
Correction to Proposition 4 in [1]

Section 3 of [1] deals with the case s > i. The results are correct. But
Proposition 4 is inaccurately stated and its proof contains an error. The
proof supposed that because the second derivative of π is positive wherever
it exists, the function has no interior maximum. But the interior maximum
might be at a point where the derivative does not exist. (For example, con-
sider the minimum of two linear functions, one increasing and the other de-
creasing). This supplement proves the claimed result: the profit-maximizing
policy either has continuous sales with p = w, or else has sales only at the
ordering points 0, T, 2T, . . . .

Recall that in any no-sales interval (t1, t2), a proportion β = s
i+s of the

arrivals in this interval prefer to buy the good at t1, and a proportion 1− β
prefer to buy at t2. By assumption, s > i and therefore β > 1

2 .

Observation 1 Consider a policy of discrete sales, with sales at τ0 and at
τ > τ0, and exactly one other sales point x ∈ (τ0, τ).
1. If τ < T then the costs associated with selling at τ0 + x ∈ (τ0, τ) or at
τ − x are identical.
2. If τ = T then selling at τ0 + x < τ − x yields higher profits than selling
at τ − x.
Proof: Without loss of generality, assume that τ0 = 0, since the difference
is a constant independent of the decision which we consider.

1. Consider selling at x. The quantity sold at time x is λ[(1 − β)x +
β(τ − x)]; the quantity sold at time τ is λ(τ − x)(1 − β). The inventory
holding cost is

C(x) = λh{x[(1− β)x + β(τ − x)] + [τ(τ − x)(1− β)]}
= λh[(x2 + (τ − x)2)(1− β) + x(τ − x)].

This expression is symmetric in x and τ − x.
2. The cost associated with selling at x is λh{x[(1 − β)x + β(τ − x)].

The cost associated with selling at τ − x is higher, namely λh{(τ − x)[(1−
β)(τ − x) + βx].

Observation 2 Suppose the longest no-sales interval has length ∆, and
suppose there are consecutive sales at τ0 < x < τ such that both x− τ0 < ∆
and τ − x < ∆. Then the firm can increase its profits by increasing the
longer of these no-sales intervals.
Proof: By assumption, increasing the longer of these no-sales intervals does
not affect the profits, since p is determined by the longest no-sales interval
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∆. Again assume, w.l.o.g., that τ0 = 0. Moreover, by Observation 1 we can
assume w.l.o.g. that x > τ

2 . The inventory cost associated with selling at x
and τ is C(x) = λh{x[(1 − β)x + β(τ − x)] + τ(τ − x)(1 − β)}, where the
second term does not exist if τ = T . Thus,

C ′(x) = 2(1− 2β)x + [2βτ − τ ]

> 2(1− 2β)
τ

2
+ [(2β − 1)τ ] ≥ 0.

The strict inequality follows since β > 1
2 and x < τ

2 . The second inequality
is strict if τ = T , since in this case the term in square brackets does not
exist.

Corollary Suppose T and the maximum length of a no-sales interval ∆ are
fixed, and T = (k+α)∆ where k ∈ {1, 2, . . .} and 0 ≤ α < 1. Then, the firm
maximizes profits by selling at 0,∆, 2∆, . . . , (k − 1)∆, and (k − 1 + α)∆.1

Proof: By the first observation, the order of no-sales intervals, except for
the last one, has no effect on the firm’s costs. If there exist two no-sales
intervals of lengths shorter than ∆, then by Observation 1 w.l.o.g. they are
consecutive, and this contradicts Observation 2. Thus, at most one such
interval exists. Using again the first observation, we assume that this is the
interval before the last.

From this point we analyze policies that satisfy the properties given in
the corollary.

At the end of each of the first k − 2 no-sale intervals the firm sells a
quantity λ∆. Of this quantity, λ(1− β)∆ is sold to customers who desired
the good at an earlier time, and λβ∆ to customers who buy it earlier than
their most desired time of purchase. Similarly, at t = (k−1)∆ the firm sells
λ∆(1− β + αβ), and at t = (k − 1 + α)∆ the firm sells λ∆(α(1− β) + β).
The total inventory holding cost is therefore

CI(∆) = λh∆2[(1 + 2 + · · ·+ k − 2) + (k − 1)(1− β + αβ) + (k − 1 + α)(α− αβ + β)]
= λh∆2[(1 + 2 + · · ·+ k − 1) + (k − 1)α + α2 + αβ(1− α)]

= λh∆2
[
k(k − 1)

2
+ (k − 1)α + α2 + αβ(1− α)

]
≥ 1

2
λh∆2(k + α− 1)(k + α),

1W.l.o.g. k ≥ 1. If k = 0, i.e., T < ∆, we choose p = w1 and sell continuously.
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where the inequality follows from β ≥ 1
2 .2

Since α < 1 and the price is determined by the largest no-sales interval,
p = w −∆ is

i+s , and the profit rate satisfies

π ≤ λ

(
w −∆

is

i + s

)
−

1
2λh∆2(k + α− 1)(k + α) + A

(k + α)∆
≡ λw − C(∆).

Keeping α and k at constant levels while optimizing ∆ yields

C(∆) ≥ 2

√(
is

i + s
+

h(k + α− 1)
2

)
λA

k + α
.

Lemma If h
(

1
i + 1

s

)
≤ 2 then C(∆) ≥ CEOQ.

Proof: Recall from (12) in [1] that CEOQ =
√

2λhA. Hence, it suffices
to prove that 2

(
is

i+s + h(k+α−1)
2

)
1

k+α ≥ h, or equivalently, that 2
k+α

is
i+s ≥

h
(
1− k+α−1

k+α

)
. The last inequality follows from the assumption of the

lemma.

Lemma If h
(

1
i + 1

s

)
≥ 2 then C(∆) ≥ C0,T,..., where C0,T,... is the minimum

cost of a policy that sells only at the beginning of the cycle.
Proof: Recall from (10) that C0,T,... = 2

√
λAis
i+s . Hence, it suffices to prove

that
(

is
i+s + h(k+α−1)

2

)
1

k+α ≥ is
i+s , or equivalently, h(k+α−1)

2(k+α) ≥ is
i+s

(
1− 1

k+α

)
.

The last inequality follows from the assumption of the lemma.
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2CI(∆) is nondecreasing in β. Therefore, it is minimized when =
¯
0.5 . In this case,

however, the firm gains nothing from a no-sale interval that does not end at T , and the
cost is identical to that obtained with a single no-sales interval at the end of the cycle.
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