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At each decision epoch, an offer for a unit to either enter or leave a system is received. These offers arrive according to a
Poisson process. With each offer is associated a value revealed upon the arrival of the offer. The distribution of the value of
the offer is given and is a function of what kind of offer is received (enter or leave). The decision to accept or reject an . offer
is allowed to depend on the current state and the current value received. The objective is to maximize the expected discounted
difference between the sum of the accepted output offers and the sum of the accepted input offers. The key result of the paper
is that under various conditions, the decision to accept or reject an offer depends on whether or not its value is above or
below, respectively, a critical value that depends on the state of the system.

optimal control # birth and death processes * inventory and queues control

1. Introduction

We consider a system whose input and output can be controlled to maximize profit. At each decision
epoch, an offer for a unit to either enter (input offer) or leave (output offer) the system is received. These
offers arrive according to a Poisson process, with intensity parameters that may depend on the current
number of units in the system (i.e., the system state). With each offer there is associated a value; a
non-negative random variable whose distribution depends on the type of the offer (input or output). The
decision to accept or reject an offer naturally depends on the system state and the offered value. The
objective is to maximize the expected discounted profit, which is the difference between the sum of
accepted output offers and the sum of the accepted input offers minus the inventory holding costs.

An example to a system of this type is a dealer facing streams of customers willing to sell or buy
quantities of a commodity at various prices.

In this paper we seek for sufficient conditions under which the optimal acceptance policy is char-
acterized by a decreasing function of the system state. In this case, an output (input) offer with a given
value will be accepted if and only 1if the system state is above (below) a critical number.

The monotonicity of optimal policies is an issue in several birth and death processes described in the
literature. For an example and references, see Albright and Winston [1]. Following the seminal work of
Naor [5] monotone acceptance policies have been largely dealt in queueing control models. The paper of
Stidham {6] contains a survey of such models. Recently, David and Yechiali [3] applied a similar model
where the offers consist of live organs to be transplanted. The items in the system are the patients and the
value of an offer is the expected lifetime of the patient.

An assumption, common to our model and to some of the works described above, 1s that the decision
maker is not able, or does not want, to announce a unit price of the item. For related models where a unit
price is announced, the reader 1s referred to Amihud and Mendelson [2].

0167-6377,/86/33.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 33



Our model has several distinctive features: The arrival rates may depend on the system state, which in
queueing models means the queue length. This extends the model to include situations where the storage
capacity is finite (so that the input rate becomes zero when the storage is full), and where output offers
emerge from the inventory (e.g., a multi-server repair shop). We allow offers to differ in their value,
consider inventory holding costs, and include control of output offers. Finally, in a separate section, we
consider batch arnvals of input offers. Queueing models with finite capacity can be obtained from our
model by letting the items to be the vacant places of the waiting room.

In Section 2 we prove that if the arrival rates of the offers are non-increasing and the inventory holding
costs are non-decreasing functions of the system state, then there exists an interval 0, 1,..., M where the
optimal acceptance policy is monotone. Moreover, once in this interval, the system will stay in it forever.
In Section 3 we generalize this result, allowing input offers to arrive in batches. It is interesting to note that
although we consider an infinite horizon problem, our proof is by backward induction.

2. The optimal policy

Let m > 0 denote the inventory level. Let u, and A, be the arrival rates of input and output offers,
respectively, when the inventory level is 7. We assume that 0 <A, <A and 0 <p, <p for m=0,1,....
Let G and H be the probability distribution functions of the input and output offers, respectively. We
assume that output offers have finite expected value. Let « > 0 be the discount factor, and h(m) be the
holding costs associated with each unit time when the inventory level is m. We assume that k(0) = 0 and
h(m+1) =h(m)form=0,1,....

Define F _(m, x) to be the expected discounted profit associated with an optimal policy when an input
offer with value x is considered and the inventory level is m. Similarly, define F (m, x) for an output
offer. Standard application of the principal of optimality and basic results in the theory of Poisson
processes give

F,(m, x)=max{ -~x+f(m+1), f(m)]}, m=0,1,...,
F_(m, x)=max{x+f(m—1), f(m)}, m=1,2,..., : (1)
F_(0, x) = f(0),
where
£(m) =amf0°°p_(m, x)AH(x) + bmeOOF+(m, x)dG(x) = ¢, )

a,=N\,/(A\,+um+a), bm=,um/(>\m+,um’+a) and ¢, =h(m)/(A, +p, +a).

Thus f(m) can be interpreted as the expected discounted profit associated with an optimal policy at some
random point of time when the inventory level is m.
Let

Ly=f(m)=f(m-1), m=1,2, ..
(and for convenience /, = o). Then, by (1)

F_(m, x)=x+f(m-1), x 2!

m>

(3a)

=f(m)’ X<1m’
and
F.(m,x)=—-x+f(m+1), x</, .,
(3b)
:f(m)’ X>1m+17
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for m=0, 1,.... We can substitute (3) in (2) to obtain

i) =, HmG{1,) +1(m =11 =6 (1,)) ¢ [ xd6 )
b F 4 D H ) = [ H () + (1 5 )] =,
=am{1mG</m> +f(m=1) +//°°xdG<x>}
+bm[/m+1H</mH>+f<m>—/O’"’“xdmx)}—cm, m=1.2,..,

f(O) = aof(O) + by

. I
le(/])+f(0)—/0 de(x)].
It can be written also as

f(m)z—{?xm//oo(x—/m)dG(x) +pm/0/m+](/m+1 —x)dH(x)—h(m)], m=1,2,...,

m

(4)

70) = o [ (1 = x)d B ),

The integrals in (4) are the expected profit of input and output offers, respectively. The term inside the
brackets is the expected rate of profit inflow if the system state is m. If this rate of profit is continued
forever, then the total discounted profit is f(m).

We turn now to prove that there exists an interval 0, 1,..., M for some M € {0, 1,..., o0} such that the
critical values /,, ..., /,, form a decreasing sequence, and if the system starts with an inventory level within
this interval then it will never go beyond it. The monotonically of the critical values reflects, by definition,
the decreasing marginal worth of units in the inventory. This result need not hold if, for example, large
inventory atracts more offers. Thus we assume that the arnval rates are non-increasing in the system state.
The marginal worth of units in inventory becomes negative for m > M both because of the inventory
holding costs and the decrease 1n the arrival rates. It can be shown that M = oo if A(m) =0, u,, = u, and
A, =Aform=0,1,... (except of course A, = 0). On the other hand, if the holding costs are high, M may
be zero so that all input offers will be rejected even when m = 0. Fast decrease in the arrival rates may also
decrease M, butif A(1) =0 then M > 1 (Hassin and Henig [4)).

Theorem 1. Suppose that X\, and p, are non-increasing, then there exists M € {0, 1,..., 00} such that
co=lg>>> >, >02=1,, .

Proof. Suppose that for some m>1/, ., >/ and /., > 0, so that

m+2>
al f(m+1)=f(m)] =al, >0 (5)
By (4), the left-hand side of (5) 1s the sum of the following two expressions:
>\m+1[ (X_/m+1)dG(x)—>\m/ (x—/m)dG(x)) (6)
Im+I lm
/m+2 [m+|
e [ Uz = 0AH(6) = [ Uy = )AH () = B+ 1) = R ()] )

Since A(m + 1) > A(m), and p,,,, < u,,, then (7) is non-positive. To obtain (5) the expression in (6) must
be positive, and since A, > A, it follows that /, >/ ;. Therefore, if there exists some M such that
lpy>0 and [/, ,, <!/, then the above induction proves that /, is monotone decreasing over m =0,

m
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1,..., M. Indeed, let M =sup{m|l,,>0, M=0,1,...}. If M <co then the theorem is proved by the
above induction, since /,, > 0> /,,, ;. Suppose that M = co, then [/, converges to zero since L7/, = f(m)
— 7(0) 1s bounded. Therefore, for every m > 1 there exists m > m + 1 such that /,, > /.., > 0, and by the
induction /,, >/ _,,. Hence /,, is monotone decreasing over all positive integers. [0

3. Batch arrivals of input offers

In Section 2 we assumed that each offer consists of one unit. Here we let each input offer to consist of
several units of equal value x, and show that Theorem 1 still holds. We note that the theorem will not
necessarily hold if output offers arrive in batches. Suppose, for example, that each output offer consists of
two units, and that h(m)=h for m=1, 2,..., so that there is a fixed cost for holding positive inventory,
independent of its size. The marginal worth of the first unit of inventory is reduced because of this cost,
but not the second unit, since both units will leave simultaneously. Therefore, /, > /; is possible. Theorem
1 may hold in this case under more restrictive assumptions, but a different proof (such as Successive
Approximations) will be needed since expression (7) will contain terms with /,_; for positive values of i,
for which the inductive hypothesis does not apply.

Let p(i+ ) denote the probability that an input offer consists of a batch of size : or bigger. Suppose
that [ > 1,,,> ... >, >0=1,, ., then an optimal acceptance policy for an input offer of size k and
value x 1s as follows: reject the offer completely if x >/, ., accept all of it if x </, ,, accept i units of it
if I,,,,1<x<l,,, Note that since /,,,; <0, no more than M-m units will be accepted.

Considerations similar to those presented in Section 2 yield that for the present case, eq. (4) is replaced

by (8),

o

0 (o0}
fom) = [Am[/ (4= 12)AG () + 1 £ p () [ (e, = )AH () =h(m) | (8)
m i=1
where /., 1s taken as zero for m + i > M.

The summation reflects the acceptance policy described above, where the ith unit will be accepted only
if x </, ., and then the expected value of x in this range is subtracted while f(m + i) —f(m+i-1)=/__,
is added.

The summation term is easily seen to decrease with m if we use the inductive hypothesis that
lp1>lpea> ... > >0and [, ;=0 for ; > 1. Therefore, as in the proof of Theorem 1, expression (6)
must be positive and the rest of the proof follows identically.
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