Correction to Proposition 4 in [1]

Section 3 of [1] deals with the case s > i. The results are correct. But
Proposition 4 is inaccurately stated and its proof contains an error. The
proof supposed that because the second derivative of 7 is positive wherever
it exists, the function has no interior maximum. But the interior maximum
might be at a point where the derivative does not exist. (For example, con-
sider the minimum of two linear functions, one increasing and the other de-
creasing). This supplement proves the claimed result: the profit-maximizing
policy either has continuous sales with p = w, or else has sales only at the
ordering points 0, 7,27, ... .

Recall that in any no-sales interval (t1,%2), a proportion 8 = ;- of the
arrivals in this interval prefer to buy the good at t;, and a proportion 1 — 3
prefer to buy at to. By assumption, s > ¢ and therefore 8 > %

Observation 1 Consider a policy of discrete sales, with sales at 19 and at
T > 10, and exactly one other sales point x € (19, 7).
1. If 7 < T then the costs associated with selling at 19 + x € (10,7) or at
T — x are identical.
2. If 1 =T then selling at 1o + x < T — = yields higher profits than selling
at T —x.
Proof: Without loss of generality, assume that 79 = 0, since the difference
is a constant independent of the decision which we consider.

1. Consider selling at . The quantity sold at time z is A\[(1 — )z +
B(T — x)]; the quantity sold at time 7 is A(7 — z)(1 — ). The inventory
holding cost is

Clx) = Anfz[(l =Bz + (T —2)] +[r(r —2)(1 = B)]}
= M[(@® + (1 —2)*)(1 = §) + z(r - 2)].

This expression is symmetric in z and 7 — x.

2. The cost associated with selling at x is Ah{z[(1 — B)x + B(T — x)].
The cost associated with selling at 7 — z is higher, namely Ah{(7 — z)[(1 —
B) (T — x) + Bx]. m
Observation 2 Suppose the longest no-sales interval has length A, and
suppose there are consecutive sales at 79 < x < T such that both x — 19 < A
and T —x < A. Then the firm can increase its profits by increasing the
longer of these no-sales intervals.

Proof: By assumption, increasing the longer of these no-sales intervals does
not affect the profits, since p is determined by the longest no-sales interval



A. Again assume, w.l.o.g., that 7o = 0. Moreover, by Observation 1 we can
assume w.l.o.g. that z > 5. The inventory cost associated with selling at =
and 7 is C(z) = M{z[(1 — B)z + B(T — x)] + 7(7 — z)(1 — )}, where the
second term does not exist if 7 = T. Thus,

C'(z) = 2(1-28)x+[287 — 7]
> 21— 25)% +[(28 —1)7] > 0.

The strict inequality follows since 3 > % and r < 5. The second inequality
is strict if 7 = T, since in this case the term in square brackets does not
exist,. -

Corollary Suppose T and the mazimum length of a no-sales interval A are
fized, and T = (k+ a)A where k € {1,2,...} and 0 < o < 1. Then, the firm
mazimizes profits by selling at 0, A,2A, ..., (k—1)A, and (k— 1+ a)Al

Proof: By the first observation, the order of no-sales intervals, except for
the last one, has no effect on the firm’s costs. If there exist two no-sales
intervals of lengths shorter than A, then by Observation 1 w.l.o.g. they are
consecutive, and this contradicts Observation 2. Thus, at most one such
interval exists. Using again the first observation, we assume that this is the
interval before the last. ]

From this point we analyze policies that satisfy the properties given in
the corollary.

At the end of each of the first £k — 2 no-sale intervals the firm sells a
quantity AA. Of this quantity, A(1 — $)A is sold to customers who desired
the good at an earlier time, and ABA to customers who buy it earlier than
their most desired time of purchase. Similarly, at ¢t = (k— 1)A the firm sells
A1 =+ af), and at t = (k — 1 + «a)A the firm sells AA(a(1 — ) + ).
The total inventory holding cost is therefore

Cr(A) = MhA?]
= AhA?

1+24 - +k=2)+(k-1)1-8+af)+ (k—-14+a)(a—ab+ )]
1424 +k—=1)+ (k- a+a®+af(l—a)
k(k — 1)

(
(
= \hA? +(k—1Da+ao®+ab(l—a)

1
> §AhA2(kz +a—1)(k+a),

"W.lo.g k>1. If k=0,ie, T < A, we choose p = w; and sell continuously.



where the inequality follows from 8 > %.2
Since o < 1 and the price is determined by the largest no-sales interval,

p=w— Aii—ss, and the profit rate satisfies

= \w — C(A).

is ) CgMAk+a—1)(k+a)+ A

<Afw-A
”—A<w its (k+a)A

Keeping a and k at constant levels while optimizing A yields

is hk+a—1)\ M
A)>2 .
Ca) = \/<i+s+ 2 )k—i—a

Lemma If h (4 +1) <2 then C(A) > Cpog.
Proof: Recall from (12) in [1] that Crog = V2AhA. Hence, it suffices

to prove that 2 (szss + h(k%a_l)) T4 = h, or equivalently, that 2% >
h (1 — %) The last inequality follows from the assumption of the
lemma. [

Lemma If h (% + %) > 2 then C(A) > Cor,..., where Co ... is the minimum
cost of a policy that sells only at the beginning of the cycle.
Proof: Recall from (10) that Co 1. = 2 AMis Hence, it suffices to prove

1+s
; h(k+a—1)\ 1 ; . h(k+a—1) ; 1
that (13_738 —+ f) m Z %, or eqmvalently, W Z 7,3—788 (1 — m) .
The last inequality follows from the assumption of the lemma. [
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20y (A) is nondecreasing in 3. Therefore, it is minimized when =0.5 . In this case,
however, the firm gains nothing from a no-sale interval that does not end at T, and the
cost is identical to that obtained with a single no-sales interval at the end of the cycle.



