicates that
(t;_,,t;] is unresolved, and 0 otherwise.
Condition A. R(t;_;, ;. 1(tg, - - -, )= R4, 4, 1(tg, ..., 1%, ..., 1) for every

G <1< g, i
Condition A means that selection of points outside the interval (r,_,,;] does not

affect the value of R. This condition implies a common value of R(a,b,1(ty, ..., t,))
for every set of points t, < ¢, < --- <, such that a=1¢,_,, b= for some |1 <
< m. We denote it as R(a, b). »

Condition B. Prf{R(a,a+ d)=1]1({ty,¢,, ..., t,)] is independent of a and mono-
tone increasing and concave in d for every list 1o < ¢, < --- <, such that,_, <a
<t —dforsomei=1...,m.

The condition states that the probability function that an interval (a,a + d] C (¢,_,,
t;] is unresolved gven I(t,, ..., t,) depends only on its length 4 and is monotone
increasing and concave.

THEOREM. If Conditions A and B are satisfied then Strategy O is optimal.

We now mention several examples where Conditions A and B are met.

ExaMPLE A. Suppose that several objects are independently uniformly distributed
over the interval (0. T]. Let N¥(r) be the number of objects in [0, t]. At stage m of the
search the informaion obtained is whether (f,_,t], i =1, ..., m, is empty (contains
no objects) or not Thus, (¢,_,,¢] is resolved if it is either empty or ¢, — t,_, = L.
Condition A is trivially satisfied since splitting at r* & (¢,_,, ] cannot change the fact
that (,_,,] is empty or nonempty. Let q(d| k) be the probability that the interval
(a,a+d)C(t_,,t), d > 1, is empty, given that (#_,,t] contains & empty points.

{

Clearly the empty points are uniformly distributed over (4,_,,] and therefore

d—1

gdlky=T] [(k=)/(ti—t-,—j)] for d<k, and
Jj=0

q(dlky=0 for d > k.

It is easy to verify that g(d| k) is monotone decreasing and convex in d. Therefore,
3%-%'q(d| k)Pr{(1._,t] contains k empty points}, which is the probability that
(a,a + d] is empty. is monotone decreasing and convex in d, which implies Condi-

tion B.
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ExaMpLE B. Consider the previous example with the exception, I(ty, ..., 1)
=(N(t), ..., N(t,). An interval (;,_,,£] is resolved then if N(1)— N(¢,_,) = 0 or
L=t = 1 as in Example A. The proof that Conditions A and B are satisfied is
similar to that presented in the previous example. Notice that by the theorem the
knowledge of N(¢) is redundant since the information in Example A leads to the same
number of stages. However, N(¢) is needed lf it is desired to 1denufy the increments
and not just the jumps. .

ExampLE C. Consider again Example A with the exception that /(1 ..., tm)

= (J(te), J (), - .-, J(t,), where J(¢) is the number of jumps in (0,7]. An interval
(AW ARHN resolvcd if either J(£) = J(;_))=0o0r J(;) — J(t;_}) = t; — t,_,. Adding r*
to the list ¢4,¢,, . . ., ¢,, informs only about J(¢*) but does not change the status of a
resolved (or unresolved) interval (t;_,,t]® ¢*. Therefore Condition A holds. Let
g(d| k) be the probability that the interval (a,a + 4] C (t;_,,t] is resolved, given that
(t;—, 1] contains k empty points. Let §, = §, = 1 except for §, =0ifd > ¢, —t,_, — k
and §, = 0if d > k. Then

q(d| k) = 8, H(l————{d—-——)+8 H(-—“T:;)

Jj=0 j=0

This probability function is monotone decreasing and convex which prove Condition
B. By the theorem, Strategy O is optimal. Furthermore, obtaining J(¢) is redundant
and the sufficient information is, whether the interval is resolved or not.

ExampLE D. Let N be a counting function defined on the positive real numbers.
The value N(¢) denotes the number of objects in the interval (0, ¢] of reals when these
objects have been distributed by a compound Poisson process (see Feller [2, Chapter
V1.4]). Suppose we want to identify the discontinuity points of N(¢) over (0, T] within
unit intervals. By restricting N to the integers we face the problem of identifying the
jumps of N. Furthermore, the jumps are independently uniformly distributed over the
integers.

So far all of the examples assumed independent uniform distribution of the objects
over the interval. This assumption can be relaxed by assuming that the jumps are
uniformly distributed. For example, the compound Poisson process in Example D can
be replaced by a mixture of such processes (Feller [2, Chapter I1.5]). Further relaxation
may include an a priori joint distribution of the objects which are not necessarily
independent but are exchangeable (Feller [2, Chapter VIL.4]). That is the joint
distribution is invariant under permutation, as in the next example.

ExaMpLE E. Suppose that the a priori joint distribution is generated by sequentially
allocating objects on (0, T'] according to the following rule: if the points ¢, . . ., ¢, have
the same number of objects, then each of*them has an equal probability, different from
0 and 1, to obtain the next object. Suppose the same information function as in
Example A, then an interval is resolved if it is empty or its length equals 1, and
Condition A is satisfied as before. The joint distribution of objects given the informa-
tion is exchangeable and therefore the empty points are uniformly distributed if their
number is given. The proof that Condition B is satisfied is similar to that of Example
A. Notice the requirement that the probability for allocating an object is different from
0 or 1, otherwise an interval may become resolved even if it is not empty or has length
equal to 1.

3. The optimal splitting policy. Let X be a discrete function defined on the
integers such that 0 < X () < ¢, for ¢t > 2, and X(1) = X(0) = 0. We call it a splitting
function. In this section we restrict ourselves to selection strategies which iteratively
select an unresolved interval (¢;_,, ] and split it at X' (¢, — ¢,_,). We call such a strategy
a splitting policy.
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Thus, a splitting policy does not use the information available at each stage of the
search to decide what new point in the interval to select. As a matter of fact, the only
information it uses is whether an interval is resolved or not. By Condition A this
information is not affected by the order by which the unresolved intervals are selected,
and therefore the number of stages of the search is independent of the rules used to
select the intervals.

For a given T, a sequence of numbers is generated by repeatedly using a splitting
function X. Define x5, =T, x,, = X(xo,), x,,=T — x,, and iteratively x,,,,_,
= X(X;,), X;4+12i = X1; — X412~ Lhe generated sequence is

{Cayli=1,...,201=01,...}. (D

We can relate the indices (/,/) to the interval (Z}Zﬁx,l, Zj,_,x, 1.
The expected number of stages in the search is equal to the expected number of
unresolved intervals occurring during the search and this is equal to

{zio,;R(é:X"’ > x,j) 1(0, T)}

]
IMS

Erlo(E g

j=1

1(0, T))

By Condition B the probabilities depend only on the interval length, so we can
denote p(d) = Pr(R(a a+d)=1]|1(0,T)). Hence the expected number of stages in
the search is 2,_02,_, p(x,,)- This is the objective function we want to minimize over
all splitting policies.

To each policy there corresponds a sequence (1), and our problem is therefore the
following mathematical programming problem:

Program 1. Q(T)=min3, 3%, p(x,,) subject to:

X = Xper2i-10F X2 i=1,...,2, (I'l)
x;; 2 0 and integer 1=0,1,2,..., (1.2)
xo, = T. (L3)

We shall show that when p is concave and nondecreasing on the interval [0, 7] with
p(1)=p(0) =0 then an optimal solution of Program I satisfies the constraints of
Program II.

Let r = |log, T'| where | v] is the largest integer less or equal to y.

Program II.  Q'(T) = min 3_o 3%, p(x,,) subject to:

2x;=T =01 (IL1)

j=] T

2 x, <Y i=12,...,2 (112)

Notice that the objective function of Program I is reduced to that of Program II if
constraints II are satisfied since p vanishes for d =0, 1. Program II is composed of r
independent problems. Each of them is a Program III problem, which we present now.
This problem is also referred to as an allocation problem, where T units of a resource
is allocated among n items.
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Program III. min Y., p(b;) subject to:

>b=T (a< T/n<o). (HL.1)
i=1 ,
a<b<c i=1...,n (1T11.2)
LeMMA 1. Let p be a concave function on [a,c]. Then (b},b3, ..., b*) solves
Program 111: '
b;':cy ) i=1,...,m, m)],
b* = a, » i=m+2,...,n, m>»0,
b*=T~-mc—(n—m-—l)a, i=m+1, m>»0

where m = |(T — na)/(c - a)|.

If a, c and T are integers, the solution is also integral.

When p is strictly concave on [a,c] the solution is unique up to a permutation in the
indices. If p is linear then every feasible solution is also optimal.

PrROOF. A known result in convex programming (see Wagner [11, Chapter 14.9] )
states that there exists a basic optimal solution to Program III, i.e., a solution with at
most one variable not equal to its bound. By the symmetry of the problem, m arbitrary
vanables are at their upper bound and arbitrary n — m — 1 of the rest of the variables
are at their lower bound. &

COROLLARY. Let p be a concave function over (0, T] then the following is a solution of
Program 11I:

xl'i—_~2"’+‘, ‘ i=1,...,m(l), m{)>1],
X, =2 i=m(ly+2,...,2, m()>0,
x;=T—=2-=2"(m(l)y=1), i=m{)+1, m{)>0,

where m(l) = (T - 2")-2'""]. Mbreover, it satisfies the constraints of Program 1.

Proor. Program II is composed of r independent allocation type problems. So by
Lemma 1 the claim is true with

m(ly=|(T =227/ @~ =2 = (T-2)- 2"}

Constraints (1.2) and (1.3) are clearly satisfied. To show that (I1.1) is satisfied notice that
m(ly=4im(l + 1)if m(I+ 1) is even, and.m(l) =1(m(/ + 1) ~ 1) otherwise. For every
i< m(l) (m(l) > 1) we have 2i < 2m({) < m(I + 1) and therefore x;,,,;_, + X/, 2
=2+ = x;;. For every i > m(I)+ 2 we have 2i— 13 2m(I)+3> m(I+1)+2
and therefore X, 5+ X412, =2"'"'2=2""=x,,. So (I.1) was proved for
i m(l)+ 1 and since Zf'_,x,j = 2?::x,+,'i = T, it must hold also for i = m(I) + 1.

|

LEMMA 2. Let p be a concave and nondecreasing function on (0, T] which vanishes for
0 and 1. Then there exists an optimal solution of Program I which satisfies the constraint
of Program II. Therefore the values {x,;} of the corollary constitute an optimal solution.

Let XYT) = x,; (and T — X%T)= x,,) be an optimal splitting of 7.

Let r={log,T] and /=1, then XAT)=T—-2"""(and T- XYT)=2""if T
<Y+ 5 XYT)=2 (and T— XU T)=T-2)if T > 2 +2~". In other words,
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let d denote the unique integer such that 3-2¢7'< T'<3-2% then X%T) (or
T — X%T)) is equal to 27,

Proor. The proof is by induction on the length of the interval. The claim is true
trivially for T =2 since the solution is x,, = x,, = l. Suppose the claim is true for
lengths T=2,..., M. Given T =M + 1, Q(T) in Program I can be written as

) ol =1
P(T) + min {mm{ z Z p(x)+ 2 z p(x,vi)“.

X1 X2 [>1im1 I jm2i- V4

Notice that if x, ; and x, , are given then the variables { x,;} which are constrained by
(I.1) can be organized into two independent parts:

(xpll=12...,i=12,...,27 " Yand {x,;[/=1,2...,i=2""+1,...,27.

It is obvious that x;; > 1 and x,, < T — 1. So after arranging the indices and using
the induction assumption, we can write Program I as:
Program 1IV. Q(T)— P(T) = min, . {Q'(x; )+ Q'(x12)}

X+t x =T, av.n
1 <xy,,x,<M andintegers. (Iv.2)

Let r, =[log, x, ] and r, = [log, x, ,].
By the induction assumption there exists a solution of Program I which satisfies the

following constraints:

210-1

iglxl,i':xl.l I=1,2,...,r+1, V-

ar—1+1 ¢ x,; < =i+ i=1,...,27" V.2)
2/

. = v-[-l

i-212|+|xm Xl'z ) l=1,2,...,l‘2+1. ( )

PRI X < 2172 i=2""+1,...,20 (V1.2)

We shall show first that if , and r, are fixed with s = r, — r, > |, then an optimal
solution to Program IV exists with either x, , =2"*' or x,, = 2"~

Using the induction assumption and since p(1) = p(0) = 0, the objective function of
Program IV can be written as

ri+ -t ra+1 2A

Q'(x )+ Q'(x12) = E E p(xu) + 2 > p(x1i)-

=1 j=2='4}

By changing the summation index of the first term, splitting the second term and
substituting r, for r, + s we get:

r2+l bt hd| 2
Q'(xin) + Q'(xu)=l_zll ;l P(Xi-si) ¥ 2/2' IP(-‘/r + gl 2§+IP("1:)

(VILO)
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Constraints (IV.1), (V.1), (V.2), (VI.1) and (V1.2) can be rewritten as

21-,—1 21

igl S i-2'2l+]xu= L Fa = T’ l (VILT)
I g <2 = 2 s+l 1, (2
Q=i+ ¢ x,; < 2071 i=2gn, . 2 ’ 272 (VIL.3)
2 21

,'-z'zwlxu = X2 I=1,2,...,s. (VII'4)
21 x, < 2012, i=2" 0,2 (VILS)

Consider now the bracketed term of (VIL.O) for every I=5s+1,..., r, + 1. Minimiz-
ing it under constraints (VII.1), (VI1.2) and (VI1.3) is an allocation type problem with
n=2""'1+2),a=27""""and b=272""*2

By Lemma 1, 2”2~ '*2 will be allocated to each of the first m(/) items, and 22~'*! to
the last 2/7*7'(1 + 2°) — m(/) — 1 items, where m(l)=|(T — (2" + 292/~ 2~ 1)|. We
can distinguish between two cases according to the value of m(/).

Case 1. T<2'*'+27 Then m(l)<2'™*"! and x,;,=27""*' for i=2"""+
1,...,2" So the amount 2/7'227/*! = 27 i5 allocated among items 2'~' +1,...,2
and the rest 7 — 22 among items 1, ..., 2/7*~ 1. Notice that this allocation is optimal
for every I =1,2, ..., r, + 1. Moreover, this allocation minimizes the last summation
in (VILO) for every /=1,...,s since x,, =27 is in the lower bound and p is
nondecreasing.

Case 2. T »27*'+27 Then m(l) > 2'7*"" and x,,=27"'*? for i=
l,...,2'7**!" So the amount 2/7°7'.277/*2 = 2*1 = x | s allocated among items
I,...,2'7°*" and the rest T —2"*' among items 2/~ ' + 1, ..., 2"

This amount is allocated among items i =2/~' + 1, ..., 2 according to the solution
of Lemma 2. Moreover, x,, =T — 27*! is the minimum possible, and since pis
nondecreasing it minimizes the last summation of (VIL.0) for every /=1, ...,s.

In both cases the solution satisfies (I.1) and so it minimizes (VII.0) when s = r, — r,
> 1 is given. So we can rewrite (V.1), (V.2), (VL1) and (V1.2) with r, — r, decreased
by 1.

In Case 2 we can replace r, by rj =llog,x, ] = r, + 1. In Case 1 constraints (V1.2)
can be rewritten as

!

2l x <2, =2, 2 =, e+ L

Hence, r, in (VI.1) and (V1.2) can be replaced by r; = r, — 1.

This procedure is continued until r, = r,. From symmetric reasons an equivalent
procedure exists when r, > r,. Denote r = r, + 1 = r, + 1, and notice that the optimal
solution satisfies

2/
Dxy=x,+x,=T

i=]

277K x, <20 i=12...,2

Hence the induction claim that an optimal solution satisfies Program II was proved,
and the theorem is valid. #

4. The optimal selection strategy. So far we have proved that splitting according
to Strategy O is optimal if we restrict ourselves to splitting policies. Here we show that
Strategy O is optimal among all selection strategies.



Let p,, be a restricted information search problem where the information 7 is known
only in stages 1,2, ..., m of the search while only R, i.e,, whether an interval is
resolved or not, is known afterwards. Any problem is a p, problem since no more than
T splittings are possible in (0, T). '

In a p, problem, I(0, T) is known in the first stage while only

R(t;_y,t;,I(toy - -5 1)), i=1,...,m, isknowninstages m=2,...,T.

By Condition A the order of selecting unresolved intervals is not important. The
optimality of a splitting policy among all selection strategies is clear since no informa-
tion 1s obtained except whether an interval is resolved or not. Hence Strategy O is
optimal for P,.

We continue by induction. Assume that the theorem is valid for p,, problems and

consider now a p, ,, problem. At stage m+ 1, I(ty, ¢y, ..., 4,,,) and R(4_,,¢,
I(tg, ..., t, ) for i=1,..., m+1 are known. Suppose that (4,_,,1] for some
j=1....,m+ 1 is unresolved and selected to be split. By Condition A, the informa-

tion obtained by splitting other unresolved intervals does not identify the jumps in
(tj_,,zj]. Moreover, although such information may change the probability of a
subinterval of (1;_,#] to be resolved, the properties of independence, monotonicity
and concavity are valid by Condition B. Hence splitting (tj-_,,tj] is a p, problem (since
the only information available after the first splitting is whether an interval is resolved
or not) and by Lemma 2 the optimal splitting of (tj_,,g] is according to Strategy O.
Notice that the optimal splitting is independent of I(t, ..., ¢,) except for the
information that (¢,_,,t] is unresolved. Hence the optimal solution of the p,
problem can be obtained by solving a p,, problem. By the induction assumption a p,,
problem is optimally solved by Strategy O. Hence also a p,,,, problem is optimally
solved by Strategy O. This completes the proof since p; is the original search problem
on (0, T].
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