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Abstract. In this paper we study the complexity and approximability oftheGc-cut problem. Given a
complete undirected graphKn = (V ; E) with |V | = n, edge weighted byw(vi, vj) ≥ 0 and an undi-
rected cluster graph,Gc = (Vc, Ec), with |V c| = k, ak-cut is a partitionV1, . . . , Vk of V (G) such that
Vi 6= ∅ for i = 1, . . . , k. TheGc-cut problem is to compute ak-cut minimizing

P

(i,j)∈Ec
w(Vi, Vj)

wherew(Vi, Vj) =
P

p∈Vi,q∈Vj
w(p, q). DenoteGc as cluster graph and its vertices as clusters. We

show that theGc-cut problem isNP-hard and even not approximable in the general case and remains
NP-hard for cluster trees. In particular, we give a complete characterization of hard cases for cluster
graphs with at most four vertices by proving that theGc-cut problem isNP-hard if and only ifGc

is isomorphic to2K2. We also identify some cases where theGc-cut problem is either polynomial or
NP-hard. Finally, we propose polynomial approximation results for theGc-cut problem when the edge
weights ofG satisfy the triangle inequality, or when the weights are strictly positive.

Keywords: Cut in graphs,NP-hardness, polynomial, approximation algorithms.

1 Introduction

The problem considered in this paper is a generalization of the the minimumk-cut problem, and it can be
defined as follows:

Definition 1. LetKn = (V, E) be a complete undirected graph with|V | = n and edge weightsw(vi, vj) ≥
0. Given is also an undirected cluster graph,Gc = (Vc, Ec), with |Vc| = k. TheGc-CUT PROBLEM is
to compute ak-cut minimizing

∑

(i,j)∈Ec
w(Vi, Vj), wherew(Vi, Vj) =

∑

(p,q)∈Vi×Vj ,(p,q)∈E w(p, q). The

restriction to metric distancew (i.e., satisfying triangular inequality1) is called theMETRIC Gc-CUT PROB-
LEM.

Cut problems in graphs are important optimization problemsbecause VLSI system design, parallel com-
puting systems, clustering, network reliability and cutting planes, etc. appearing in real-life situations may
often be modeled as graph partitioning problems (see for instance [1, 22]). A survey on the approximability
of cut problems can be found in Shmoys [23]. Thek-CUT PROBLEMhas been well studied in the literature
and consists of finding a partitionV1, . . . , Vk such thatVi 6= ∅, i = 1, . . . , k (calledk-cut) of the vertices

1 ∀x, y, z ∈ V , w(x, y) ≤ w(x, y) + w(y, z).
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V (G) of a simple graphG = (V, E) edge weighted byw(vi, vj) ≥ 0, minimizing
∑

1≤i<j≤k w(Vi, Vj).
Goldschmidt and Hochbaum [6] proved that the problem in ordinary graphs isNP-hard whenk is part of the
input and gave the first polynomial-time algorithm for fixedk with running timenO(k2). Since the results
of Goldschmidt and Hochbaum [6] on the minimumk-cut problem, many other results are appeared in the
literature. For instance, the running time of their algorithm has been improved by Kamidoi et al. [15] and
Xiao [28]. Currently, the best results are theO(n2(k−1)log n3)-time Monte Carlo algorithm due to Karger
and Stein [12] and theO(n2k)-time deterministic algorithm due to Thorup [26]. Furthermore, Nagamochi
et al. [19, 20] proved that the minimumk-cut problem can be solved inO(mnk) time for k = 4, 5, 6. The
minimumk-cut problem has also drawn much attention in the literaturefor small values ofk. The minimum
2-cut problem is commonly known as the minimum cut problem. Another version, the minimum 2-way cut
problem, is the minimum(s, t) cut problem, which asks to find a minimum cut that separates two given
verticess andt. These two problems are fundamental problems in the subjectof graph connectivity. For
ordinary graphs, the minimum cut problem can be solved inO(mn + n2 log n) time by Nagamochi and
Ibaraki’s algorithm [19] or Stoer and Wagner’s algorithm [24], and the minimum(s, t) cut problem can be
solved inO(mn log n2

m
) time by Goldberg and Tarjan’s algorithm [8]. For the minimum3-cut problem in

ordinary graphs, Kapoor [10] and Kamidoi et al. [15] showed that it can be solved by usingO(n3) maxi-
mum flow computations. Burlet and Goldschmidt [3] and Nagamochi and Ibaraki [19] improved the result
to O(n2). The Multiwayk-cut problem fork ≥ 2 is one generalization of the minimum(s, t) cut problem.
This problem also known as the Multiterminalk-cut problem can be defined as follow: given a weighted
complete graph,Kn = (V, E) and a set of terminalsS = {s1, . . . , sk}, a multiway cut is a set of edges
that leaves each of the terminals in a separate component. Inother words, the goal of the Multiwayk-cut
problem is to find ak-cut (V1, . . . , Vk) wheresi ∈ Vi of minimum weight. The Multiwayk-cut problem is
know to be polynomial fork = 2 and andNP-hard whenk ≥ 3 is fixed [4].

When the cluster graphGc is ak-clique, thek-CUT PROBLEM and theGc-CUT PROBLEMcoincide. In
contrast, we show that theGc-CUT PROBLEM is NP-hard whenk is fixed.

In this paper, we mainly study the complexity and the approximability of theGc-CUT PROBLEMaccord-
ing the structure of the cluster graphGc. In Section 2, the notations and main definitions are introduced.
In Section 3, complexity results are presented while the Section 4 gives some polynomial solvable cases
for theGc-CUT PROBLEM. For instance, as a corollary of the results given in this paper we will show for
the cluster graphsGc with at most 4 vertices, theGc-CUT PROBLEM is NP-hard if and only ifGc = 2K2.
Finally, in Section 5, we propose polynomial approximationresults when the weights are either positives or
satisfy the triangle inequality. More exactly for the general case, we present aα-approximation in linear time
wherewmin = mine∈E w(e), wmax = maxe∈E w(e), andα = wmax

wmin
(here, we assume thatwmin > 0) and

a 3-approximation is given for theMETRIC Gc-CUT PROBLEM when the number of vertices of the cluster
graph is fixed.

2 Definitions and preliminaries

All graphs in this paper are finite, simple and loopless. LetG = (V, E) be a graph. An edge betweenu and
v will be denoted(u, v). For a vertexv ∈ V , let NG(v) denote the set of vertices inG that are adjacent tov,
i.e., the neighbors ofv, and the degree ofv is dG(v) = |NG(v)|. A leaf is a vertexv such thatdegG(v) = 1.
For S ⊂ V (G), the neighborhoodof S is NG(S) = {v ∈ V : ∃u ∈ S, (u, v) ∈ E}. In particular,
N2

G(v) = NG(NG(v)). Vertex u is a nested neighborof vertexv if (u, v) /∈ E andNG(u) ⊆ NG(v).
They aretwins if NG(u) = NG(v). Thecontracted graph ofG from S, denotedG(S), is the simple graph
G(S) = (V ′, E′) whereV ′ = V \ S ∪ {vS} and(u, v) ∈ E′ if u, v /∈ S ∪ {vS} and(u, v) ∈ E or if
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u = vS , v /∈ S∪{vS} and∃s ∈ S with (s, v) ∈ E. Throughout this paper, we use the following notation for
a edge weighted graph(G, w): for E

′

⊆ E(G), w(E
′

) =
∑

e∈E
′ w(e) and forv ∈ V (G) andU ⊆ V (G),

w(v, U) =
∑

u∈U w(v, u).
Now, we indicate some classes of graphs used in this paper:

Definition 2. Consider a graphG = (V, E) such that|V | = k.

1. G is amatching graph, denotedwK2, if k = 2w anddeg(v) = 1 ∀v ∈ V .
2. G is apath graph, denotedPk, if its edges form an induced path onk vertices.
3. G is acycle graph, denotedCk, if its edges constitute an induced cycle onk vertices.
4. G = Kd1,...,dr

= (V, E) is acompleter-partite graphif there exists a partitionL1, . . . , Lr of V with
di = |Li|, and

∑r

i=1 di = k such that for everyi 6= j ∈ {1, . . . , r}, u, v ∈ Li ⇒ (u, v) /∈ E and
u ∈ Li, v ∈ Lj ⇒ (u, v) ∈ E. The setsLi are thecolor classesof G. A bicliqueis a complete bipartite
graph.

5. G = (S, K; E) is asplit graphif V (G) = S ∪ K whereK ∩ S = ∅, S is a stable set andK is a clique
of G of maximum size. It is calledrestricted split graphif degG(v) < |V (G)| − 1 for everyv ∈ K. For
instance,P4 = (v1, v2, v3, v4) is a restricted split graph withK = {v2, v3} andS = {v1, v4}.

Let us start by giving some definitions:

Definition 3. Let Gc be a cluster graph with|V (Gc)| = k. TheMULTIWAY Gc-CUT PROBLEM is theGc-
CUT PROBLEM where givenI = (G, w), S ⊆ V (Gc) and|S| vertices{v1, . . . , v|S|} ⊆ V with |S| ≤ k,
we want to find an optimalGc-cut V1, . . . , Vk on I such thatvi ∈ Vi for i ∈ S. Thed-SIZE RESTRICTED

Gc-CUT PROBLEM is theGc-cut problem where an integer vector(d1, . . . , dk) is given with the instance.
The goal is to find an optimalGc-cut(V1, . . . , Vk) onI wheren ≥

∑k

i=1 di and such that|Vi| ≥ di. Finally,
theRESTRICTEDGc-CUT PROBLEM is thed-SIZE RESTRICTEDGc-CUT PROBLEMwhenn =

∑k

i=1 di. In
other words,|Vi| = di for everyi = 1, . . . , k.

Note that if the cluster graphGc is a completer-partite for somer (in particular, a complete graph),
then theMULTIWAY Gc-CUT PROBLEM with |S| = 1 is equivalent to theGc-CUT PROBLEM, and then is
polynomial ifk is fixed.

Theorem 1. The complexity of theMULTIWAY Kk-CUT PROBLEMwhenk ≥ 2 is fixed is polynomial when
|S| = 2 andNP-hard when|S| > 2.

Proof. We divide the proof to the following sub cases.

1. |S| = k.
(a) |S| = 2. The problem is equivalent to the minimum(s, t) cut problem. Thus, the problem is poly-

nomial.
(b) |S| ≥ 3. The problem is equivalent to the minimum Multiwayk-cut problem with|S| ≥ 3. Hence,

the problem isNP-hard.
2. wherek > |S|. Denotel = k − |S| > 0

(a) |S| > 2. Let Kn = (V, E), S ⊂ V, |S| > 2 be an instance of the minimum Multiway|S|-cut
problem. Consider an instance of theMULTIWAY Kk-CUT PROBLEMdescribed as follow:

– S′ = S.
– Kn+l = (V ′, E′).
– V ′ = V ∪ {x1, . . . , xl}
– E′ = E ∪ E1 ∪ E2 where
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– E1 = {(xi, v) : i = 1, . . . , l, v ∈ V } andw(e) = 0 for e ∈ E1.
– E2 = {(xi, xj) : 1 ≤ i < j ≤ l} andw(e) = 0 for e ∈ E2.

Solving theMULTIWAY Gc-CUT PROBLEMwhereGc = Kk for Kn+l, S
′ optimally we must assign

eachxi, i ∈ 1, . . . , l to a single cluster ofKk so that the vertices ofV must arrange in an optimal
minimum multiway cut on the rest of the|S| clusters ofKk, and the result follow.

(b) |S| = 2, S = {s, t}. We use the same construction as in [6] in a small modificationthat we enumer-
ate over all the coresS such thats ∈ S, and terminalsT such thatt ∈ t instead of enumerating all
the coresS and terminalsT as done at [6]. The rest of the proof is exactly like in [6].

Lemma 1. Assume that vertex1 is a nested neighbor of vertex2 in the cluster graphGc. In any feasible
Gc-cut (V1, . . . , Vk) of I = (G, w), one can assume that|V2| = 1.

Proof. Let (V1, . . . , Vk) be aGc-cut (V1, . . . , Vk) of I. Assume that|V2| > 1 and letx ∈ V2. Consider the
Gc-cut(V ′

1 , . . . , V ′
k) whereV ′

i = Vi if i 6= 1, 2, V ′
1 = V1 ∪ (V2 \ {x}), V ′

2 = {x}. The value of(V ′
1 , . . . , V ′

k)
is not larger than the value of(V1, . . . , Vk) becausew is non-negative,(1, 2) /∈ Ec andNGc

(1) ⊆ NGc
(2).

Using Lemma 1, we deduce the following result for the leaves:

Corollary 1. Assume that vertex1 is a leaf ofGc where|V (Gc)| = k. In any feasibleGc-cut (V1, . . . , Vk)
of I = (G, w), one can assume that|Vi| = 1 for all i ∈ N2

Gc
(1) \ {1}.

Proof. If 1 is a leaf ofGc, then for everyi ∈ N2
Gc

(1) \ {1}, vertex1 is a nested neighbor of vertexi in Gc.

3 Complexity results of the minimumGc-cut problem

In this section we show that the complexity ofGc-cut problem depends on the structure of the cluster graph
Gc. We will use several reductions from the Biclique Vertex-Partition problem.

Definition 4. BICLIQUE VERTEX-PARTITION:
Instance: A graphG and positive integerk.
Question: DoesG have a biclique vertex partition of size at mostk consisting of mutually vertex-disjoint
bicliques? (where the bicliques are (not necessarily vertex-induced) subgraphs ofG).

For every fixedk ≥ 3, Biclique vertex-partition isNP-complete, and remainsNP-complete for bipartite
graphs, see [5]. The casek = 2 has been open since a long time, but very recently, Biclique vertex-partition
with k = 2 has been provedNP-complete, [17]. Because the casek = 1 is polynomial, the casek = 2 is
equivalent to Biclique vertex-partition of size exactly 2.

TheK2-CUT PROBLEM is polynomial because it is exactly the minimum cut problem.Surprisingly, by
replacingK2 by 2K2 (two disjoint edges), the problem becomes much harder.

Theorem 2. The2K2-CUT PROBLEM is NP-hard.

Proof. We propose a polynomial reduction from biclique vertex-partition. LetG = (V, E) with |V | = n and
k = 2 be an instance of biclique vertex-partition. Consider the complete graph(G, w) defined as follows:
w(e) = 0 if e ∈ E andw(e) = 1 otherwise.

We claim that there exists a2K2-cut of G with value 0 iff G admits a biclique vertex-partition of size
exactly 2. LetGi = (Ai, Bi; Ei) with i = 1, 2 be a biclique vertex-partition ofG. Clearly,V2i−1 = Ai,
V2i = Bi for i = 1, 2 is a Gc-cut of G with value 0. Conversely, let(Vi)i≤4 be a a2K2-cut of G with
value 0. Thus, for everyi ≤ 2, Gi = (V2i−1, V2i; Ei) is a biclique ofG and then,(G1, G2) is a biclique
vertex-partition ofG of size 2.
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Corollary 2. The2K2-CUT PROBLEM is not approximable.

Proof. In proof of Theorem 2, we have shown that for the2K2-CUT PROBLEM, it is NP-complete to distin-
guish betweenopt ≤ 0 andopt > 0, whereopt is the value of an optimalGc-cut. So, the result follows.

Now, we propose a way to extend the2K2 case to larger cluster graphs and thus, preserving the hard
cases via the notion ofH-extension:

Definition 5. H -EXTENSION:
Let H andG be two graphs andT ⊆ V (H). G′ = G + H is anH-extension ofG with terminalT if (i) G′

is connected (all edges betweenG andH) are incident inH to some vertices ofV (H)\T ) and(ii) for every
induced subgraphG0 of G′ isomorphic toH (given by the bijectionf) such thatdegG0

(f(v)) = degH(v)
for v ∈ T , we getG ⊆ G′ − G0.

Roughly speaking, anH-extensionG′ of G with terminalT is such thatdegH(v) = degG′(v) for any
v ∈ T and for any induced subgraphG0 isomorphic toH (given byf) with the same restriction (i.e.„
degG0

(v) = degG′(v) for anyv ∈ f(T )), G is a subgraph ofG′ − G0

For instance, Figure 1 gives anP3-extension of2K2 with P3 = (u1, u2, u3) and terminalT = {u2, u3}.
Actually, the only induced subgraphs ofG′ isomorphic toP3 satisfying the condition of 5 areG1 =
(v1, v2, u1), G2 = (v3, v4, u1), andG2 = (u1, u2, u3). Finally, for everyi = 1, 2, 3, we have:2K2 =
G′ − Gi. The treeG′ will be called the 3-star of length 2 and denoted byS2

3 (more generally, thep-star of
length 2 is given byS2

p = {(r, vi
1), (v

i
1, v

i
2) : i = 1, . . . , p}).

v1v1
v2

v2

v3v3
v4

v4

u1 u2 u3

Fig. 1. Example ofP3-extension whereG = 2K2, H = P3 = (u1, u2, u3), G′ = S2
3 andT = {u2, u3}.

Figures 2 and 3 give anotherP4-extension of2K2 or 3K2 with P4 = (u1, u2, u3, u4) and terminal
T = {u2, u3}.

In Figure 3, for theΨ -graph, the only inducedP4 satisfying the condition of 5 areG0 = (u1, u2, u3, u4)
andG1 = (u1, v1, v2, u4) and we getΨ -graph−Gi = 3K2 for i = 0, 1 while for theκ-graph, the only
inducedP4 satisfying the hypothesis areG0 = (u1, u2, u3, u4), G1 = (u1, v1, v2, u4), G2 = (v2, v1, u1, u2)
andG3 = (u3, u2, u1, v1). Moreover, we haveκ-graph−Gi = 3K2 for i = 0, 1 and3K2 ⊂ κ-graph−Gi

for i = 2, 3.
Now, we present some polynomial reductions preserving approximation from theGc-CUT PROBLEM to

itself depending on the structure of cluster graphGc.

Theorem 3. There exists a polynomial reduction preserving approximation from theGc-CUT PROBLEM to
theG′

c-CUT PROBLEM in the following cases:



6 Itamar Elem, Refael Hassin, Jérôme Monnot

v1 v1v2

v2

v3 v3v4

v4 u1 u2

u3u4

Fig. 2. Example ofP4-extension whereG = 2K2, H = P4 = (u1, u2, u3, u4) andT = {u2, u3}.

v1v1 v2v2

v3

v3v3

v4

v4v4

v5

v5

v5

v6

v6

v6

u1u1

u2u2

u3

u3u3

u4

u4u4

Fig. 3. Another example ofP4-extension whereG = 3K2, H = P4 = (u1, u2, u3, u4) andT = {u2, u3}. On the top,
theΨ -graph (left and top) and theκ-graph (right and top). On the bottom, theκ-graph minusG2 = (v2, v1, u1, u2). We
get3K2 ⊂ κ-graph−G2.
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(i) Assume that the smallest connected component of the clustergraphGc hass ≥ 2 vertices.G′
c = Gc+H

whereH is a connected graph of at least 2 vertices and at mosts vertices, disconnected fromGc and if
|V (H)| = s, thenH is contained in every connected component ofGc with exactlys vertices.

(ii) G′
c = Gc + P 0 is an Pi-extension ofGc with i ≥ 3, Pi = (k + 1, . . . , k + i) and terminalT =

{k + 1, . . . , k + i}.
(iii) G′

c = Gc + P 0 is anPi-extension ofGc with i ≥ 4, minimum degree 2,Pi = (k + 1, . . . , k + i) and
terminalT = {k + 2, . . . , k + i − 1}.

Proof. For (i). Let Gc andH be two graphs satisfying the condition at 5 and consider the cluster graph
G′

c = Gc + H whereV (H) = {k + 1, . . . , k + p}, 2 ≤ p ≤ s. Let (Kn, w) be an instance of theGc-cut
problem and consider the instance(Kn+p, w

′), V (Kn+p) \ V (Kn) = {u1, . . . , up} of theG′
c-cut problem

defined as follows: ifu, v ∈ V (Kn), thenw′(u, v) = w(u, v). If u ∈ V (Kn) andv /∈ V (Kn), w′(u, v) = ∞
2 Finally,w′(ui, uj) = 0 if (i, j) ∈ E(H) andw′(ui, uj) = ∞ otherwise.

Clearly, anyGc-cut of(Kn, w) can be converted into aG′
c-cut of(Kn+p, w

′) with same value by setting
Vk+i = {ui}. Conversely, consider anyG′

c-cut (V1, . . . , Vk+p) of (Kn+p, w
′). From the previous part, we

can assume that thisG′
c-cut has a finite value. Assumeu1 ∈ Vi1 . We getVi1 ∩V (Kn) = ∅ because each con-

nected component ofG′
c has a size at least two andVi2 ⊆ {u1, . . . , up} for every(i1, i2) ∈ E(G′

c). Hence,
we deduceVj ⊆ {u1, . . . , up} if Vj ∩ {u1, . . . , up} 6= ∅. Now, we must getVij

= {uj} for j = 1, . . . , p
because each connected componentG′

c has a size at least 2 and at mostp. Hence, the subgraphG induced
by {i1, . . . , ip} is a connected component ofG′

c. If p < s or G is isomorphic toH , then clearly, we must get
G = H and the restriction of thisG′

c-cut to(Kn, w′) is aGc-cut of (Kn, w) with same value. Now, assume
p = s andG 6= H . Since, by assumptionE(H) ⊆ E(Kn), we getE(Kn) \ E(H) 6= ∅ and then the value
of theG′

c-cut restricted toH has an infinite value, leading to contradiction. Hence,G = H and the result
follows.

For (ii). We first prove the casei = 3. Let (Kn, w) be an instance of theGc-cut problem whereGc =
(Vc, Ec) is a graph with|Vc| = k ≥ 1 vertices, and letP 0 = (k+1, k+2, k+3). Now, letG′

c = (V ′
c , E′

c) =
Gc +P 0 be anyP3-extension ofGc with terminalT = {k +2, k +3} (which means that the edges between
theP 0 andGc are only connected to endpointk + 1). Consider the following instance(Kn+3, w

′) of the
G′

c-cut problem:V (Kn+3) \ V (Kn) = {u1, u2, u3} andw′(u, v) = w(u, v) for u, v ∈ V , w′(u1, v) = 0,
w′(u2, v) = w′(u3, v) = +∞ for v ∈ V , andw′(u1, u2) = w′(u3, u2) = 0, andw′(u1, u3) = +∞.

Any Gc-cut of(Kn, w) can be converted into aG′
c-cut of(Kn+3, w

′) with same value by settingVk+i =
{ui} for i = 1, 2, 3. Conversely, assume that(V1, . . . , Vk+3) is a G′

c-cut of (Kn+3, w
′) with finite value.

Assume thatu2 ∈ Vi2 and(i3, i2) ∈ E′
c (becauseG′

c is a connected graph with at least 4 vertices). We get
Vi3 ∩V (Kn) = ∅, Vi2 ∩{u1, u3} = ∅ andVi3 ⊆ {u1, u3} because by constructionw′(u2, v) = w′(u3, v) =
+∞ for v ∈ V andw′(u1, u3) = +∞. Hence, we deduceVi2 = {u2} sinceVi2 ∩ V (Kn) = ∅.

If Vi3 = {u1, u3}, then vertexi1 must be a leaf ofG′
c and vertexi2 has a neighbori1 6= i3 in G′

c

(becauseG′
c is connected with at least 4 vertices). ButVi1 ⊆ V (Kn) andw′(u3, v) = +∞ for v ∈ V (Kn),

contradiction. Now, sincew′(u3, v) = w′(u3, u1) = +∞ for v ∈ V (Kn) andG′
c is connected with at least

4 vertices we getVi3 = {u3} and vertexi3 is a leaf ofG′
c. Becausei3 is a leaf ofG′

c, then vertexi2 must
get exactly one neighbori1 6= i3 andVi1 = {u1}. So,P = (i3, i2, i1) is an inducedP3 of G′

c with terminal
{i2, i3}. Since,G′

c is anP3-extension ofGc, then the value of theG′
c-cut is minimum ifVk+i = {ui} for

i = 1, 2, 3 (becauseG′
c − P 0 = Gc. Actually, if we flip the sets corresponding toP by the sets correspond-

ing to P 0, the value of theG′
c-cut does not increase). Hence, the restriction of thisG′

c-cut to(Kn, w′) is a

2 In the rest of the paper, we set+∞ in order to simplify, but the sufficient value will be for instance(n + 1)wmax

wherewmax = maxe∈E(G) w(e).
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Gc-cut of (Kn, w) with same value.

For the general case, letP 0 = (k + 1, . . . , k + i) with i ≥ 3. We replace(Kn+3, w
′) by (Kn+i, w

′)
where:

– V (Kn+i) \ V (Kn) = {u1, . . . , ui} andw′(u, v) = w(u, v).
– Foru, v ∈ V (Kn), w′(u1, v) = 0, w′(uj , v) = +∞ for v ∈ V andj = 2, . . . , i.
– Finally, w′(uj, uj+1) = 0, for j = 1, . . . , i − 1 andw′(uj , uj′) = +∞ otherwise.

The rest of the proof is completely similar to the previous one.

For (iii). We first prove the casei = 4. Let (Kn, w) be an instance of theGc-cut problem where the
cluster graphGc = (Vc, Ec) hask ≥ 1 vertices and letP 0 = (k + 1, . . . , k + 4). Now, letG′

c = (V ′
c , E′

c) =
Gc + P 0 be anyP4-extension ofGc with terminalT = {k + 2, k + 3} such thatG′

c is without a leaf.
Consider the following instance(Kn+4, w

′) of theG′
c-cut problem:V (Kn+4) \ V (Kn) = {u1, . . . , u4},

andw′(u, v) = w(u, v) for u, v ∈ V (Kn). Moreover,w′(uj , v) = 0 for j = 1, 4, andw′(uj, v) = +∞ for
j = 2, 3. Finally,w′(uj , uj+1) = 0, for j = 1, . . . , 3, andw′(uj, uj′) = +∞ otherwise.

Any Gc-cut of (Kn, w) can be converted into aG′
c-cut of (Kn+4, w

′) with same value by setting
Vk+i = {ui} for i = 1, . . . , 4. Conversely, assume that(V1, . . . , Vk+4) is a G′

c-cut of (Kn+4, w
′) with

finite value. Assume thatu3 ∈ Vi3 and(i3, i4), (i3, i2) ∈ E′
c (becauseG′

c has minimum degree 2). By con-
struction, we getVi3 ∩ V = ∅ because otherwiseVij

∩ V = ∅ for j = 1, 3 andVij
∩ {u4, u2} 6= ∅ for

everyj = 2, 4 (thus, thisG′
c-cut will get an infinite value because eitheru1 ∈ Vij

or u2 ∈ Vij
for some

j = 2, 4). Hence, we deduceVij
⊆ {u4, u2} for j = 2, 4 and then we can assumeVij

= {uj} for j = 2, 4.
Moreover,i3 must have a degree 2 inG′

c and(i2, i4) /∈ E(G′
c). Now, becausei2 has a degree has at least

2 in G′
c, there is an edge(i1, i2) ∈ E(G′

c) with i1 /∈ {i3, i4}. Thus,Vi1 = {u1}, and on the one handi2
must have a degree2 in G′

c, and on the other hand(i1, i4) /∈ E(G′
c). HenceP = (i1, . . . , i4) is an induced

P4 of G′
c with terminal{i2, i3}. Finally, sinceG′

c is aP4-extension ofGc with terminal{k + 2, k + 3}, we
can assume thatVk+i = {ui} for i = 1, . . . , 4. In conclusion, the restriction of thisG′

c-cut to(Kn, w′) is a
Gc-cut of (Kn, w) with same value.

For the general case, letP 0 = (k + 1, . . . , k + i) with i ≥ 4. We replace the instance(Kn+4, w
′) by

(Kn+i, w
′) where:

– V (Kn+i) \ V (Kn) = {u1, . . . , ui}.
– w′(u, v) = w(u, v) for u, v ∈ V (Kn).
– w′(uj , v) = 0 for j = 1, i.
– w′(uj , v) = +∞ for v ∈ V (Kn) andj = 2, . . . , i − 1.
– Finally, w′(uj, uj+1) = 0, for j = 1, . . . , i − 1 andw′(uj , uj′) = +∞ otherwise.

The rest of the proof is completely similar to the previous one.

We saw at all the above constructions that the newi added vertices placed at the newi added clusters in
an optimal solution and the original vertices must placed inan optimal way at the original clusters. Since the
construction can perform in polynomial time the result are follow.

Corollary 3. TheGc-CUT PROBLEM is NP-hard and not approximable in the following cases:
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(i) Gc = pK2 with p ≥ 2.
(ii) Gc = S2

p with p ≥ 3.
(iii) Gc = Ψ -graph orGc = κ-graph.

Proof. For (i). By applying part(i) of Theorem 3 withGc = 2K2 andH = K2, we deduce from Theorem
2 that the3K2-cut problem isNP-hard and not approximable. By induction onp ≥ 2, with Gc = pK2 and
H = K2 we deduce the claimed result.

For(ii). The(p+1)-star of length 2S2
p+1 (recall thatS2

p is defined by{(r, vi
1), (v

i
1, v

i
2) : i = 1, . . . , p})

is aP3-extension ofpK2 andP 0 = (2p + 1, 2p + 2, 2p + 3) with terminalT = {2p + 2, 2p + 3}. Hence,
using part(ii) of Theorem 3 and part(i) of Corollary 3, we get that theS2

p+1-cut problem isNP-hard and
not approximable for anyp ≥ 2.

For (iii). TheΨ -graph and theκ-graph areP4-extensions of3K2 andP 0 = (7, 8, 9, 10) with terminal
T = {8, 9} and are without leaf. Hence, using part(iii) of Theorem 3 and Theorem 2, the result follows.

In part(i) of Theorem3, we have proved that the complexity of theGc-CUT PROBLEMdoes not depend
on the connectivity of the cluster graphGc as long as, the size of each connected component is a at least2.
In Section 4, we will see that theGc-CUT PROBLEM is polynomial time solvable if the cluster graphGc has
a fixed number of vertices and at least one isolated vertex. Sonow, we will assume thatGc is connected.
In Corollary 3, all of the different connected graphsGc such that theGc-CUT PROBLEM is NP-hard have a
maximum degree at least3. Here, we prove the prove that this result remains true for theMULTIWAY Gc-CUT

PROBLEM on a connected graphsGc of maximum degree2.

Theorem 4. TheMULTIWAY Pk-CUT PROBLEM is NP-hard and not approximable in the following cases:

(i) k = 5 or k ≥ 8, even when only one vertex is specified (i.e.,|S| = 1).
(ii) k = 6, even when only two vertices are specified (i.e.,|S| = 2).

Proof. We give a reduction preserving approximation from the2K2-CUT PROBLEM provedNP-hard and
not approximable in Theorem 2 and Corollary 2. LetI = (Kn, w) be an instance of the2K2-cut problem.

For (i) andk = 5, consider the instanceI ′ = (Kn+1, w
′) whereV (Kn+1) \ V (Kn) = {x}, w′(u, v) =

w(u, v) if u, v 6= x, andw′(u, x) = 0 for u ∈ V (Kn). Let S = {3} with x ∈ V3. Assume thatGc = P5 =
(1, 2, 3, 4, 5).

Let (V1, V2, V3, V4) be any2K2-cut of I. (V ′
1 , V ′

2 , V ′
3 , V ′

4 , V ′
5) with V ′

1 = V1, V ′
2 = V2, V ′

4 = V3,
V ′

5 = V4 andV ′
3 = {x} is aP5-cut ofI ′ with same value. Conversely, let(V ′

1 , V ′
2 , V ′

3 , V ′
4 , V ′

5) be anyP5-cut
of I ′ such thatx ∈ V3. Using Corollary 1 with leaf1 andN2

P5
(1) \ {1} = {3}, we know that we can assume

thatV ′
3 = {x}. Hence,(V1, V2, V3, V4) whereV1 = V ′

1 , V2 = V ′
2 , V3 = V ′

4 , V4 = V ′
4 is a2K2-cut of I with

the same value.

For k ≥ 8, using thePi-extension ofP5 for i ≥ 3 given in part2 of Theorem 3 and the result given
above for theMULTIWAY P5-CUT PROBLEM, the result follows.

For (ii) and k = 6, consider the instanceI ′ = (Kn+2, w
′) whereV (Kn+2) \ V (Kn) = {x, y},

w′(u, v) = w(u, v) if u, v 6= x, u, v 6= y andw′(u, x) = w′(u, y) = 0 for u ∈ V , Let S = {3, 4} with
x ∈ V3 andy ∈ V4. Assume thatGc = P6 = (1, 2, 3, 4, 5, 6). Since, vertices1 and6 are leaves ofP6 and
N2

P6
({1, 6}) \ {1, 6} = {3, 4}, the same proof as previously gives the expected result.
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In Section 4, we will see that thePk-CUT PROBLEM is polynomial ifk ≤ 4 (note that these results also
holds for theMULTIWAY Pk-CUT PROBLEM).

In conclusion of this section, we have obtained many cases where theCk-CUT PROBLEMthat the problem
is NP-hard. In particular, whenGc is a tree that is quite surprising. In future research, we leave some open
problems: what is the complexity of theCk-CUT PROBLEM or the MULTIWAY Ck-CUT PROBLEM where
k ≥ 5? Nevertheless, these restrictions areNP-hard when the number of vertices is unbounded because the
Cn-CUT PROBLEMon (Kn, w) (resp.,Pn-cut) is clearly equivalent to solve the traveling salesmanproblem
on (Kn, w), (resp., Hamiltonian path problem). Same question for the thePk -CUT PROBLEM with k ≥ 5
since as we will see in Section 4, theCk-CUT PROBLEMfor k ≤ 4 and thePk-CUT PROBLEM for k ≤ 4 are
polynomial time solvable.

4 Polynomially solvable cases

In this section, we will see some cluster graphs where theGc-CUT PROBLEM is polynomial. It is the cases
when the cluster graphGc contains twins (stable set with same neighborhood), two nested neighbors (a
stable set of two vertices with included neighborhood), leaves or isolated vertices (see Section 2 for formal
definitions).

4.1 Completer-partite graphs

Here, we mainly show that if the cluster graphGc is a completer-partite graphKd1,...,dr
(see Definition

2) wherek =
∑r

i=1 di is fixed, then theGc-CUT PROBLEM can be solved in polynomial time, using an
extension of the algorithm of [6]. Some simple completer-partite graphs are the following: the stable graph
K̄n (ie.,E = ∅) is complete1-partite, and the complete graph is completen-partite. We also look at the case
whereGc is a restricted split graphs.

Let us begin by some properties of completer-partite. As we will see, these graphs are recognizable
within polynomial-time. The graphH3 = K2 + K1 is the graphG = (V, E) with |V | = 3 and|E| = 1
depicted in Figure 4.1.

1

3

2

Fig. 4. An H3 = K2 + K1 graph

Lemma 2. G = (V, E) is completer-partite if and only ifG is H3-free.

Proof. Suppose thatG is completer-partite. It is clear from the definition that∀u, v, w ∈ V we have three
cases, none of which defines anH3 graph:

1. u, v, w reside at different color classes, so the graph induced by them is a 3-clique.
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2. u, v reside at the same color class, andw belongs to a different color class, so the graph induced by them
contains the edges(u, w), (v, w).

3. u, v, w reside at same color class so the graph induced by them contains no edge.

The opposite direction is done by induction onn = |V (G)|. Assume that any graphG with less than
n vertices which does not containH3 as an induced subgraph is completer-partite for somer > 0, and
consider a graphG = (V, E) with n vertices which does not containH3 as an induced subgraph. Letv ∈ V .
G′ = G − v is alsoH3-free, and then by inductive hypothesis is a completer-partite graph. We study two
cases.

1. degG(v) = n − 1. We addv in a new color classLr+1. Obviously,G is complete(r + 1)-partite.
2. degG(v) < n− 1. So, there isu ∈ Li such that(u, v) /∈ E. We addv in the color classLi. Let us prove

thatG is completer-partite. First,Li ∪ {v} is a stable set becauseLi is a stable set andG is H3-free.
Second,∀j 6= i, ∀u ∈ Lj, (u, v) ∈ E. Otherwise,∃u ∈ Lj with (u, v) /∈ E. Let w ∈ Li. The graph
induced by{u, v, w} is isomorphic toH3, a contradiction.

Using Lemma 2, it is clear that we can check inO(|V (G)|3) whether a graph is completer-partite.
Actually, a careful analysis of Lemma 2 gives aO(|E(G)|) time algorithm to recognizable such graphs.

Theorem 5. TheKd1,...,dr
-CUT PROBLEMcan be solved in polynomial time ifk =

∑r

i=1 di is fixed and is
NP-hard, if there existsdi anddj unbounded.

Proof. Assumek =
∑r

i=1 di fixed andGc = Kd1,...,dr
. SinceGc is a completer-partite graph, any two

verticesu, v ∈ Li of the same layer are twins where we recall that a twin is a stable set of two vertices
with same neighborhood. Hence, theKd1,...,dr

-cut problem is equivalent to solve thed′-size restrictedKr-
cut problem onI = (G, w) whered′i = di, for i = 1, . . . , r which is itself equivalent to computing a
minimumr-cut (V1, . . . , Vr) of G with the constrains|Vi| ≥ di. Finally, this later problem can be computed
in polynomial time using the same lines of the proof that those given in [6].

Now, we first prove that the case of complete bipartite graph isNP-complete ifk = d1+d2 is unbounded.
The bisection graph problem consists of finding a cut of minimum size of a graph such that the two cut sets
have the same size. Assumen even and considerd1 = d2 = n/2. TheKd1,d2

-cut problem on(G, w) is
equivalent to solve the bisection graph problem onG = (V, E) (by settingw(e) = 1 if e ∈ E andw(e) = 0
if e /∈ E) which is known to beNP-hard [7]. Now, we reduce theKd1,d2

case to theKd1,d2,d3
case. An

inductive proof onr allows us to conclude the proof.
Given an instanceI = (Kn, w) of the Kd1,d2

-cut problem, consider the following instanceI ′ =
(Kn+d3

, w′) of the Kd1,d2,d3
-cut problem:V (Kn+d3

) \ V (Kn) = {u1, . . . , ud3
} and if u, v ∈ V (Kn),

w′(u, v) = w(u, v). If u ∈ V (Kn) andv /∈ V (Kn), w′(u, v) = 0. Finally,w′(ui, uj) = ∞.
Consider a solution of theKd1,d2,d3

-cut problem with color classesL1, L2, L3. By construction,{u1, . . . , ud3
}

belongs to the same color class, sayLi becauseGc is complete3-partite andw′(ui, uj) = ∞. We study two
cases:

• |Li| 6= d3. Wlog., we can assume thatd3 sets ofLi are such thatVi = {ui} with i = 1, . . . , d3 because
Gc is 3-partite. Let|Lj| = d3. We flip the sets ofLi different toVi in Lj (as new sets). We obtain a new
solution of theKd1,d2,d3

-cut problem.
• |Li| = d3. Wlog., we can assume that{ui} ⊆ Vi for i = 1, . . . , d3, becauseGc is 3-partite. We move

the vertices ofLi \ {u1, . . . , ud3
} to the color classLj with j 6= i. Again, we obtain a new solution of

theKd1,d2,d3
-cut problem with≤ value.
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Now, let S be the vertices which have been flipped. For each of the two cases, the new solution loses
w(S, Cj) and winsw(S, {u1, . . . , ud3

}) = 0. Hence, the new solution has a better cost and then we can
assume the restriction ofKn is aKd1,d2

-cut with same value.

For instance,K4−K2 the graph depicted in Figure 5 is a complete3-partiteK2,1,1 and then, theK4−K2-cut
problem is solvable in polynomial time.

v1

v2

v3

v4

L1 L2

L3

Fig. 5. A K4 − K2.

If only d1 depends on the instance andr is fixed, then the complexity of theKd1,...,dr
-cut problem is an

open problem.

4.2 Restricted split graphs

Recall that a restricted split graph is a split graph where the degree of each vertex of the clique is at most
n − 2 (see Definition 2).

Theorem 6. If Gc = (Sc, Kc; Ec) is restricted split graph where|Kc| is upper bounded by a constant, then
theGc-CUT PROBLEMcan be solved in polynomial time.

Proof. Let Gc = (Vc, Ec) be a restricted split graph onk ≥ 3 vertices and letOPT = (V ∗
1 , . . . , V ∗

k ) be an
optimalGc-cut of I = (G, w). Then, for everyi ∈ K, there existsi′ ∈ S such thati′ is nested neighbor
of vertex i in Gc becauseGc is a restricted split graph. Using Lemma 1, we know that|V ∗

i | = 1 for all
i ∈ Kc. Hence, we can guess the|Kc| vertices ofV ∗

i = {v∗i } for i ∈ Kc. After, consider the following
complete bipartite graphBP = (Sc, V \ {v∗i : i ∈ Kc}; E(BP )), edge weighted byd whered(i, v) =
∑

j∈NGc (i) w(v, v∗j )), and find ab-matchingM saturatingSc of minimum weightd (the algorithm is the
same as finding ab-matching of maximum weightd′ whered′(e) = dmax−d(e), dmax = maxe∈E(BP ) d(e))
with b−(i) = 1 andb+(i) = |V | for i ∈ Sc andb−(v) = b+(v) = 1 for v ∈ V \ {v∗i : i ∈ Kc}. Recall
that ab-matching of a graphG = (V, E) is a subsetM such that ifG′ = (V, M), then∀v ∈ V , b−(v) ≤
degG′(v) ≤ b+(v). A b-matching of maximum weight can be done in polynomial-timeO(|V (G)|3), see [21]
section 21 page 337. Since anyGc-cut corresponds to ab-matchingM saturatingSc with valued(M) (when
v∗i for i ∈ Kc have been guessed), the previous algorithm finds an optimal solution in timeO(n|Kc|+3).

In particular, theP4-cut problem on(G, w) can be solved inO(n5) time. However, for theP4-cut prob-
lem on(G, w), we can improve the complexity toO(n3). Instead of applying ab-matching algorithm, we
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apply the following greedy algorithm: each vertexv of V \ {v∗2 , v∗3} (hereKc = {2, 3} andSc = {1, 4})
is assigned to theV ∗

i with i = 1, 4 minimizing its contribution (i.e.,i = argmins∈Sc

∑

j∈NGc (s) w(v, v∗j )).
Careful attention must be taken to avoid to getV ∗

1 = ∅ or V ∗
4 = ∅. For instance, ifV ∗

1 = ∅, then we
find v∗ = argmin{d(1, v) − d(4, v) : v ∈ V \ {v∗2 , v∗3}} and we addv∗ to V ∗

1 . The time complexity
of this algorithm isO(n3). Also note that in the same spirit of the proof of Theorem 6 theresult holds if
S ∪ N2

Gc
(S) = V (Gc) whereS is the leaves ofGc.

Lemma 3. If S ∪N2
Gc

(S) = V (Gc), whereS is leaves ofGc, then theGc-CUT PROBLEMcan be solved in
polynomial time.

4.3 WhenGc contains isolated vertices

Definition 6. G is anH0 graph if it contains at least one isolated vertexv, i.e.,degG(v) = 0. Let S(G) =
{v ∈ V : degG(v) = 0}.

Lemma 4. Let Gc be anH0 graph. TheGc-CUT PROBLEMcan be solved in polynomial time iff|V (Gc) \
S(Gc)| is fixed.

Proof. Consider the unbounded case of|V (Gc) \ S(Gc)|. Gc = Cn + K1 is anH0 graph and theGc-cut
problem is clearly equivalent to solve the minimum traveling salesman problem. Now, letGc be anH0 graph
such that|V (Gc) \ S(Gc)| = k − 1 is fixed and consider an instanceI = (G, w) of theGc-cut problem.

Denote the clusters corresponding to vertices ofS(Gc) asVk, . . . , Vp and thek−1 clusters corresponding
to V (Gc) \S(Gc) by V1, . . . , Vk−1. Enumerate the ordered subsetsH ⊂ V , |H | = k− 1. Insert the vertices
fromH into the clustersV1, . . . , Vk−1 so that each cluster contains exactly one vertex according to the order,
and insert arbitrarily the vertices ofV \H into the remaining clustersVk, . . . , Vp. LetSH be this solution and

S be the minimum one. Sincek − 1 is fixed the complexity isO
(

(

n
k−1

)

· (k − 1)!(k − 1)2
)

= O(nk−1).

The obtained solution is optimal since any assignment of thevertices ofV into the clustersV (Gc) \ S(Gc)
which results with one of these clusters having more than onevertex, can be improved by moving all these
vertices except one from this cluster into any one cluster amongVk, . . . , Vp. This new solution is an improved
solution to the original, since the subset of edges in the newsolution is strictly contained in the original
solution.

Definition 7. A completer − H0 graph is a graphG = (V, E) whereV (G) = ∪r
i=1Li such that(i) for

everyi ∈ {1, . . . , r} the graph induced byLi is anH0 graph, and(ii) for everyi, j ∈ {1, . . . , r} with i 6= j,
(u, v) ∈ E for everyu ∈ Li, v ∈ Lj t.

In particular a complete1 −H0 graph is aH0 graph andK3 ± K2
3 (see Figure 6) is a complete2− H0

graph (whereL1 = {1} andL2 = {2, 3, 4}).
The following result extends Lemma 4 to complete2 − H0 graphs.

Theorem 7. Suppose thatGc is a complete2−H0 cluster graph and|Vc| = k is constant. Then theGc-CUT

PROBLEM can be solved in polynomial time.

Proof. DenoteVc = Vc1
∪Vc2

such that the two induced graphsGc(Vc1
), Gc(Vc2

) areH0-graphs,|Vc1
| = k1,

and|Vc2
| = k2, wherek1 + k2 = k. Let I = (G, w) be an instance and assume that optimal solution assigns

the verticesV ∗
1 ⊂ V to the clusters ofGc(Vc1

) andV ∗
2 ⊂ V (with V ∗

1 ∪V ∗
2 = V ) to the clusters ofGc(Vc2

).

3 ± means thatK3 andK2 share a common vertex.
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1

3

4

2

Fig. 6. A K3+K2.

The optimal solution onV ∗
1 must assignk1 − 1 vertices tok1 − 1 clusters and the rest of its vertices to the

cluster represented by the isolated vertices. Similarly with V ∗
2 . So again we iterate over all ordered subsets

K1, K2 ⊂ V such that|K1| = k1, |K2| = k2, and compute a min-cut onG which separatesK1 from K2.
Denote the cost of the assignment ofK1 vertices to the clustersVc1

according to the order asW1. Denote
the cost of the assignment ofK2 vertices to the clustersVc2

according to the order asW2. Denote the cost
of min-cut onG which separatesK1 from K2 asW3, and letW = W1 + W2 + W3. ComputeK1, K2

minimizing W . The clustering derived from them is the optimal solution and has a polynomial runtime
complexity in|V |.

We now list several types of the cluster graphGc for which the previous Theorems imply a polynomial
algorithm.

(1.) If Gc has at most four vertices, then theGc-CUT PROBLEM is polynomial iffGc 6= 2K2.
(2.) Vc = {0, , . . . , k}, Ec = {(0, 1), . . . , (0, k)} ∪ {(1, 2), . . . , (k − 2, k − 1)}. Gc is a complete2 − H0

graph whereL1 = {0}, L2 = {1, . . . , k} depicted in Figure 7 .

For (1.), the only cases to study are the graphs which contain aP4 as multiway subgraph, because the
remaining cases are theH0-graphs,2K2, or the connected graphs on at most3 vertices (and then isomorphic
to K1, K2, K3 or P3 = K1,2). Thus, the graphs which contain aP4 areK4, C4 = K2,2, K3 ± K2 (see
Figure 6),K4 − K2 = K2,1,1 (see Figure 5), but all are polynomial as proved previously.

It is easy to see that completer-partite graphs generalize thek-cut problem, becauseGc is ak-clique and
we can look at each vertex as a different color class. It is also clear that completer − H0 graphs generalize
completer-partite graphs, because each color class is anH0-graph. We are still left with the open problem
whether whenGc is a completer − H0 graph, the problem is polynomial orNP-hard forr > 2.

5 Approximation results

In this section, we give some approximation results for theGc-CUT PROBLEMwhen the weights satisfy the
triangle inequality or are positive.

The version of thek-cut problem on(Kn, w) with the additional requirement that clusterVi must have a
size ofdi ∈ N, where

∑k

i=1 di = n, is studied in [18], and it is shown there that under the triangle inequality
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1

2 3

k−1

k

Fig. 7.A complete 2 H0 Example.

and fixedk it possible to obtain an approximation of at most three timesthe optimal value. We extend this
result to the cluster graphs in two steps: first, we demonstrate the idea assuming thatGc is a ring (ie., an
induced cycleCk onk vertices). Second, we apply the same arguments to any cluster graph onk vertices.

We use an auxiliary problem, theMIN -ADJACENT-STAR PROBLEM, as explained in the next lines. For a
givenGc = (Vc, Ec) and a given set of centersC = {c1, . . . , ck} ⊆ V with ci ∈ Vi, we wish to arrange
the vertices ofV \ C into |Vc| = k clusters. After the arrangement we will get|Vi| = di and we want
to minimize

∑k

i=1(
∑

{j|(i,j)∈Ec}

∑

v∈Vj\{cj}
w(ci, v)). Thus, we want to arrange the clusters so that the

arrangement yields the minimum sum of distances from the rest of the vertices to the given centers of thek
stars according to the neighborhood relations between the stars.

5.1 The metric restricted cyclick-cut problem

Let Kn = (V, E) be a complete undirected graph with|V | = n. The edgese ∈ E have nonnegative weights
w(e) ≥ 0 that satisfy the triangle inequality (i.e.,∀x, y, z ∈ V , w(x, y) ≤ w(x, y) + w(y, z)). Given is also
a set of integersK = {di}

k
i=1 such that

∑k

i=1 di = n.

Definition 8. For anyk ≥ 3, the METRIC RESTRICTED CYCLICk-CUT PROBLEM computes, given an
instanceI = (G, w) satisfying the triangle inequality andk integersdi with

∑k

i=1 di = n, k disjoint subsets
of verticesVi ⊆ V with size|Vi| = di for i ≤ k, minimizing the total weight of edges whose two ends are
in thei andi + 1 sets fori = 1, . . . , k, wherek + 1 ≡ 1.

Actually, the METRIC RESTRICTED CYCLICk-CUT PROBLEM is the METRIC RESTRICTEDCk-CUT

PROBLEM as indicated in Definition 3. TheMETRIC RESTRICTED CYCLIC3-CUT PROBLEM is NP-hard
because it is the3-cut problem with the additional requirement, provedNP-hard in [18]. Here, we strengthen
this result by proving that it is the case even if the weights are either one or two.
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Theorem 8. For anyk ≥ 3, theMETRIC RESTRICTED CYCLICk-CUT PROBLEMis NP-hard, even ifw(e) ∈
{1, 2}.

Proof. Let k ≥ 3. We propose several polynomial reductions depending on theparameterk. These reduc-
tions are quite similar and are done from the bisection graphproblem in complete graphsK2n with weights
in {1, 2} which is know to beNP-hard. Recall that the bisection graph problem consists of finding a mini-
mum cut of an unweighted graph such that the two cut sets have the same size. The bisection graph problem
is NP-hard [7] and it is easy to see that the metric bisection graphproblem on complete graphs restricted
to weights 1 and 2 remainsNP-hard. LetI = (K2n = (V, E), w) be a complete graph on2n vertices and
edges weighted byw(e) ∈ {1, 2}, instance of the metric bisection graph problem.

For k = 3. Consider the instanceI ′ = K2n+1, w
′) with d1 = d2 = n andd3 = 1 of the METRIC

METRIC RESTRICTED CYCLIC3-CUT PROBLEMdescribed as follows:V (K2n+1) = V ∪ {x1} and for any
u, v ∈ V w′(u, v) = w(u, v), w′(x1, v) = 1 for everyv ∈ V .

We claim that there is a bisection ofK2n of valuew(V1, V2) at mostB iff there is a cyclic 3-cut (with
d1 = d2 = n andd3 = 1) of value at mostB + 2n.

Clearly, if (V1, V2) is a bisection ofK2n of value at mostw(V1, V2) ≤ B, then(V1, V2, V3 = {x1})
is a cyclic 3-cut with valuew′(V1, V2, V3) ≤ B + 2n. Conversely, let(V1, V2, V3) be a cyclic 3-cut with
value at mostw′(V1, V2, V3) ≤ B + 2n and such that|V1| = |V2| = n and |Vi| = 3. Let us prove that
we can polynomially transform it into a cyclic 3-cut(V ′

1 , V ′
2 , V ′

3) with w′(V1, V2, V3) ≤ w′(V ′
1 , V ′

2 , V ′
3)

and such thatV ′
3 = {x1}. So, assume thatV ′

3 = {v} with v ∈ V and x1 ∈ V1. By setting(V ′
1 =

V1 \ {x1} ∪ {v}, V ′
2 = V2, V

′
3 = {x1}), we get:w′(V ′

1 , V ′
2 , V ′

3) − w′(V1, V2, V3) = 2n + w(v, V2) −
(n + 1 + w(v, V \ {v})) = n − 1 − w(v, V1 \ {v}) ≤ 0. Hence,(V ′1, V ′

2) is a bisection ofK2n of value
w(V ′1, V ′

2) = w′(V ′
1 , V ′

2 , V ′
3) − 2n ≤ −w′(V1, V2, V3) − 2n ≤ B.

Fork = 4. We assume thatn is even; actually, it is easy to see that the bisection graph problem in com-
plete graphsK4n with weights in{1, 2} remainsNP-hard. LetI = (K4n = (V, E), w) be a complete graph
on4n vertices and edges weighted byw(e) ∈ {1, 2}, instance of this restriction. By settingI ′ = (K4n, w)
anddi = n for everyi = 1, . . . , 4, we can easily prove that(V ′

1 , . . . , V ′
4) is a restricted cyclic 4-cut of value

w(V ′
1 , . . . , V ′

4) ≤ B iff (V1 = V ′
1 ∪ V ′

3 , V2 = V ′
2 ∪ V ′

4) is a bisection of valuew(V1, V2) ≤ B.

For k ≥ 5. Consider the instanceI ′ = K32n+(k−5)18n, w′) with d1 = d2 = n, d3 = dk = 6n and
d4 = · · · = dk−1 = 18n of the METRIC RESTRICTED CYCLICk-CUT PROBLEM described as follows:
V (K32n+(k−5)18n) = V ∪ {x1, . . . , x30n+(k−5)18n} and for anyu, v ∈ V w′(u, v) = w(u, v), w′(xi, v) =
2 for every i = 1, . . . , 30n + (k − 5)18n andv ∈ V , and finally,w′(xi, xj) = 1 for 1 ≤ i < j ≤
30n + (k − 5)18n.

We claim that there is a bisection ofK2n of valuew(V1, V2) at mostB iff there is a cyclick-cut (with
d1 = d2 = n, d3 = dk = 6n andd4 = · · · = dk−1 = 18n) of value at mostB + 132n2 + (k − 5)(18n)2.

Clearly, if (V1, V2) is a bisection ofK2n of value at mostw(V1, V2) ≤ B, then(V1, . . . , Vk) where
V3 ∪ · · · ∪ V5 = {x1, . . . , x30n+(k−5)18n} is a cyclick-cut with valuew′(V1, . . . , Vk) ≤ B + 132n2 +
(k − 5)(18n)2. Conversely, let(V1, . . . , Vk) be a cyclick-cut with value at mostw′(V1, . . . , Vk) ≤ B +
132n2 + (k − 5)(18n)2 and such that|V1| = |V2| = n, |V3| = |Vk| = 6n and|V4| = · · · = |Vk−1| = 18n.
Let us prove that we can polynomially transform it into a cyclic k-cut (V ′

1 , . . . , V ′
k) with w′(V ′

1 , . . . , V ′
k) ≤

w′(V1, . . . , Vk) and such that∪k
i=3V

′
i = {x1, . . . , x30n+(k−5)18n}.
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We prove this claim in two steps using a 2-exchange procedure. First, we demonstrate that the result
holds forV4 ∪ · · · ∪ Vk−1 and then we prove it forV3 ∪ Vk. Concerning the first step, we distinguish two
cases:k = 5 andk ≥ 6.

k = 5. So, assume thatv ∈ V4 ∩V . Then, there existsxi ∈ Vj with j ∈ {1, 2}. Consider the cyclic 5-cut
(V ′

1 , . . . , V ′
5) where from(V1, . . . , V5), we make a 2-exchange betweenv andxi; so,V ′

j = (Vj \{xi})∪{v},
V ′

4 = (V4 \ {v}) ∪ {xi} andV ′
p = Vp for p 6= j, 4. Assume thatw is the neighbor (distinct of3 − j) of

j in Gc (so, w = 5 if j = 1 andw = 3 if j = 2). The contribution ofv and xi in the cyclic 5-cut
(V1, . . . , V5) at leastw′(v, V3 ∪ V5) + w′(xi, V3−j ∪ Vw) ≥ (2 × 10n + 2n) + 7n = 29n (because on
the one handv is linked to at least10n vertices of{x1, . . . , x30n} and at most2n vertices ofV and on
the other hand,v is linked to7n = |V3−j ∪ Vw| vertices) while the contribution ofv andxi in the cyclic
5-cut(V ′

1 , . . . , V ′
5) is at mostw′(xi, V3 ∪ V5) + w′(v, V3−j ∪ Vw) ≤ 10n + 4n + 2 × 7n = 28n. Hence,

w′(V ′
1 , . . . , V ′

5) − w′(V1, . . . , V5) ≤ 28n− 29n ≤ 0.

k ≥ 6. First, assume thatv ∈ (V4 ∪ Vk−1 ∩ V . By symmetry, suppose thatv ∈ V4. Then, there ex-
ists xi ∈ Vj with j ∈ {1, 2}. Consider the cyclick-cut (V ′

1 , . . . , V ′
k) where from(V1, . . . , Vk), we make

a 2-exchange betweenv andxi. The contribution ofv andxi in the cyclick-cut (V1, . . . , Vk) is at least
w′(v, V5 ∪ V3) ≥ 2 × 22n + 2n = 46n (because|V5 ∪ V3| = 24n and |V | = 2n; hence,v is linked
to at least22n vertices of{x1, . . . , x30n+(k−5)18n} and at most2n vertices ofV ). On the other hand the
contribution ofv andxi in the cyclick-cut (V ′

1 , . . . , V ′
k) is at mostw′(xi, V3 ∪ V5) + 2(|V2j−1| + |Vw|) ≤

22n + 2 × 2n + 2(n + 6n) = 40n wherew ∈ {3, k} is the neighbor ofj different of 3 − j in Gc. In
conclusion,w′(V ′

1 , . . . , V ′
k) − w′(V1, . . . , Vk) ≤ 40n− 46n ≤ 0.

Now assumev ∈ Vp with 5 ≤ p ≤ k − 2 (in this case, note thatk ≥ 7). The contribution ofv andxi

in the cyclick-cut (V1, . . . , Vk) is at leastw′(v, Vp−1 ∪ Vp+1) ≥ 2 × 34n + 2n (because|Vp−1 ∪ Vp+1| =
36n and |V | = 2n). On the other hand the contribution ofv andxi in the cyclick-cut (V ′

1 , . . . , V ′
k) is

at mostw′(xi, Vp−1 ∪ Vp+1) + 2(|Vj | + |Vw |) ≤ 34n + 2 × 2n + 2(n + 6n) = 52n (becausexi is
linked to at least34n vertices of{x1, . . . , x30n+(k−5)18n} and at most2n vertices ofV ). In conclusion,
w′(V ′

1 , . . . , V ′
k) − w′(V1, . . . , Vk) ≤ 34n− 52n ≤ 0.

In any cases(k = 5 or k ≥ 6), by repeating this process, we get a cyclick-cut (V ′
1 , . . . , V ′

k) satisfying
V4 ∪ · · · ∪ Vk−1 ⊂ {x1, . . . , x30n+(k−5)18n} andw′(V ′

1 , . . . , V ′
k) ≤ w′(V1, . . . , Vk).

Now, assume thatv ∈ (V3 ∪ Vk) ∩ V (by symmetry, supposev ∈ V3). Then, there existsxi ∈ Vj

with j ∈ {1, 2}. As previously, consider the cyclick-cut (V ′
1 , . . . , V ′

k) resulting of a 2-exchange between
v and xi and letw be the neighbor different of3 − j of j in Gc. The contribution ofv and xi in the
cyclic k-cut (V1, . . . , Vk) at leastw′(v, V4) ≥ 2 × 18n = 36n (because from the previous case we know
V4 ⊆ {x1, . . . , x30n+(k−5)18n} while the contribution ofv andxi in the cyclick-cut(V ′

1 , . . . , V ′
k) is at most

w′(xi, V2 ∪ V4) + w′(v, V3−j ∪ Vw) ≤ |V4| + 2|V2| + 2(|V3−j | + |Vw|) = 18n + 2n + 2(n + 6n) = 34n.
Thus,w′(V ′

1 , . . . , V ′
k) − w′(V1, . . . , Vk) ≤ 34n− 36n ≤ 0.

In conclusion, from(V1, . . . , Vk) we polynomially obtain a cyclick-cut(V ′
1 , . . . , V ′

k) such that∪k
i=3V

′
i =

{x1, . . . , x30n+(k−5)18n} and such thatw′(V ′
1 , . . . , V ′

k) ≤ w′(V1, . . . , Vk). Hence,(V ′
1 , V ′

2 ) is a bisection of
K2n with valuew(V ′

1 , V ′
2) = w′(V ′

1 , . . . , V ′
k)− 132n2 − (k − 5)(18n)2 ≤ w′(V1, . . . , Vk)− 132n2 − (k −

5)(18n)2 ≤ B.

Note that ifk is unbounded, then theMETRIC RESTRICTED CYCLICk-CUT PROBLEM is APX-hard
because this problem contains theMETRIC TSPPROBLEM.
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We demonstrate that for any fixedk it is possible to obtain in polynomial time an approximationof at
most three times the optimal value. We start by defining a new problem which we solve optimally for a
constantk, and then use its solution to approximate theMETRIC RESTRICTED CYCLICk-CUT PROBLEM.

Definition 9. TheMIN -ADJACENT-STAR PROBLEMfinds verticesv1, . . . , vk and ak-cut, such thatvi ∈ Vi,
|Vi| = di, i = 1, . . . , k, and

p
∑

i=1

(

diw(vi, Vi+1) + di+1w(vi+1, Vi) + didi+1w(vi, vi+1)
)

is minimized, where indices are (modk).

Theorem 9. Algorithm FindCyclicPartition (see Algorithm 1) solves the MIN -ADJACENT-STAR PROBLEM.
It can be executed in timeO(nk+1).

input :
1. A complete graphKn = (V, E), |V | = n, with weightsw(e) ≥ 0, e ∈ E.
2. Integersd1 . . . , dk such that

Pk

i=1 di = n.
output:
1. v1, . . . , vk ⊆ V .
2. A partitionV1, . . . , Vk of V such thatvi ∈ Vi, |Vi| = di, i = 1, . . . , k.

foreach subset{v1, . . . , vk} ⊆ V do
{a1, . . . , an−k} := V \ {v1, . . . , vk}.
Computex̃, an optimal solution to the following transportation problem:
minimize

Pk

i=1

Pn−k

j=1

P

l∈{−1,1} diw(vi, aj)xi+l,j

subject to:
Pk

i=1 xij = 1, j = 1, . . . , n − k,
Pn−k

i=1 xij = di − 1, i = 1, . . . , k,
xij ∈ {0, 1}, i = 1, . . . , k, j = 1, . . . , n − k.

V
{v1,...,vk}

i := {vi}
S

{aj |1 ≤ j ≤ n − k, x̃ij = 1}, i = 1, . . . , k.
d{v1,...,vk} :=

Pp

i=1 diw(vi, V
{v1,...,vk}

i+1 ) + ki+1w(vi+1, V
{v1,...,vk}

i ) + didi+1w(vi, vi+1)

end

Find{v∗
1 , . . . , v∗

k} ⊆ V for which d{v∗

1 ,...,v∗

k} is minimal, denote it byS∗.

return (v∗
1 , . . . , v∗

k, V
{v∗

1 ,...,v∗

k}
1 , . . . , V

{v∗

1 ,...,v∗

k}

k ).
Algorithm 1 : FindCyclicPartition

Proof. Let ṽ1, . . . , ṽk, Ṽ1, . . . , Ṽk be an optimal solution to the min-adjacent-star problem. Since the algo-
rithm checks all the subsets ofV of sizek it also checks the subset{ṽ1, . . . , ṽk}. For this subset the sum
∑p

1 didi+1w(ṽi, ṽi+1) is constant, so we need to find a partition(V1, . . . , Vk) which minimizes
∑k

1 [diw(ṽi, Vi+1)+
di+1w( ˜vi+1, Vi)]. This is achieved by finding an optimal solution to a transportation problem (wherexij = 1
if vertex aj is assigned to the subsetVi). For a fixed value ofk we can solve the transportation problem in
timeO(n), using the algorithms of [27]. There areO(nk) subsets{v1, . . . , vk} ⊆ V , so altogether the time
complexity isO(nk+1).
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We now show that the weight of the partition found as an optimal solution for theMIN -ADJACENT-STAR

PROBLEM is no more than3opt, whereopt is the value of the optimal solution of theMETRIC CYCLIC

k-CUT PROBLEM. Denote byapx the value of the partition constructed by Algorithm 1.

Theorem 10. Algorithm FindCyclicPartition is a3-approximation for theMETRIC RESTRICTED CYCLIC

k-CUT PROBLEMwhenk is constant.

Proof. Let (v1, . . . , vk, V1, . . . , Vk) be the output of Algorithm FindCyclicPartition and letO1, . . . , Ok be
an optimal solution of theMETRIC RESTRICTED CYCLICk-CUT PROBLEM; obviously,∀i ≤ k, |Oi| = di

by hypothesis. We will prove that

apx =

k
∑

i=1

w(Vi, Vi+1) ≤ 3

k
∑

i=1

w(Oi, Oi+1) = 3opt.

By construction, we have:

apx =

k
∑

i=1

w(Vi, Vi+1)

=

k
∑

i=1

∑

ui∈Vi
uj∈Vi+1

w(ui, uj)

≤
k

∑

i=1

∑

ui∈Vi
uj∈Vi+1

(

w(vi, vi+1) + w(ui, vi+1) + w(vi, ui+1)
)

=

k
∑

i=1

(

diw(vi, Vi+1) + di+1w(vi+1, Vi) + didi+1w(vi, vi+1)
)

≡ S∗.

On the other hand, according to Theorem 9, FindCyclicPartition solves theMIN -ADJACENT-STAR PROB-
LEM, so that for every(u1, . . . , uk) such thatu1 ∈ O1, . . . , uk ∈ Ok,

S∗ =
k

∑

i=1

(

diw(vi, Vi+1) + di+1w(vi+1, Vi) + didi+1w(vi, vi+1)
)

≤
k

∑

i=1

(

diw(ui, Oi+1) + di+1w(ui+1, Vi) + didi+1w(ui, ui+1)
)

.

Summing over all(u1, . . . , uk) such thatu1 ∈ O1, . . . , uk ∈ Ok, since we have
∏k

j=1 dj equalities as
above leaving the left side of each inequality as is meaningS∗ we have that:

S∗
k

∏

j=1

dj ≤
k

∑

i=1

(

(

k
∏

j=1

di)w(Oi, Oi+1) + (

k
∏

j=1

di)w(Oi+1, Oi) + (

k
∏

j=1

di)w(Oi, Oi+1)
)
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= (
k

∏

j=1

di)
k

∑

i=1

(

w(Oi, Oi+1) + w(Oi+1, Oi) + w(Oi, Oi+1)
)

= (

k
∏

j=1

di)3

k
∑

i=1

w(Oi, Oi+1)

= 3(

k
∏

i=1

di)opt

HenceS∗ ≤ 3opt, giving apx ≤ S∗ ≤ 3opt.

5.2 Approximation algorithms for the METRIC RESTRICTEDGc-CUT PROBLEMwhenk is constant

At subsection 5.1, we have proposed an approximation algorithm for theMETRIC RESTRICTED CYCLICk-
CUT PROBLEM. Now, we will solve the general case of theMETRIC RESTRICTEDGc-CUT PROBLEMwhen
Gc is an arbitrary cluster graph with a constant number of vertices.

Definition 10. TheMIN -ADJACENT-Gc PROBLEMfinds verticesv1, . . . , vk and aGc-cut, such thatvi ∈ Vi,
|Vi| = di, i = 1, . . . , k, and

∑

(i,j)∈Ec

(

diw(vi, Vj) + djw(vj , Vi) + didjw(vi, vj)
)

is minimized.

The idea of the algorithm is similar to the previous one and isdescribed below.

Theorem 11. Algorithm FindGcPartition (see Algorithm 2) solves theMIN -ADJACENT-Gc PROBLEM in
timeO(nk+1).

Proof. Let ṽ1, . . . , ṽk, Ṽ1, . . . , Ṽk be an optimal solution to theMIN -ADJACENT-Gc PROBLEM. Since the
algorithm checks all the subsets ofV of sizek, it also checks the subset{ṽ1, . . . , ṽk}. For this subset the
∑

(i,j)∈Ec
didjw(ṽi, ṽj) is constant, so we need to find a partition(V1, . . . , Vk) which minimizes

∑

(i,j)∈Ec
diw(ṽi, Vj).

This is achieved by solving the transportation problem (wherexij = 1 if and only ifaj assigned to the subset
Vi).

For a fixed value ofk we can solve the transportation problem in linear time inn, using the algorithms
in [27]. There areO(nk) subsets(v1, . . . , vk), so altogether the time complexity isO(nk+1).

Theorem 12. Algorithm FindCyclicPartition is a3-approximation for theMETRIC RESTRICTEDGc-CUT

PROBLEM whenk is constant.

Proof. Let (v1, . . . , vk, V1, . . . , Vk) be the output of Algorithm FindCyclicPartition and letO1, . . . , Ok be
an optimal solution of theMETRIC RESTRICTEDGc-CUT PROBLEM; obviously,∀i ≤ k, |Oi| = di by
hypothesis. Let(v1, . . . , vk, V1, . . . , Vk) be the outputted solution and letO1, . . . , Ok be an optimal solution
of the METRIC RESTRICTEDGc-CUT PROBLEM. Assume that∀i ≤ k, |Oi| = d∗i and consider the step of
Algorithm 2 where(d∗1, . . . , d

∗
k) is given in input. We have: Let(v1, . . . , vk, V1, . . . , Vk) be the outputted

solution and letO1, . . . , Ok be an optimal solution of theMETRIC Gc-CUT PROBLEM. Assume that∀i ≤ k,
|Oi| = d∗i and consider the step of Algorithm 2 where(d∗1, . . . , d

∗
k) is given in input. We have:
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input :
1. A complete graphKn = (V, E), |V | = n, with weightsw(e) e ∈ E.
2. A cluster graphGc(Vc, Ec), |Vc| = k.
3. Integersd1, . . . , dk such that

Pk

i=1 di = n.
output:
1. v1, . . . , vk ⊆ V .
2. A Gc-cutV1, . . . , Vk such thatvi ∈ Vi, i = 1, . . . , k.

For i, j ∈ Vc let αij =



1 (i, j) ∈ Ec

0 otherwise
foreach{v1, . . . , vk} ⊂ V do

{a1, . . . , an−k} := V \ {v1, . . . , vk}.
Computex̃, an optimal solution to the following transportation problem:
minimize

Pk

i=1

Pk

j=1

Pn−k

l=1 αijdiw(vi, al)xlj

subject to:
Pk

i=1 xij = 1, j = 1, . . . , n − k,
Pn−k

i=1 xij = ki − 1, i = 1, . . . , k,
xij ∈ {0, 1}, i = 1, . . . , k, j = 1, . . . , n − k.

end

Let V {v1,...,vk}
i := {vi} ∪ {aj |1 ≤ j ≤ n − k, x̃ij = 1}, i = 1, . . . , k.

d{v1,...,vk} :=
P

(i,j)∈Ec

h

diw(vi, V
{v1,...,vk}

j ) + didjw(vi, vj)
i

.

{v∗
1 , . . . , v∗

k} := arg min{d{v1,...,vk} |{v∗
1 , . . . , v∗

k} ∈ V .

return (v∗
1 , . . . , v∗

k, V
{v∗

1 ,...,v∗

k}
1 , . . . , V

{v∗

1 ,...,v∗

k}

k ).

Algorithm 2 : FindGcPartition
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apx ≤
∑

(i,j)∈Ec

w(Vi, Vj)

=
∑

(i,j)∈Ec

∑

ui∈Vi
uj∈Vj

w(ui, uj)

≤
∑

(i,j)∈Ec

∑

ui∈Vi
uj∈Vj

(

w(vi, vj) + w(ui, vj) + w(vi, uj)
)

=
∑

(i,j)∈Ec

(

d∗i w(vi, Vj) + d∗jw(vj , Vi) + d∗i d
∗
jw(vi, vj)

)

= S∗.

On the other hand, according to Theorem 11, FindGcPartitionsolves theMIN -ADJACENT-Gc PROBLEM so
that for every(u1, . . . , uk) such thatu1 ∈ O1, . . . , uk ∈ Ok,

S∗ =
∑

(i,j)∈Ec

(

d∗i w(vi, Vj) + d∗jw(vj , Vi) + d∗i d
∗
jw(vi, vj)

)

≤
∑

(i,j)∈Ec

(

d∗i w(ui, Oj) + d∗jw(uj , Oi) + d∗i d
∗
jw(ui, uj)

)

.

Summing over all(u1, . . . , uk) such thatu1 ∈ O1, . . . , uk ∈ Ok:

S∗
k

∏

i=1

d∗i ≤
∑

(i,j)∈Ec

[

(

k
∏

i=1

d∗i )w(Oi, Oj) + (

k
∏

i=1

d∗i )w(Oj , Oi) + (

k
∏

i=1

d∗i )w(Oi, Oj)

]

=
k

∏

i=1

d∗i
∑

(i,j)∈Ec

[w(Oi, Oj) + w(Oj , Oi) + w(Oi, Oj)]

= 3

k
∏

i=1

d∗i
∑

(i,j)∈Ec

w(Oi, Oj)

= 3(
k

∏

i=1

d∗i )opt

Hence,S∗ ≤ 3opt, leading to the conclusion thatapx ≤ S∗ ≤ 3opt.

5.3 Approximation algorithms for the metric Gc-cut problem

Here, we will solve the case wherew is metric,Gc = (Vc, Ec) is a general graph but|Vc| is constant and
without constraint on cluster sizes. LetG = (V, E) be a complete undirected graph, withV = {v1 . . . vn},
and edge weightsw(vi, vj) ≥ 0 that satisfy the triangle inequality.

Theorem 13. There is a3-approximation for theMETRIC Gc-CUT PROBLEMwhenk is constant.

Proof. Let |V | = n, |Vc| = k. Enumerate allD = (d1, . . . , dk),
∑k

i=1 di = n we have anO(nk) such
ordered sets. For each such ordered set solve theMETRIC RESTRICTEDGc-CUT PROBLEM by using the
algorithm from 5.2 algorithm 2, and get a3 approximation as in 5.2. Choose the smallestGc-cut among all
theGc-cuts. Since the optimal solution yields a specificD, the result follows.
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5.4 Approximation of the Gc-cut problem with positive weights

In Section 3, we saw that theGc-CUT PROBLEMis not approximable at all in general graphs (see for instance
Corollaries 2 or 3) due to the weight 0 for some edges. Here, wepropose an approximation ratio for theGc-
CUT PROBLEMwhenw(e) > 0 for everye ∈ E which works even when the numberk of the vertices ofGc

depends on the instance (we only assumek ≤ n). Let wmin = mine∈E w(e), wmax = maxe∈E w(e), and
α = wmax

wmin
.

Theorem 14. TheGc-CUT PROBLEM with positive weights isα-approximable in linear time, whereα =
wmax

wmin
, even if|Vc| is not fixed.

Proof. Let I = (Kn, w) with w(e) > 0 for every e ∈ E be an instance of theGc-cut problem. Let
m′

i0
= n − k + 1 wherei0 = argmini∈Vc

degGc
(i), andm′

j = 1 for j ∈ {1, . . . , k}, j 6= i0. Arbitrarily
assignm′

i vertices ofKn to Vi for i = 1, . . . , k and let(V1, . . . , Vk) be the resultingGc-cut with valueapx.
Let opt be the value of an optimal solution(V ∗

1 , . . . , V ∗
k ) of theGc-CUT PROBLEM on (Kn, w). We will

prove thatapx ≤ α · opt. Let optu =
∑

(i,j)∈Ec
m′

im
′
j .

By construction, sincew(e) ≤ wmax we get:

apx ≤ wmax · optu (1)

Let mi = |V ∗
i | for i = 1, . . . , k. We mainly prove that:

optu ≤
∑

(i,j)∈Ec

mimj (2)

To see this, we will show thatoptu is the value of an optimalGc-cut on(Kn, w′) wherew′(e) = 1 for
everye ∈ E. Hence, since

∑

(i,j)∈Ec
mimj is the value of a particularGc-cut on(Kn, w′), inequality (2)

will follows.

Property 1. Let (V ∗
1 , . . . , V ∗

k ) be an optimalGc-cut on(Kn, w′) wherem∗
i = |V ∗

i | for i = 1, . . . , k. The
following properties hold:

(i) If e = (i, j) ∈ Ec, thenmin(m∗
i , m

∗
j ) = 1.

(ii) If e = (i, j) /∈ Ec, then one can assume thatmin(m∗
i , m

∗
j ) = 1.

Proof. For (i). Let e = (i, j) ∈ Ec andm = m∗
i + m∗

j ; denoteDi =
∑

r∈NGc(i)\{j} m∗
r andDj =

∑

r∈NGc(j)\{i} m∗
r . AssumeDi ≥ Dj . Then, the contribution of the portion of the optimal solution where

one cluster is eitherV ∗
i or V ∗

j can be written asDi ·m∗
i + m∗

j ·Dj + m∗
i ·m

∗
j (because∀e ∈ E, w′(e) = 1),

or equivalently (usingm∗
j = m−m∗

i ), f(mi) = −(m∗
i )

2 + m∗
i · (m + Di −Dj)+ m ·Dj. This expression

is a decreasing parabola and it reaches its minimum value form∗
i = 1 or m∗

i = m − 1 becauseDi, Dj and
m are constant (actually, whenm∗

i decreases by one unit,m∗
j increases by one unit).

For (ii). Let (i, j) /∈ Ec andm = m∗
i + m∗

j and supposem∗
i > 1, m∗

j > 1. AssumedegGc
(i) ≤

degGc
(j) where we recall thatdegGc

(i) is the degree of vertexi in Gc. The contribution of clustersV ∗
i , V ∗

j in
the optimal solution isdegGc

(i)·m∗
i +degGc

(j)·m∗
j because by(i) we know thatm∗

w = 1 for w ∈ NGc
(i)∪

NGc
(j). Substitutingm∗

j = m−m∗
i and rearranging the above expression we obtain(degGc

(i)−degGc
(j))·

m∗
i + degGc

(j) · m. This expression is strictly decreasing withm∗
i as its argument whendegGc

(i) <
degGc

(j), and constant whendegGc
(i) = degGc

(j). In conclusion, we can always assume thatm∗
j = 1.
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Using Property 1, we deduce thatm∗
i0

= n − k + 1 andm∗
j = 1 for j ∈ {1, . . . , k}, j 6= i0, that is

exactlym′
i = m∗

i for i ∈ {1, . . . , k}. Now, combining inequalities (1) and (2), we obtain:

apx ≤ wmax ·
∑

(i,j)∈Ec

mimj . (3)

On the other hand, by construction we have:

opt ≥ wmin ·
∑

(i,j)∈Ec

mimj . (4)

Using inequalities (3) and (4), the result follows.

6 Conclusion

In this paper, we have studied the complexity and the approximation of theGc CUT PROBLEM. Some results
are given, but many open problems exist. What is the exact complexity of theGc CUT PROBLEMon lines or
rings (ie., induced paths or cycles)? Is theMETRIC Gc-CUT PROBLEMadmit a PTAS or isAPX-complete?
Another interesting direction for further research is to study the maximumGc cut problem.
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