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Abstract. In this paper we study the complexity and approximabilitytie# G.-cut problem. Given a
complete undirected grapht,, = (V; E) with |V| = n, edge weighted bw(v;,v;) > 0 and an undi-
rected cluster grapltt;y. = (V, E.), with |V ¢| = k, ak-cutis a partitionVi, . . ., Vi, of V(G) such that

Vi # (@ fori =1,...,k. TheG.-cut problem is to compute f-cut minimizingza’j)eEu w(V5, V5)
wherew(V;, V) = ZPE\/,;,qGVi w(p, q). DenoteG.. as cluster graph and its vertices as clusters. We
show that the.-cut problem isNP-hard and even not approximable in the general case andmemai
NP-hard for cluster trees. In particular, we give a completarahbterization of hard cases for cluster
graphs with at most four vertices by proving that tfie-cut problem isNP-hard if and only ifG.

is isomorphic to2K>. We also identify some cases where thg-cut problem is either polynomial or
NP-hard. Finally, we propose polynomial approximation résir theG.-cut problem when the edge
weights ofG satisfy the triangle inequality, or when the weights ar&syrpositive.

Keywords: Cut in graphsNP-hardness, polynomial, approximation algorithms.

1 Introduction

The problem considered in this paper is a generalizatioh@tlie minimumk-cut problem, and it can be
defined as follows:

Definition 1. LetK,, = (V, E') be a complete undirected graph witti| = n and edge weights(v;,v;) >
0. Given is also an undirected cluster grapf, = (V., E.), with |V,.| = k. TheG.-CUT PROBLEM s
to compute &-cut minimizing}_; - cp w(Vi, V;), wherew(Vi, V;) = >, o evixv;, (n.gyer WP @) The
restriction to metric distance (i.e., satisfying triangular inequalily is called theMETRIC G.-CUT PROB-
LEM.

Cut problems in graphs are important optimization probleesause VLSI system design, parallel com-
puting systems, clustering, network reliability and auftiplanes, etc. appearing in real-life situations may
often be modeled as graph partitioning problems (see foamte [1, 22]). A survey on the approximability
of cut problems can be found in Shmoys [23]. TheuT PROBLEMhas been well studied in the literature
and consists of finding a partitiovt, ..., Vi such thatl; £ 0,7 = 1,..., k (calledk-cut) of the vertices

Yz, y, 2 € V,w(z,y) < wlz,y) +w(y, 2).
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V(G) of a simple graptG = (V, £) edge weighted byv(v;,v;) > 0, minimizing 3, ., <, w(V;, V;).
Goldschmidt and Hochbaum [6] proved that the problem inradi graphs iNP-hard whenk is part of the
input and gave the first polynomial-time algorithm for fixeavith running timen©**). Since the results
of Goldschmidt and Hochbaum [6] on the minimunatut problem, many other results are appeared in the
literature. For instance, the running time of their alguomit has been improved by Kamidoi et al. [15] and
Xiao [28]. Currently, the best results are tBgn>(*~Dlog n3)—time Monte Carlo algorithm due to Karger
and Stein [12] and th&(n2*)-time deterministic algorithm due to Thorup [26]. Furthem®, Nagamochi
et al. [19, 20] proved that the minimukicut problem can be solved @(mn*) time fork = 4,5,6. The
minimumék-cut problem has also drawn much attention in the literatoiremall values ok. The minimum
2-cut problem is commonly known as the minimum cut problemo#er version, the minimum 2-way cut
problem, is the minimungs, ¢) cut problem, which asks to find a minimum cut that separatesgiwven
verticess andt. These two problems are fundamental problems in the subjegtaph connectivity. For
ordinary graphs, the minimum cut problem can be solve@{mn + n?logn) time by Nagamochi and
Ibaraki’s algorithm [19] or Stoer and Wagner’s algorithn#]2and the minimunis, ¢) cut problem can be

solved inO(mn log "%) time by Goldberg and Tarjan’s algorithm [8]. For the minim@acut problem in
ordinary graphs, Kapoor [10] and Kamidoi et al. [15] showealttit can be solved by usin@(n?) maxi-
mum flow computations. Burlet and Goldschmidt [3] and Nagelmiand Ibaraki [19] improved the result
to O(n?). The Multiway k-cut problem fork > 2 is one generalization of the minimugs, t) cut problem.
This problem also known as the Multiterminialcut problem can be defined as follow: given a weighted
complete graphk,, = (V, E) and a set of terminal§ = {si,...,s;}, a multiway cut is a set of edges
that leaves each of the terminals in a separate componeaothémn words, the goal of the Multiway-cut
problem is to find &-cut (V4, ..., Vi) wheres; € V; of minimum weight. The Multiways-cut problem is
know to be polynomial fok = 2 and and\P-hard whenk > 3 is fixed [4].

When the cluster grap8i.. is ak-clique, thek-cuT PROBLEMand theGG.-CUT PROBLEMcoincide. In
contrast, we show that th&.-cuT PROBLEMis NP-hard wher¥; is fixed.

In this paper, we mainly study the complexity and the appr@bility of theG.-cuT PROBLEMaccord-
ing the structure of the cluster gragk.. In Section 2, the notations and main definitions are intoediu
In Section 3, complexity results are presented while thai@ed gives some polynomial solvable cases
for the G.-cuT PROBLEM For instance, as a corollary of the results given in thisgpape will show for
the cluster graph&'. with at most 4 vertices, thé&'.-cuT PROBLEMis NP-hard if and only ifG. = 2Ko.
Finally, in Section 5, we propose polynomial approximatiesults when the weights are either positives or
satisfy the triangle inequality. More exactly for the geal@ase, we presentaapproximation in linear time
wherewni, = mineep w(e), Wmax = maxeep w(e), anda = 2= (here, we assume that,;, > 0) and
a 3-approximation is given for th®ETRIC G.-CUT PROBLEM when the number of vertices of the cluster
graph is fixed.

2 Definitions and preliminaries

All graphs in this paper are finite, simple and loopless.&et (V, E) be a graph. An edge betweerand
v will be denoted'u, v). For a vertex € V, let Ng(v) denote the set of vertices (& that are adjacent to,
i.e., the neighbors af, and the degree afis d¢(v) = [Ng(v)|. A leafis a vertexv such thatleg . (v) = 1.
For S C V(G@), the neighborhoodof S is Ng(S) = {v € V : Ju € S,(u,v) € E}. In particular,
NZ(v) = Ng(Ng(v)). Vertexu is anested neighboof vertexv if (u,v) ¢ E andNg(u) C Ng(v).
They aretwinsif Ng(u) = N¢(v). Thecontracted graph o from S, denoted=(S), is the simple graph
G(S) = (V',E") whereV’' = V' \ SU{vg} and(u,v) € E' if u,v ¢ SU{vs} and(u,v) € E orif
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u=vwvg,v ¢ SU{vs} and3s € Swith (s,v) € E. Throughoutthis paper, we use the following notation for
a edge weighted graplt:, w): for £ C E(G), w(E') = ) .5 w(e) and forv € V(G) andU C V(G),

w(v, U) = ZuEU w(v, u)
Now, we indicate some classes of graphs used in this paper:

Definition 2. Consider a grapl¥ = (V, E) such thatV| = k.

1. G is amatching graphdenotedv Ko, if k£ = 2w anddeg(v) = 1 Vv € V.

2. G is apath graph denotedP;, if its edges form an induced path érvertices.

3. G is acycle graphdenoted’}, if its edges constitute an induced cycle/owertices.

4. G = Ky,,...q, = (V, E) is acompleter-partite graphif there exists a partitiod, . .., L, of V with
d; = |L;|, and)_;_, d; = k such that for every # j € {1,...,r}, u,v € L; = (u,v) ¢ E and
u € Lj,v e L; = (u,v) € E. The setd; are thecolor classe®f G. A bicliqueis a complete bipartite
graph.

5. G = (S,K; E) is asplit graphif V(G) = SU K whereK N S = {, S is a stable set anl’ is a clique
of G of maximum size. It is calletestricted split graphf dege(v) < |V(G)| — 1 for everyv € K. For
instance Py = (v1, v2,v3,v4) is a restricted split graph withkh = {vs, v3} andS = {vy, v4}.

Let us start by giving some definitions:

Definition 3. Let G, be a cluster graph with/(G.)| = k. TheMULTIWAY G.-CUT PROBLEMis theG..-
CUT PROBLEMWwhere given/ = (G,w), S C V(G.) and|S| vertices{vi,...,v g/} € V with S| < &,
we want to find an optimals.-cut V1, ...,V onI such thatw; € V; fori € S. Thed-SIZE RESTRICTED
G.-CUT PROBLEMIs the G.-cut problem where an integer vectat, ..., dy) is given with the instance.
The goal is to find an optima¥.-cut(V4,. .., Vi) onI wheren > Zle d; and such thaf;| > d;. Finally,
theRESTRICTED(G .-CUT PROBLEMIS thed-SI1ZE RESTRICTEDG.-CUT PROBLEMwWhenn = Zle d;. In
other words|V;| = d, foreveryi =1,... k.

Note that if the cluster grap&y. is a complete-partite for somer (in particular, a complete graph),
then themuLTIWAY G.-CuT PROBLEMWith |S| = 1 is equivalent to th&7.-cuT PROBLEM and then is
polynomial if £ is fixed.

Theorem 1. The complexity of theuLTIWAY Kj-CUT PROBLEMWhenk > 2 is fixed is polynomial when
|S| = 2 andNP-hard when|S| > 2.

Proof. We divide the proof to the following sub cases.

1. |S| =k.
(@) |S| = 2. The problem is equivalent to the minimui ¢) cut problem. Thus, the problem is poly-
nomial.
(b) |S| > 3. The problem is equivalent to the minimum Multiwaycut problem with|.S| > 3. Hence,
the problem isNP-hard.
2. wherek > |S|. Denotel = k — |S| > 0
(@) |S| > 2. LetK,, = (V,E),S C V,|S| > 2 be an instance of the minimum Multiwg)|-cut
problem. Consider an instance of theLTIwAY Kj-cuT PROBLEMdescribed as follow:
-5 =28.
- Bnyl = (VI7E/)'
-V =vVu{zy,...,x}
— E' = EU E; U E5 where



4 Itamar Elem, Refael Hassin, Jérdbme Monnot

- By ={(z4,v):i=1,...,l,v e V}andw(e) = 0fore € F.

- By, = {(],‘1,],‘)) 1< <j < l} andw(e) =0forec FEs.
Solving theMULTIWAY G.-CUT PROBLEMWhereG. = K}, for K,,., S’ optimally we must assign
eachz;,i € 1,...,1to a single cluster of(;, so that the vertices df must arrange in an optimal
minimum multiway cut on the rest of thé&/| clusters ofK;,, and the result follow.

(b) |S] =2,S = {s,t}. We use the same construction as in [6] in a small modificaiabhwe enumer-

ate over all the coreS such thats € S, and terminald’ such that € ¢ instead of enumerating alll
the coresS and terminalg” as done at [6]. The rest of the proof is exactly like in [6].

Lemma 1. Assume that vertek is a nested neighbor of vertéin the cluster graphG.. In any feasible
G.-cut(Vq,..., Vi) of I = (G,w), one can assume thaty| = 1.

Proof. Let (V4,..., V%) be aG.-cut(V4,..., Vi) of I. Assume thatl;| > 1 and letz € V5. Consider the
Ge-cut(V{,...,V))whereV} = V;if i #1,2,V/ = VU (Va \{z}), V5 = {z}. Thevalue of V{,..., V)
is not larger than the value ¢¥1, ..., V}) becausev is non-negative(l, 2) ¢ E. andNg, (1) C Ng, (2).

Using Lemma 1, we deduce the following result for the leaves:

Corollary 1. Assume that vertekis a leaf ofG. where|V (G.)| = k. In any feasibl&Z.-cut (Vi, ..., Vi)
of I = (G,w), one can assume that;| = 1 forall i € N& (1) \ {1}.

Proof. If 1is a leaf ofG., then for everyi € NZ (1) \ {1}, vertexl is a nested neighbor of vertésn G..

3 Complexity results of the minimum G .-cut problem

In this section we show that the complexity@f-cut problem depends on the structure of the cluster graph
G.. We will use several reductions from the Biclique VertextRian problem.

Definition 4. BICLIQUE VERTEX-PARTITION:

Instance: A grapldz and positive integek.

Question: Doeg7 have a biclique vertex patrtition of size at mastonsisting of mutually vertex-disjoint
bicligues? (where the bicliques are (not necessarily xdartduced) subgraphs @f).

For every fixedk > 3, Biclique vertex-partition iNP-complete, and remairi$P-complete for bipartite
graphs, see [5]. The cage= 2 has been open since a long time, but very recently, Biclicgreex-partition
with £ = 2 has been proveNP-complete, [17]. Because the case= 1 is polynomial, the casg = 2 is
equivalent to Biclique vertex-partition of size exactly 2.

The K>-CUT PROBLEMIS polynomial because it is exactly the minimum cut probl&urprisingly, by
replacingK, by 2 K5 (two disjoint edges), the problem becomes much harder.

Theorem 2. The2K,-cuT PROBLEMis NP-hard.

Proof. We propose a polynomial reduction from biclique vertextipian. LetG = (V, E) with |V| = n and
k = 2 be an instance of biclique vertex-partition. Consider thmplete graph{G, w) defined as follows:
w(e) = 0if e € E andw(e) = 1 otherwise.

We claim that there exists 2»>-cut of G with value 0 iff G admits a biclique vertex-partition of size
exactly 2. LetG; = (A;, B;; E;) with i = 1,2 be a biclique vertex-partition aff. Clearly, V5,1 = A;,
Va; = B; fori = 1,2 is aG.-cut of G with value 0. Conversely, lefV;);<4 be a a2K,-cut of G with
value 0. Thus, for every < 2, G, = (Va;_1, Va;; E;) is a biclique ofG and then(G1, G2) is a biclique
vertex-partition ofG of size 2.
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Corollary 2. The2K,-cuT PROBLEMIs not approximable.

Proof. In proof of Theorem 2, we have shown that for th,-cuT PROBLEM, it is NP-complete to distin-
guish betweenpt < 0 andopt > 0, whereopt is the value of an optimal.-cut. So, the result follows.

Now, we propose a way to extend tB&, case to larger cluster graphs and thus, preserving the hard
cases via the notion df -extension:

Definition 5. H-EXTENSION:

Let H andG be two graphs an® C V(H). G’ = G + H is anH-extension of7 with terminalT if (i) G’
is connected (all edges betwe@randH) are incident inH to some vertices of (H)\ T') and(i:) for every
induced subgrapti, of G’ isomorphic toH (given by the bijectiory) such thatlege, (f(v)) = degu (v)
forv e T, we getG C G’ — Go.

Roughly speaking, aff-extensionG’ of G with terminalT is such thatlegy (v) = dege (v) for any
v € T and for any induced subgragh, isomorphic toH (given by f) with the same restriction (i.e.,
dega,(v) = degg (v) foranyv € f(T)), G is a subgraph ofs’ — Gy

Forinstance, Figure 1 gives df-extension oR K, with P; = (u1,ug, us) and terminall’ = {ug, us}.
Actually, the only induced subgraphs 6f isomorphic toP; satisfying the condition of 5 aré&’;, =
(v1,v2,u1), Go = (v3,v4,u1), ANAGy = (u1,us2,us). Finally, for everyi = 1,2, 3, we have2K, =
G’ — G,;. The treeG’ will be called the 3-star of length 2 and denoted$3y(more generally, the-star of
length 2 is given bys”> = {(r,v}), (v}, v5) : i =1,...,p}).

1O—O0 v2 10—0O~

v130—0 uns v130—0O~

Fig. 1. Example ofPs-extension wheré& = 2K, H = P3 = (u1,u2,u3), G’ = S3 andT = {u2,u3}.

Figures 2 and 3 give anothét;-extension of2Ks or 3K, with Py = (uq,us,us, us) and terminal
T = {UQ, u;g}.

In Figure 3, for thel-graph, the only induced®, satisfying the condition of 5 at€y = (u1, ua, us, u4)
andG; = (u1,v1,v2,uq) and we geW-graph-G; = 3K, for i = 0,1 while for the k-graph, the only
inducedP; satisfying the hypothesis a€&y = (u1, ug, us, u4), G1 = (u1,v1, v2, uq), Go = (ve, v1, U1, U2)
andGs = (us,ug,u1,v1). Moreover, we have-graph-G; = 3K, fori = 0,1 and3K, C x-graph-G;
fori=2,3.

Now, we present some polynomial reductions preservinga@gipration from theG.-CUT PROBLEMtO
itself depending on the structure of cluster gr&ph

Theorem 3. There exists a polynomial reduction preserving approxiaratrom theG.-cuT PROBLEMtO
theG,-cuTt PROBLEMinN the following cases:
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Fig. 2. Example ofPs-extension wheré& = 2K>, H = Py, = (u1, u2, us, us) andT = {uz, us}.

Vs Ve

Fig. 3. Another example of;-extension wher& = 3K2, H = Py = (u1, u2, us, us) andT = {uz, us}. On the top,
thew-graph (left and top) and the-graph (right and top). On the bottom, thegraph minusas = (v2, v1,u1, u2). We
get3Ks C k-graph-Ga.
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(¢) Assume that the smallest connected component of the apahG. hass > 2 verticesG., = G.+ H
whereH is a connected graph of at least 2 vertices and at magrtices, disconnected fro6i. and if
|V (H)| = s, thenH is contained in every connected componerttpfvith exactlys vertices.

(i) G = G.+ PYis an P;-extension of7, withi > 3, P, = (k+ 1,...,k + i) and terminalT’ =
{k+1,...,k+1i}.

(iii) G = G, + P is an P;-extension of. with i > 4, minimum degree 20, = (k +1,...,k +i) and
terminal” = {k+2,...,k+i—1}.

Proof. For (i). Let G. and H be two graphs satisfying the condition at 5 and consider theter graph
G, =G.+ HwhereV(H) ={k+1,...,k+p},2 < p <s. Let(K,,w) be an instance of th€.-cut
problem and consider the instan@&,,+,, w'), V(K,+p) \ V(K,,) = {u1,...,u,} of theG.,-cut problem
defined as follows: if,, v € V(K,), thenw’ (u, v) = w(u,v). Ifu € V(K,,) andv ¢ V(K,,), w' (u,v) = 0o

2 Finally, w’(u;, uj) = 0if (i,5) € E(H) andw’(u;,u;) = oo otherwise.

Clearly, anyG.-cut of (K ,, w) can be converted into@’-cut of (K, ,,, w’) with same value by setting
Viti = {u;}. Conversely, consider an/,.-cut (V1, . .., Vi4p) Of (K,1p, w'). From the previous part, we
can assume that this.-cut has a finite value. Assumg < V;,. We getV;, "V (K,,) = () because each con-
nected component @/, has a size at least two afgl, C {u1,...,u,} forevery(ii,iz) € E(G,). Hence,
we deducé/; C {uy,...,up}if V; N {ug,...,up,} # 0. Now, we must geV;, = {u;}forj=1,....p
because each connected compor@&nhas a size at least 2 and at mpsHence, the subgraph induced
by {i1,...,i,} is a connected component®f. If p < s or G is isomorphic taH, then clearly, we must get
G = H and the restriction of thi&-cut to (K,,, w') is aG.-cut of (K, w) with same value. Now, assume
p = sandG # H. Since, by assumptiofi(H) C E(K,), we getE(K,,) \ E(H) # () and then the value
of the G.-cut restricted taH has an infinite value, leading to contradiction. Her@es= H and the result
follows.

For (i7). We first prove the case= 3. Let (K,,, w) be an instance of th€.-cut problem wheré&z, =
(V., E.)is agraphwithV,| = k > 1 vertices, and leP? = (k+1,k+2,k+3). Now, letG’, = (V! E!) =
G+ P° be anyP;-extension of,. with terminalT = {k + 2, k + 3} (which means that the edges between
the P andG. are only connected to endpoiht+ 1). Consider the following instancgs’, 3, w’) of the
G!-cut problemV (K,,4+3) \ V(K,) = {u1,uz2,us} andw’(u,v) = w(u,v) foru,v € V, w'(u1,v) =0,

w' (ug,v) = w' (us,v) = +oo forv € V, andw’ (uy, uz) = w'(ug, uz) = 0, andw’(uy, uz) = +oo.

Any G.-cut of (K,,, w) can be converted into@.-cut of (K, 35, w’) with same value by setting,; =
{u;} for i = 1,2, 3. Conversely, assume thélts, ..., Vi+3) is aG.-cut of (K13, w’) with finite value.
Assume thati; € V;, and (i, i2) € E. (because&s’, is a connected graph with at least 4 vertices). We get
Vi, NV(K,,) =0, Vi, N{u1,uz} = 0 andV;, C {u1,us} because by construction (us,v) = w'(uz,v) =
+oo forv € V andw’ (uz, us) = +00. Hence, we deduck,, = {us} sinceV;, NV (K,,) = 0.

If Vi, = {u1,us}, then vertexi; must be a leaf of7/, and vertexi, has a neighboi; # iz in G.,
(becausér’, is connected with at least 4 vertices). B4t C V(K,,) andw’ (us,v) = +oc forv € V(K,),
contradiction. Now, since/’(us,v) = w'(us, u1) = +oo forv € V(K,) andG,, is connected with at least
4 vertices we geV;, = {us} and vertexi; is a leaf of G,. Becauses is a leaf of G/,, then vertex» must
get exactly one neighbar # i3 andV;, = {u1}. So,P = (i3, i2,41) is an induced’; of G/, with terminal
{i2,13}. Since,G., is an P3-extension ofG., then the value of thé&' -cut is minimum ifV;,, ; = {u;} for
i=1,2,3 (becaus&’, — P’ = G.. Actually, if we flip the sets corresponding foby the sets correspond-
ing to PY, the value of the5’.-cut does not increase). Hence, the restriction of @fiscut to (K ,,, w') is a

2 In the rest of the paper, we seto in order to simplify, but the sufficient value will be for imstce(n + 1)wWmax
Wherewmax = maxeep(e) w(e).
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G.-cut of (K,,, w) with same value.

For the general case, I&° = (k + 1,...,k + i) with i > 3. We replace K, 3,w’) by (K1, w')
where:

= V(Knti) \ V(K,) = {u1,...,u;} andw’ (u, v) = w(u,v).
— Foru,v € V(K,), w'(u1,v) = 0, w'(uj,v) = +ooforv e Vandj =2,... 1.
— Finally, w'(u;,uj11) = 0,forj =1,...,7 — 1 andw’(u;, u;) = +oc otherwise.

The rest of the proof is completely similar to the previous.on

For (ii7). We first prove the case= 4. Let (K,,, w) be an instance of th€'.-cut problem where the
cluster graptG. = (V,, E.) hask > 1 vertices and leP® = (k+1,...,k +4). Now, letG., = (V/, E’) =
G. + P° be anyP,-extension ofG. with terminalT = {k + 2,k + 3} such thatG’, is without a leaf.
Consider the following instanc@,,+4, w’) of the G.-cut problem:V (K, +4) \ V(K,) = {u1,...,u4},
andw’(u, v) = w(u,v) foru,v € V(K,). Moreoverw'(u;,v) = 0 for j = 1,4, andw’ (u;,v) = +oo for
J =2,3.Finally,w'(u;,u;+1) =0, forj =1,...,3, andw’ (u;, uj) = +o0 otherwise.

Any G.-cut of (K,,w) can be converted into &'.-cut of (K, .4, w’) with same value by setting
Vir: = {u;} fori = 1,...,4. Conversely, assume thélt, ..., Vi1+4) is a G,-cut of (K4, w’) with
finite value. Assume thats € V;, and(is, i4), (is,i2) € E (becaus&s, has minimum degree 2). By con-
struction, we geV;, NV = () because otherwisg;, NV = () for j = 1,3 andV;, N {ug,uz} # 0 for
everyj = 2,4 (thus, thisG'.-cut will get an infinite value because either ¢ V;, oruy € V;, for some
J =2,4). Hence, we deduck;; C {u4,uz} for j = 2,4 and then we can assurg, = {u;} for j = 2, 4.
Moreover,is must have a degree 2 @/, and(is,i4) ¢ E(G.). Now, becauseé; has a degree has at least
2in G., there is an edgéi1,i2) € E(G.) with iy ¢ {is,i4}. Thus,V;; = {u1}, and on the one hangd
must have a degrezin G7, and on the other hand;,i4) ¢ E(G.). HenceP = (i1, ...,44) is an induced
P, of G/, with terminal{iz, i3 }. Finally, sinceG,, is a Py-extension of7. with terminal{k + 2, k + 3}, we
can assume thaf,;; = {u;} fori = 1,...,4. In conclusion, the restriction of this’ -cut to (K,,, w') is a
G.-cut of (K,,, w) with same value.

For the general case, 16 = (k + 1,...,k + 1) with i > 4. We replace the instandés,, 4, w’) by
(K14, w'") where:

V(Kn+l) \ V(Kn) = {ul, NN ,ui}.

w' (u,v) = w(u,v) foru,v € V(K,).

w'(uj,v) =0forj=1,1.

w'(uj,v) = +ooforve V(K,)andj =2,...,i— 1.

Finally, w'(uj,uj1) = 0,forj =1,...,i — 1 andw’(u;, u; ) = +oo otherwise.

The rest of the proof is completely similar to the previous.on

We saw at all the above constructions that the nedded vertices placed at the néadded clusters in
an optimal solution and the original vertices must placeahmptimal way at the original clusters. Since the
construction can perform in polynomial time the result akofv.

Corollary 3. TheG.-cuT PROBLEMIs NP-hard and not approximable in the following cases:
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(1) G.= pKs withp > 2.
(ii) G = S2withp > 3.
(1it) G. = Ww-graph orG. = k-graph.

Proof. For (i). By applying part(<) of Theorem 3 withG. = 2K, andH = K5, we deduce from Theorem
2 that the3 K»-cut problem isNP-hard and not approximable. By induction pr> 2, with G, = pK5 and
H = K5 we deduce the claimed result.

For (ii). The(p+ 1)-star of length 252, , (recall thatS? is defined by{ (r, v}), (v}, v5) : i = 1,...,p})
is a P3-extension op K, and P° = (2p + 1,2p + 2,2p + 3) with terminalT = {2p + 2,2p + 3}. Hence,
using part(zi) of Theorem 3 and paft) of Corollary 3, we get that thSﬁH—cut problem isNP-hard and
not approximable for any > 2.

For (iii). Thew-graph and the:-graph areP;-extensions o8K» and P° = (7,8, 9, 10) with terminal
T = {8,9} and are without leaf. Hence, using péiti) of Theorem 3 and Theorem 2, the result follows.

In part (i) of Theorem3, we have proved that the complexity oféhecuT PROBLEMdoes not depend
on the connectivity of the cluster gragh. as long as, the size of each connected component is a atleast
In Section 4, we will see that th&.-cuT PROBLEMis polynomial time solvable if the cluster graph has
a fixed number of vertices and at least one isolated vertexid® we will assume thaty.. is connected.

In Corollary 3, all of the different connected grapfis such that th&7.-cuT PROBLEMis NP-hard have a
maximum degree at lea3tHere, we prove the prove that this result remains true fembLTIWAY G.-CUT
PROBLEMON a connected grapldg. of maximum degre@.

Theorem 4. TheMULTIWAY P,-CUT PROBLEMis NP-hard and not approximable in the following cases:

(i) k=5ork > 8, even when only one vertex is specified (j&.= 1).
(#9) k = 6, even when only two vertices are specified (j€.= 2).

Proof. We give a reduction preserving approximation from #€,-cut PROBLEM provedNP-hard and
not approximable in Theorem 2 and Corollary 2. let (K, w) be an instance of theK»-cut problem.

For (i) andk = 5, consider the instancE = (K41, w') whereV (K,,+1) \ V(K,) = {z}, w'(u,v) =
w(u,v) if u,v # z, andw’(u,z) = 0 foru € V(K,,). LetS = {3} with z € V5. Assume thaG. = P; =
(1,2,3,4,5).

Let (V4, Va2, V3, Vy) be any2Ks-cut of 1. (V{, V3, V5, V], VZ) with V] = V1, Vj = V,, V) = Vs,
VZ = VyandVy = {z} is aPs-cut of I’ with same value. Conversely, 16t7, V5, V4, V], V!) be anyPs-cut
of I” such that: € V3. Using Corollary 1 with leaf and N3, (1) \ {1} = {3}, we know that we can assume
thatVy = {z}. Hence(V1, V5, V3, Vy) whereVy = V{, Vo = V3, V5 = V],V = V] is a2K,-cut of T with
the same value.

For k > 8, using theP;-extension ofPs for ¢ > 3 given in part2 of Theorem 3 and the result given
above for theMuLTIWAY Ps-CUT PROBLEM, the result follows.

For (i) andk = 6, consider the instanc€ = (K, 42,w’) whereV (K, 2) \ V(K,) = {z,y},
w' (u,v) = wlu,v) if u,v # z, u,v # yandw (v, z) = w'(u,y) = 0foru € V, LetS = {3,4} with
xz € V3 andy € V,. Assume that. = Ps = (1,2,3,4,5,6). Since, verticeg and6 are leaves of’; and
N2, ({1,6})\ {1,6} = {3,4}, the same proof as previously gives the expected result.
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In Section 4, we will see that thB,-cuT PROBLEMIs polynomial ifk < 4 (note that these results also
holds for theMULTIWAY Pj,-CUT PROBLEM).

In conclusion of this section, we have obtained many caseseitheC),-cuT PROBLEMthat the problem
is NP-hard. In particular, whei .. is a tree that is quite surprising. In future research, wedesbme open
problems: what is the complexity of th&,-cuT PROBLEM or the MULTIWAY Cj-CUT PROBLEM where
k > 5? Nevertheless, these restrictions Blife-hard when the number of vertices is unbounded because the
C,-CUT PROBLEMON (K ,,, w) (resp.,P,-cut) is clearly equivalent to solve the traveling salesmparblem
on (K,,w), (resp., Hamiltonian path problem). Same question for tleel,-cuT PROBLEMWith & > 5
since as we will see in Section 4, the-cuT PROBLEMfor & < 4 and theP,-cuT PROBLEMfor k < 4 are
polynomial time solvable.

4 Polynomially solvable cases

In this section, we will see some cluster graphs whergihecuT PROBLEMIS polynomial. It is the cases
when the cluster grapty. contains twins (stable set with same neighborhood), twéedeseighbors (a
stable set of two vertices with included neighborhoodyéseor isolated vertices (see Section 2 for formal
definitions).

4.1 Completer-partite graphs

Here, we mainly show that if the cluster graph is a complete--partite graphi(y, ... 4, (see Definition
2) wherek = Y"._, d, is fixed, then the7.-cuT PROBLEM can be solved in polynomial time, using an
extension of the algorithm of [6]. Some simple complefgartite graphs are the following: the stable graph
K, (ie., E = () is completel -partite, and the complete graph is completpartite. We also look at the case
whereG,. is a restricted split graphs.

Let us begin by some properties of completpartite. As we will see, these graphs are recognizable
within polynomial-time. The grapli{s = K> + K is the graphG = (V, E) with |[V| = 3 and|E| = 1
depicted in Figure 4.1.

O————

®

Fig.4.An Hs = K> + K graph

Lemma 2. G = (V, E) is complete--partite if and only ifG is Hs-free.

Proof. Suppose thatr is completer-partite. It is clear from the definition that., v, w € V we have three
cases, none of which defines & graph:

1. u, v, w reside at different color classes, so the graph induceddmytl a 3-clique.
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2. u, v reside at the same color class, antielongs to a different color class, so the graph inducedémth
contains the edgds:, w), (v, w).
3. u, v, w reside at same color class so the graph induced by them nemtaiedge.

The opposite direction is done by induction on= |V (G)|. Assume that any grap@ with less than
n vertices which does not contail; as an induced subgraph is completpartite for some- > 0, and
consider a grapliy = (V, E) with n vertices which does not contai; as an induced subgraph. et V.
G' = G — v is alsoHs-free, and then by inductive hypothesis is a compilepartite graph. We study two
cases.

1. dege(v) = n — 1. We addv in a new color clasg.,.1. Obviously,G is completer + 1)-partite.

2. degg(v) < n—1.So, thereis, € L; such tha{u,v) ¢ E. We addv in the color clasd;. Let us prove
thatG is completer-partite. First,L; U {v} is a stable set becaugg is a stable set and is H;-free.
SecondyYj # i, Vu € Lj, (u,v) € E. OtherwiseJu € L; with (u,v) ¢ E. Letw € L;. The graph
induced by{u, v, w} is isomorphic toH3, a contradiction.

Using Lemma 2, it is clear that we can check@{|V (G)|?) whether a graph is completepartite.
Actually, a careful analysis of Lemma 2 give$)@| E(G)|) time algorithm to recognizable such graphs.

Theorem 5. TheKy, ... 4,-CUT PROBLEMcan be solved in polynomial timekif= Zle d; is fixed and is
NP-hard, if there existgl; andd; unbounded.

Proof. Assumek = Z;’:l d; fixed andG. = Ky, .. 4,. SinceG, is a complete--partite graph, any two
verticesu,v € L; of the same layer are twins where we recall that a twin is aletsét of two vertices
with same neighborhood. Hence, thg, , .. 4,-cut problem is equivalent to solve tlésize restricteds, -

cut problem onl = (G,w) whered, = d;, fori = 1,...,r which is itself equivalent to computing a
minimumgr-cut (V1, ..., V,.) of G with the constrain$V;| > d;. Finally, this later problem can be computed
in polynomial time using the same lines of the proof that éhgisen in [6].

Now, we first prove that the case of complete bipartite graptH-complete ifk = d; +d» is unbounded.
The bisection graph problem consists of finding a cut of minimsize of a graph such that the two cut sets
have the same size. Assumeeven and considel; = d, = n/2. The K4, 4,-cut problem on(G, w) is
equivalent to solve the bisection graph problem®e- (V, E) (by settingw(e) = 1if e € E andw(e) =0
if e ¢ E) which is known to beNP-hard [7]. Now, we reduce th&, 4, case to the,, 4, 4, Case. An
inductive proof on allows us to conclude the proof.

Given an instancd = (K,,w) of the Ky, 4,-cut problem, consider the following instanéé =
(Kptds,w') of the Ky, 4,.4,-Cut problem:V (K, 1+4,) \ V(K,) = {u1,...,uq,} and ifu,v € V(K,,),
w'(u,v) = w(u,v). If u € V(K,)andv ¢ V(K,), w'(u,v) = 0. Finally, w’ (u;, u;) = oo.

Consider a solution of th& 4, 4, 4,-cut problem with color classds,, Lo, L3. By construction{us, . . ., ug, }
belongs to the same color class, daybecausé:. is complete3-partite andw’ (u;, u;) = co. We study two
cases:

e |L;| # ds. Wlog., we can assume théj sets ofL; are such thal; = {u;} withi =1,...,ds because
G, is 3-partite. Let|L;| = ds. We flip the sets of; differenttoV; in L; (as new sets). We obtain a new
solution of theK 4, 4, 4,-Ccut problem.

e |L;| = ds. Wlog., we can assume théti;} C V; fori = 1,...,ds, because&s, is 3-partite. We move
the vertices of; \ {u,...,uq,} to the color clasg.; with j # i. Again, we obtain a new solution of
the Ky, 4, 4,-Cut problem with< value.
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Now, let S be the vertices which have been flipped. For each of the twescdlse new solution loses
w(S, C;) and winsw(S, {u1, ..., uq, }) = 0. Hence, the new solution has a better cost and then we can
assume the restriction @f,, is a K4, 4,-cut with same value.

For instancef 4, — K the graph depicted in Figure 5 is a complétpartite K» ; ; and then, thé{, — K»-cut
problem is solvable in polynomial time.

F|g5A K4 — Ko.

If only d; depends on the instance ani fixed, then the complexity of th& 4, 4, -cut problem is an
open problem.

4.2 Restricted split graphs

Recall that a restricted split graph is a split graph wheeedbgree of each vertex of the clique is at most
n — 2 (see Definition 2).

Theorem 6. If G. = (S, K.; E.) is restricted split graph wherg< .| is upper bounded by a constant, then
theG.-cuT PROBLEMcan be solved in polynomial time.

Proof. Let G. = (V,, E,) be a restricted split graph dn> 3 vertices and leOPT = (V*,..., V") be an
optimal G.-cut of I = (G, w). Then, for everyi € K, there exists’ € S such that’ is nested neighbor
of vertexi in G, because7, is a restricted split graph. Using Lemma 1, we know that| = 1 for all
i € K.. Hence, we can guess th&,| vertices ofV;* = {v}} fori € K.. After, consider the following
complete bipartite grapBP = (S.,V \ {v} : i € K.}; E(BP)), edge weighted by whered(i,v) =
ZjeNGF(i) w(v,v})), and find ab-matching)M saturatingS. of minimum weightd (the algorithm is the
same as finding &matching of maximum weight' whered' (¢) = diax—d(€), dmax = max.c g(pp) d(e))
with b= (i) = 1 andb* (i) = V| fori € Scandb™(v) = b (v) = 1forv € V \ {v} : i € K.}. Recall
that ab-matching of a grapld: = (V, E) is a subsef\f such that ifG’ = (V, M), thenVv € V, b~ (v) <
deggr (v) < bT(v). A b-matching of maximum weight can be done in polynomial-ti{gV (G)[?), see [21]
section 21 page 337. Since affy-cut corresponds tolamatching) saturatingS. with valued(M) (when
vs fori € K. have been guessed), the previous algorithm finds an optohalan in timeO(n!<1+3).

In particular, theP,-cut problem onG, w) can be solved i (n°) time. However, for theP;-cut prob-
lem on (G, w), we can improve the complexity 10(n?). Instead of applying &-matching algorithm, we
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apply the following greedy algorithm: each vertexf V' \ {v;,v;} (hereK, = {2,3} andS. = {1,4})
is assigned to th&}* with 4 = 1,4 minimizing its contribution (i.e.; = arg min,es, ZjeNGc(s) w(v,v})).
Careful attention must be taken to avoid to §g§t = 0 or V;* = (. For instance, ifi;* = {}, then we
find v* = argmin{d(1,v) — d(4,v) : v € V \ {vi,v3}} and we addv* to V;*. The time complexity
of this algorithm isO(n?). Also note that in the same spirit of the proof of Theorem 6rémult holds if
SUNE (S) = V(G.) whereS is the leaves of;...

Lemma 3. If SUNZ (S) = V(G.), whereS is leaves of7., then theGi.-cuT PROBLEMCcan be solved in
polynomial time.

4.3 WhenG, contains isolated vertices

Definition 6. G is anHy graphif it contains at least one isolated vertexi.e.,deg.(v) = 0. Let S(G) =
{v eV :degqg(v) =0}.

Lemma 4. LetG. be anH, graph. TheG.-cuT PROBLEMcan be solved in polynomial time [ (G.) \
S(G,)| is fixed.

Proof. Consider the unbounded case|Bf(G.) \ S(G.)|. G. = C,, + K1 is an Hy graph and th&.-cut
problemis clearly equivalent to solve the minimum travgkalesman problem. Now, I&t. be anH, graph
suchthatV(G.) \ S(G.)| = k — 1 is fixed and consider an instanfe= (G, w) of theG.-cut problem.
Denote the clusters corresponding to verticeS@¥. ) asVy, . .., V, and thek—1 clusters corresponding
to V(G.)\ S(G¢) by Vi,. .., Vi_1. Enumerate the ordered subséts” V, |H| = k — 1. Insert the vertices
from H into the clusterd/, . .., Vi1 so that each cluster contains exactly one vertex accorditigetorder,
and insert arbitrarily the vertices &f\ H into the remaining clusterg, . .., V,,. Let Sy be this solution and
S be the minimum one. Sinde— 1 is fixed the complexity i) ((kfl) (k= 1)k — 1)2) = O(n*1).
The obtained solution is optimal since any assignment ofiéngces ofl into the clusterd’(G.) \ S(G.)
which results with one of these clusters having more thanventex, can be improved by moving all these
vertices except one from this cluster into any one clusteragW;, . . ., V,. This new solution is an improved

solution to the original, since the subset of edges in the s@wtion is strictly contained in the original
solution.

Definition 7. A completer — H, graphis a graphG = (V, E) whereV(G) = U]_, L; such that(¢) for
everyi € {1,...,r} the graphinduced b¥;; is anH, graph, andi:) for everyi, j € {1,...,r} withi # j,
(u,v) € E foreveryu € L;, v € Ljt.

In particular a completé — H,, graph is aH, graph andi’s + K3 (see Figure 6) is a comple?e— H,
graph (wherel; = {1} andL, = {2, 3,4}).
The following result extends Lemma 4 to complete H, graphs.

Theorem 7. Suppose thatr.. is a complet@ — H, cluster graph andV,| = k is constant. Then th@.-cuT
PROBLEM can be solved in polynomial time.

Proof. Denotel, = V., UV,, such thatthe two induced grap@is(V., ), G.(V.,) areHy-graphs|V,, | = k1,
and|V,,| = ko, wherek; + k2 = k. Let] = (G, w) be an instance and assume that optimal solution assigns
the verticed/}* C V to the clusters of7.(V,, ) andVy* C V (with V;*U V5" = V) to the clusters o (V,, ).

3 + means thafs and K; share a common vertex.
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Flg 6.A KgiKQ.

The optimal solution ofV;* must assigrk; — 1 vertices tok; — 1 clusters and the rest of its vertices to the
cluster represented by the isolated vertices. Similarhwi*. So again we iterate over all ordered subsets
K1, Ky C V suchthal K| = k1, |K2| = k2, and compute a min-cut ol which separate®&’; from K.
Denote the cost of the assignment/of vertices to the clusterk,, according to the order d§/;. Denote
the cost of the assignment &f; vertices to the clusterk., according to the order dd/;. Denote the cost
of min-cut onG which separate(; from Ky asWjs, and letiW = Wy + Wy + W5. Computek, Ko
minimizing W. The clustering derived from them is the optimal solutiom dras a polynomial runtime
complexity in|V].

We now list several types of the cluster gra@h for which the previous Theorems imply a polynomial
algorithm.

(1.) If G, has at most four vertices, then the-cuT PROBLEMiIs polynomial iff G. # 2Ks.
(2) v. =H{o,,...,k}, E. = {(0,1),...,(0,k)} U{(1,2),...,(k—2,k—1)}. G. is a complete — Hy
graph wherel; = {0}, Ly = {1, ..., k} depicted in Figure 7 .

For (1.), the only cases to study are the graphs which contdia as multiway subgraph, because the
remaining cases are th&)-graphs2 K, or the connected graphs on at masertices (and then isomorphic
to K1, K3, K3 or P; = K ). Thus, the graphs which containfa are K4, Cy = K22, K3 £ K5 (See
Figure 6),K4 — Ko = K> 11 (see Figure 5), but all are polynomial as proved previously.

Itis easy to see that completgartite graphs generalize tlkecut problem, becaus®. is ak-clique and
we can look at each vertex as a different color class. It is ellsar that complete — H, graphs generalize
completer-partite graphs, because each color class igggraph. We are still left with the open problem
whether wherG. is a complete — H, graph, the problem is polynomial &tP-hard forr > 2.

5 Approximation results

In this section, we give some approximation results fordhecut PROBLEMWhen the weights satisfy the
triangle inequality or are positive.

The version of thé-cut problem on( K,,, w) with the additional requirement that clustérmust have a
size ofd; € N, wherer:1 d; = n, is studied in [18], and it is shown there that under the tlaimequality



The minimumG.. cut problem 15

®

Fig. 7. A complete 2 HO Example.

and fixedk it possible to obtain an approximation of at most three tithesoptimal value. We extend this
result to the cluster graphs in two steps: first, we demotesttee idea assuming thét. is a ring (ie., an
induced cycle”y, onk vertices). Second, we apply the same arguments to any cgrsgeh onk vertices.

We use an auxiliary problem, théN-ADJACENT-STAR PROBLEM as explained in the next lines. For a
givenG,. = (V., E.) and a given set of cente€s = {ci,...,c} C V with ¢; € V;, we wish to arrange
the vertices oft” \ C into |V.| = k clusters. After the arrangement we will géf;| = d; and we want
to minimizerzl(E{j‘(m €B.} 2avev;\{e;} W(ci,v)). Thus, we want to arrange the clusters so that the
arrangement yields the minimum sum of distances from thisofabe vertices to the given centers of the
stars according to the neighborhood relations betweenténg. s

5.1 The metric restricted cyclick-cut problem

Let K,, = (V, E) be a complete undirected graph wjih| = n. The edges € E have nonnegative weights
w(e) > 0 that satisfy the triangle inequality (i.&/z,y,z € V, w(z,y) < w(z,y) + w(y, z)). Given is also
a set of integers = {d;}*_, suchthay ", d; = n.

Definition 8. For anyk > 3, the METRIC RESTRICTED CYCLICk-CUT PROBLEM computes, given an
instancel = (G, w) satisfying the triangle inequality aridntegersd; with Zle d; = n, k disjoint subsets

of verticesV; C V with size|V;| = d; for ¢ < k, minimizing the total weight of edges whose two ends are
inthei andi + 1 setsfori =1,...,k, wherek+1=1.

Actually, the METRIC RESTRICTED CYCLICk-CUT PROBLEM is the METRIC RESTRICTEDC-CUT
PROBLEM as indicated in Definition 3. ThRIETRIC RESTRICTED CYCLIC3-CUT PROBLEM is NP-hard
because it is thg-cut problem with the additional requirement, prowd-hard in [18]. Here, we strengthen
this result by proving that it is the case even if the weiginésaather one or two.
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Theorem 8. For anyk > 3, theMETRIC RESTRICTED CYCLICk-CUT PROBLEMis NP-hard, evenifv(e) €

{1,2}.

Proof. Let k£ > 3. We propose several polynomial reductions depending opah@metek. These reduc-
tions are quite similar and are done from the bisection gmapblem in complete graphs.,, with weights

in {1, 2} which is know to beNP-hard. Recall that the bisection graph problem consistsnairig a mini-
mum cut of an unweighted graph such that the two cut sets hav&ime size. The bisection graph problem
is NP-hard [7] and it is easy to see that the metric bisection gm@pblem on complete graphs restricted
to weights 1 and 2 remair$P-hard. Let! = (K5, = (V, E),w) be a complete graph din vertices and
edges weighted by (e) € {1, 2}, instance of the metric bisection graph problem.

For k = 3. Consider the instancE = Ko, 1,w’) with dy = do = n andd; = 1 of the METRIC
METRIC RESTRICTED cYcCLIC3-cUT PROBLEMdescribed as follows? (Ka,+1) = V U {z;} and for any
u,v € Vw'(u,v) = wu,v), w (x1,v) = 1foreveryv € V.

We claim that there is a bisection &f,,, of valuew(V1, V2) at mostB iff there is a cyclic 3-cut (with
dy = ds = n andds = 1) of value at mosB3 + 2n.

Clearly, if (V1, V2) is a bisection ofKy,, of value at mostw(V;,V2) < B, then(Vy, V5, Vs = {z1})
is a cyclic 3-cut with valuav' (17, V, V3) < B + 2n. Conversely, le{V;, Va, V3) be a cyclic 3-cut with
value at most’(V;, V2, V3) < B + 2n and such thatV;| = V2] = n and|V;| = 3. Let us prove that
we can polynomially transform it into a cyclic 3-cgvy/, V4, V{) with w’(Vy, V2, V3) < w'(V{, V35, V4)
and such thaVy = {z1}. So, assume thdt; = {v} with v € V andx; € V. By setting(V{ =
Vi \ {xl} U {v}’VQ/ = VQ’VSI = {xl})’ we get:wl(vll’VQIvV:-S/) - wl(VhVQ’Vi’r) = 2n + w(’U,Vg) -
m+1+wl, V\{v})=n—-1-wl W\ {v}) <0.Hence(V'1,V3) is a bisection ofk5,, of value
w(V'1,Vy) =w' (V/, V5, V4) —2n < —w'(V1, V2, V3) — 2n < B.

For k = 4. We assume that is even; actually, it is easy to see that the bisection graphlem in com-
plete graphd(4,, with weights in{1, 2} remainsNP-hard. Letl = (K4, = (V, E), w) be a complete graph
on4n vertices and edges weighted ye) € {1, 2}, instance of this restriction. By setting = (K4, w)
andd; = n forevery; = 1,...,4, we can easily prove th&t/, ..., V) is a restricted cyclic 4-cut of value
w(V{,...,V]) < Biff (Vi =V/UV{, Vo =V, UV)])is abisection of values(V1, V2) < B.

Fork > 5. Consider the instancE = Kso,4 (k—5)18n, w') With dy = dy = n, d3 = dp = 6n and
dy = --+ = dip_1 = 18n of the METRIC RESTRICTED CYCLICk-CUT PROBLEM described as follows:
V(Ksont (k—5)18n) = V U {1, ..., T30n+(k—5)18, } @Nd foranyu,v € V' (u,v) = w(u,v), w'(z;,v) =
2 for everyi = 1,...,30n + (k — 5)18n andv € V, and finally,w’(z;,z;) = 1forl < i < j <
30n + (k — 5)18n.

We claim that there is a bisection &f,,, of valuew(V7, V5) at mostB iff there is a cyclick-cut (with
di =dy =n,d3s =dy =6nandd, = --- = dp_; = 18n) of value at mosB3 + 132n? + (k — 5)(18n)>.

Clearly, if (11, V3) is a bisection ofK,, of value at mostw(V1, Vo) < B, then(V4,..., Vi) where
VaU---UVs = {Z1,...,Z30n+(k—5)18n } IS @ cyclick-cut with valuew'(V1,...,Vy) < B + 132n2 +
(k — 5)(18n)2. Conversely, le{V1, ..., V;) be a cyclick-cut with value at mosty’(V3,..., Vi) < B +
132n% + (k — 5)(18n)? and such thal; | = |Va| = n, |V3| = |Vi| = 6nand|Vy| = --- = |Vk_1| = 18n.
Let us prove that we can polynomially transform it into a ayél-cut (V/, ..., V) with w’(V/,...,V}) <
w'(Vi,..., Vi) and such that® V! = {z1,..., 2300+ (k—5)18n }-
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We prove this claim in two steps using a 2-exchange procedhingt, we demonstrate that the result
holds forV, U --- U V4_; and then we prove it fol’s U V},. Concerning the first step, we distinguish two
casesk = 5 andk > 6.

k = 5. So, assume thate V;NV. Then, there exists; € V; with j € {1,2}. Consider the cyclic 5-cut
(Vi,...,V5) wherefrom(Vy, ..., Vs), we make a 2-exchange betwaeandz;; so,V} = (V;\ {z:})U{v},

Vi = (Va\{v}) U{z;} andV; = V,, for p # j, 4. Assume thatv is the neighbor (distinct a3 — j) of
jinG. (so,w = 5if j = 1andw = 3 if j = 2). The contribution ofv and z; in the cyclic 5-cut
(Vi,...,Vs) atleastw’ (v, V3 U V5) + w'(z;, V3—; U Vy) > (2 x 10n + 2n) + Tn = 29n (because on
the one hand is linked to at leastOn vertices of{x1,...,x30,} and at mosen vertices ofV and on
the other handy is linked to7n = |V5_; U V,,| vertices) while the contribution of andz; in the cyclic
5-cut(V{,...,V{) is at mostw’ (x;, Vs U V5) + w' (v, V3_; UV,,) < 10n + 4n + 2 x 7Tn = 28n. Hence,
w (V.. V) —w' (Vi,...,V5) < 28n—29n < 0.

k > 6. First, assume that € (V4 U V,_; N V. By symmetry, suppose thatc V. Then, there ex-
istsz; € V; with j € {1,2}. Consider the cyclig-cut (V/,...,V/) where from(V1,..., Vi), we make

a 2-exchange betweenandz;. The contribution ofv andx; in the cyclick-cut (V1,..., V%) is at least
w' (v, Vs UV3) > 2 x 22n + 2n = 46n (becauséVs U Va| = 24n and|V| = 2n; hence is linked
to at leas22n vertices of{x1, ..., 230,1(k—5)18, } @nd at mosn vertices ofl”). On the other hand the

contribution ofv andz; in the cyclick-cut (V/, ..., V) is at mostw’ (z;, Vs U V5) + 2(|Vaj—1| + |Va]) <
22n 4+ 2 x 2n + 2(n 4 6n) = 40n wherew € {3, k} is the neighbor ofj different of3 — j in G.. In
conclusionw’(V{,..., V) —w'(V1,..., V) < 40n — 46n < 0.

Now assume € V, with 5 < p < k — 2 (in this case, note that > 7). The contribution ofv andz;
in the cyclick-cut(V4,..., V) is at leastw’ (v, V,—1 U V1) > 2 x 34n + 2n (becauséV,_1 U V41| =
36n and|V| = 2n). On the other hand the contribution ofand z; in the cyclick-cut (V/,...,V}) is
at mostw’(z;, Vo—1 U Vpg1) + 2(1V;] + [Vw|) < 34n + 2 X 2n + 2(n + 6n) = 52n (becauser; is
linked to at leasB4n vertices of{x1, ..., T304 (k—5)18n} @nd at mosen vertices ofV'). In conclusion,
w(V{,..., V) —w (Vi,..., Vi) < 34n —52n < 0.

In any casegk = 5 or k > 6), by repeating this process, we get a cydlicut (V/,. .., V)) satisfying
ViU---UVir CH{o1, . Z30n4 (k—5)18n  @Ndw' (VY. V) <w'(Va, ..o, V).

Now, assume that € (V53 U V) NV (by symmetry, suppose € V3). Then, there exists; € V;
with j € {1,2}. As previously, consider the cyclie-cut (V/, ..., V/) resulting of a 2-exchange between
v andx; and letw be the neighbor different a3 — 5 of j in G.. The contribution ofv and x; in the
cyclic k-cut (V4,..., V%) at leastw’(v, V4) > 2 x 18n = 36n (because from the previous case we know
Vi C{x1,..., 2300+ (k—5)18, } While the contribution ob andz; in the cyclick-cut (VY, ..., V})) is at most
w' (i, Va UVy) +w' (v, Va—j U V) < |Va| + 2|Va] + 2(|Va_j| 4+ |Vi|) = 18n + 2n + 2(n + 6n) = 34n.
Thus,w'(V{,...,V}) —w'(Va,..., Vi) < 34n — 36n < 0.

In conclusion, from{(V4, . . ., Vi) we polynomially obtain a cyclié-cut(V7, ..., V/) such that)¥_,V/ =
{x1,..., 23004 (k—5)18n } @nd such thaw'(V{,..., V) <w'(Vi,...,Vi). Hence V], V3) is a bisection of
Ko, with valuew(V{, V3) = w'(V{,..., V) = 132n% — (k — 5)(18n)? < w'(V1,..., V) — 132n2 — (k —
5)(18n)% < B.

Note that if £ is unbounded, then th@ETRIC RESTRICTED CYCLICk-CUT PROBLEM is APX-hard
because this problem contains MeTrRIC TSPPROBLEM.
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We demonstrate that for any fixddit is possible to obtain in polynomial time an approximatufrat
most three times the optimal value. We start by defining a nesalpm which we solve optimally for a
constant, and then use its solution to approximate MEerrRIC RESTRICTED CYCLICK-CUT PROBLEM

Definition 9. TheMIN-ADJACENT-STAR PROBLEMfinds vertices, . . ., v, and ak-cut, such that; € V;,
Vi|=d;,i=1,...,k and

p
Z (diw(vi, ‘/;.:,.1) + d¢+1w(w+1, V;) + didi—&—lUJ(’Uu ’Uz‘+1))

=1
is minimized, where indices are (ma&g.

Theorem 9. Algorithm FindCyclicPartition (see Algorithm 1) solve®ti1iN-ADJACENT-STAR PROBLEM
It can be executed in tim@(n**1).

input :

1. A complete graptiX,, = (V, E), |V| = n, with weightsw(e) > 0, e € E.
2. Integerst; ..., dy, such thafy"F_| d; = n.

output:

lovy,...,u. CV.

2. ApartitionVi, ..., Vi of V suchthaw; € V;, |Vi| = d;, i = 1,... k.

foreach subset{vi,...,vx} C V do
{a1,.. ., an-k} =V \{v1,..., v}
Computez, an optimal solution to the following transportation preioi:
[ k n—k
mmlmlzeZizl Z]’:l Zle{—1,1} diw(vi, a;j)Tit1,;
subject to:
SExiy=1, j=1,...,n—k,
Srtey=di—1, i=1,...,k,
xije{O,l}, i=1,...,k, j=1,...,n—k.
v o a1 < j<n—k @y =1}, i=1,...,k

dtorsovel . — - diw(vi7‘/i£_v11 ,,,,, 'Uk}) + ki+1w(vi+17‘/i{vl ,,,,, 'Uk,}) + didiy1w(vi, vig1)

end

Find {v,...,v;} C V for whichd!*1-*} is minimal, denote it bys™*.
{vl,..,v5}

return (vf,...,v;,Vl{uf"”’U’:},..., A )
Algorithm 1: FindCyclicPartition

Proof. Let @y, ..., %k, Vi, ..., Vi be an optimal solution to the min-adjacent-star problemc&ithe algo-
rithm checks all the subsets & of sizek it also checks the subséty, . .., oy }. For this subset the sum

> ¥ d;d;+1w(?;, 0,41) is constant, so we need to find a partitidn, . . . , V;,) which minimizeszllC [diw(v;, Vig1)+
d;iy1w(viia, V;)]. Thisis achieved by finding an optimal solution to a transgt@n problem (where;; = 1

if vertex a; is assigned to the subsE}). For a fixed value ok we can solve the transportation problem in
time O(n), using the algorithms of [27]. There af¥n*) subset{v1, ..., v;} C V, so altogether the time
complexity isO(n*+1).



The minimumG.. cut problem 19

We now show that the weight of the partition found as an optsokution for themIN-ADJACENT-STAR
PROBLEM is no more tharBopt, whereopt is the value of the optimal solution of theeTRIC cycLIC
k-cuT PROBLEM Denote byapx the value of the partition constructed by Algorithm 1.

Theorem 10. Algorithm FindCyclicPartition is a3-approximation for theMETRIC RESTRICTED CYCLIC
k-CUT PROBLEMWhenk is constant.

Proof. Let (v1,...,vk, Vi,..., Vk) be the output of Algorithm FindCyclicPartition and 4, . .., O, be
an optimal solution of th#/ETRIC RESTRICTED CYCLICEk-CUT PROBLEM obviously,Vi < k, |O;| = d;
by hypothesis. We will prove that

k k
apx = Z (Vi, Vig1) <3 Z (Oi,0i41) = 3opt.
=1 i=1
By construction, we have:

k
apx = Z w(V;, Vig1)
i=1
k

3% wleen)

u; €V,
uj EViiq

Szk: > (w(vi,vi+1)+w(ui,vi+1)+w(vi,ui+1))

i=1 u;€V;
uj€Vit1

|
VM”

(diw(w, Vit1) + diqiw(vier, Vi) + didiprw(v;, Uz‘+1))

=1

1l
nn
. *

Onthe other hand, according to Theorem 9, FindCyclicRamtgolves the1IN-ADJACENT-STAR PROB
LEM, so that for everyu,, ..., u;) such that; € Oq,...,ux € O,

S* =

-

(diw(% Vit1) + dig1w(vig1, Vi) + didiprw(v;, Ui—H))

=1

(diw(ui7 Ois1) + dip1w(uip1, Vi) + didip1w(ug, Ui+1))-

-

=1

Summing over alluy, ..., u) such thatu; € Oq,...,ur € O, Since we haver:1 d; equalities as
above leaving the left side of each inequality as is meafinhge have that:

k

k k k
511 <3 ((TT d)w(0,0i1) + Oi1,00) + ([ d)w(0:,0i11))

j=1 i=1 j=1 J:1 j=1

:?v
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HenceS* < 3opt, givingapx < §* < 3opt.

5.2 Approximation algorithms for the METRIC RESTRICTEDG .-CUT PROBLEMWhen k is constant

At subsection 5.1, we have proposed an approximation dkgorior theMETRIC RESTRICTED CYCLICk-
CcuUT PROBLEM Now, we will solve the general case of th€ TRIC RESTRICTEDG.-CUT PROBLEMWhen
G, is an arbitrary cluster graph with a constant number of vedi

Definition 10. TheMIN-ADJACENT-G. PROBLEM(inds verticesy, . .., v, and aG.-cut, such that; € V;,
Vi|=d;,i=1,...,k and

Z (diw(vi, V}) + de)(’Uj, V;) + didjw(vi, Uj))
(i,5)€E.

is minimized.
The idea of the algorithm is similar to the previous one antkiscribed below.

Theorem 11. Algorithm FindGcPartition (see Algorithm 2) solves thieN-ADJACENT-G. PROBLEM in
timeO(n*+1).

Proof. Let o4, ..., U, f/l, e Vi be an optimal solution to theIN-ADJACENT-G. PROBLEM. Since the
algorithm checks all the subsets 6fof sizek, it also checks the subsét, ..., v, }. For this subset the
Z@’j)eEu d;djw(v;, v;) is constant, so we need to find a partitidn, . . ., Vi) which minimizesy_; . diw(v;, Vj).
This is achieved by solving the transportation problem (whe; = 1 if and only if a; assigned to the subset
Vi).

For a fixed value of; we can solve the transportation problem in linear time jusing the algorithms
in [27]. There areD(n*) subsetgvy, . .., v;), SO altogether the time complexity@(n*+1).

Theorem 12. Algorithm FindCyclicPartition is &3-approximation for theMETRIC RESTRICTEDG.-CUT
PROBLEMWhenk is constant.

Proof. Let (v1,...,vk, Vi,..., V%) be the output of Algorithm FindCyclicPartition and 4, . .., O, be
an optimal solution of theMETRIC RESTRICTEDG.-CUT PROBLEM obviously,Vi < k, |O;| = d; by
hypothesis. Lefvy, ..., vg, Vi, ..., Vi) be the outputted solution and 164, . . ., Oy, be an optimal solution
of the METRIC RESTRICTEDG.-CUT PROBLEM Assume thati < k, |O;| = d; and consider the step of
Algorithm 2 where(ds, . .., d;) is given in input. We have: Lefw, ..., v, Vi,. .., Vi) be the outputted
solution and leDy, . .., Ok be an optimal solution of theETRIC G.-CUT PROBLEM Assume that: < k,
|O;| = d; and consider the step of Algorithm 2 wheig, . . ., d}) is given in input. We have:
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input :
1. A complete grapti', = (V, E), |V| = n, with weightsw(e) e € E.
2. A cluster graphG.(Ve, E.), |Ve| = k.
3. Integersds, . . ., dj, such thafy">_, d; = n.
output:
lovg,...,uo0 CV.
2.AG.-cutVy,...,Vysuchthaw; € Vi, i=1,... k.
Fori,j € V. letai; = {(1) gthjgwili
foreach{v1,...,vx} C V do
{a1,.. ., an—k} =V \{v1,..., v}
Computez, an optimal solution to the following transportation prei:
rT]iI"IiI'T'IiZEZ:f=1 Zle Z?;lk ozijdiw(vi, al)xlj
subject to:
SE zij=1,7=1,...,n—k,
Srlkeg=ki—1,i=1,...,k,
zij €{0,1}, i=1,...,k, j=1,...,n—k.
end
LetV, (vt o= oy U{as[1<j<n—k, &y=1}i=1,...,k
d{ul """ vk} = Z(i,j)EEc [diw(w, Vj{vl’m’vk}) + did]-w(w, ’U]')j| .
{vi,...,vp} == argmin{d{*v"} |{v],... vi} € V.

<

return (vi‘,...,v;,Vl{”l"”’”’“},...,Vk{”"”’”’“}).

Algorithm 2 : FindGcPartition

21
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apx < Z w(V;, V;)
(1,7)EE.

= 2 ) wluw)

G)EE: 1icY
Z Z (w(vi,vj)—l—w(ui,vj)—l—w(vi,uj))
Ge: LS

- ¥ (dfw(vi,‘/})—i—d;w(vj,vi)+d;‘d;w(vi,vj)):S*.
(i,5)€E.:

On the other hand, according to Theorem 11, FindGcParti#tidves theviN-ADIJACENT-G. PROBLEM SO
that for every(uy, ..., ug) such that; € Oy, ..., ux € Oy,

s = % (dzw(vi,vj)+d;w(vj,m)+d;d;w(vi,vj))

(i,j)EE.
< ¥ ( w(us, 05) + diw(uy, 0;) + d:fd;fw(ui,uj)).
(i,j)EE.
Summing over al(ug, ..., ug) such thaty; € Oy, ... ,u € O:

k k k k
S* Hd: < > [(H d;)w(0i,0;) + ([ [ di)w(0;,0:) + (] | d)w(0:, 0;)

(‘,j)eE i=1 i=1 i=1

—Hd* > w(0:,05) + w(0;,0:) + w(0;,0;)]
i=1 (i,5)€E.
k

=3][a D w(0:,0;)

=1 (i,j)€E.

k
= 3(H d; )opt
i=1

Hence,S* < 3opt, leading to the conclusion thapx < S* < 3opt.

5.3 Approximation algorithms for the metric G.-cut problem

Here, we will solve the case wheteis metric,G. = (V., E.) is a general graph bl¥.| is constant and
without constraint on cluster sizes. L@&t= (V, E') be a complete undirected graph, with= {v; ...v,},
and edge weights(v;, v;) > 0 that satisfy the triangle inequality.

Theorem 13. There is a3-approximation for themeTRIC G.-CUT PROBLEMWhenk is constant.

Proof. Let |V| = n,|V.| = k. Enumerate alD = (di,...,dg), Zf’:l d; = n we have arO(n*) such
ordered sets. For each such ordered set solveMiEeRIC RESTRICTEDG.-CUT PROBLEM by using the

algorithm from 5.2 algorithm 2, and get3aapproximation as in 5.2. Choose the small@stcut among all
theG.-cuts. Since the optimal solution yields a speciiicthe result follows.



The minimumG.. cut problem 23

5.4 Approximation of the G.-cut problem with positive weights

In Section 3, we saw that tl&.-cuT PROBLEMis not approximable at all in general graphs (see for inganc
Corollaries 2 or 3) due to the weight O for some edges. Herggnepose an approximation ratio for tli -
CUT PROBLEMWhenw(e) > 0 for everye € E which works even when the numbleof the vertices of7,.
depends on the instance (we only assume n). Let wy,i, = mineep w(e), Wmax = maxecg w(e), and

o= Wmax

Wmin

Theorem 14. TheG.-cUT PROBLEM with positive weights is--approximable in linear time, where =
Ymax - even if|V,| is not fixed.

Wmin

Proof. Let I = (K,,w) with w(e) > 0 for everye € E be an instance of thé/.-cut problem. Let
mgo_ =n—k + 1 whereig = argmin;ey, degg (i), andm/; = 1 for j € {1,. - k}, j # fo- Arbitrarily
assignm!, vertices ofK,, toV; fori = 1,...,k and let(V4, ..., Vi) be the resulting7.-cut with valueapx.
Let opt be the value of an optimal solutidivy", . .., V) of the G.-cuT PROBLEMON (K, w). We will
prove thatapx < a - opt. Letopt, = >>(; ;cp. mim’;.

By construction, since(e) < wmax We get:

apx < Wmax  Opt, (1)
Letm, = |V*|fori=1,..., k. We mainly prove that:
opt,, < Z mim; (2)
(i,5)€E.

To see this, we will show thatpt,, is the value of an optimaF.-cut on(K,,, w") wherew’(e) = 1 for
everye € E. Hence, sinci(mEEc m;m; is the value of a particula®.-cut on (K, w’), inequality (2)
will follows.

Property 1. Let (Vy*,...,V{) be an optimals.-cut on (K, w’) wherem; = |V;*| fori = 1,...,k. The
following properties hold:

(1) Ife=(4,5) € E., thenmin(m;‘,m;ﬁ) = 1.
(i1) If e = (i,5) ¢ E., then one can assume thatn(m;,m}) = 1.

Proof. For (i). Lete = (i,j) € Ec andm = m; + mj; denoteD; = > .y )\ mr andD; =
>oreNe, ()\{i} Ma- AssumeD; > D;. Then, the contribution of the portion of the optimal sadutivhere
one cluster is eithe¥;* or V;* can be written a); - m; +m} - D; +m; -mj (becaus&e € E, w'(e) = 1),
or equivalently (usingn} = m —my), f(m;) = —(m})?>+m; - (m+ D; — D;) +m- D;. This expression
is a decreasing parabola and it reaches its minimum valuefo= 1 or m; = m — 1 becauseD;, D; and
m are constant (actually, when; decreases by one unit;; increases by one unit).

For (ii). Let (i,j) ¢ E. andm = m} + mj and supposen; > 1, m; > 1. Assumedeg (i) <
degg (j) where we recall thateg; (i) is the degree of vertexin G ... The contribution of clusters;*, V* in
the optimal solution igleg; (i) -m; +deg_ (j)-m; because byi) we know thatny, = 1 forw € Ng, (i)U
Ne,(j)- Substitutingn} = m—m; and rearranging the above expression we olfidg; (i) —degg, (7))
mj + degg_(j) - m. This expression is strictly decreasing with; as its argument whedeg, (i) <
degg, (4), and constant whedeg; (i) = deg (7). In conclusion, we can always assume thgt= 1.
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Using Property 1, we deduce thatf = n —k + 1andm; = 1for j € {1,...,k}, j # io, thatis
exactlym, = m? fori € {1, ..., k}. Now, combining inequalities (1) and (2), we obtain:

apx S Wmax * Z mzm] (3)
(i,4)€E

On the other hand, by construction we have:

opt > Wmin - Z mm;. (4)
(i.5)€Ee

Using inequalities (3) and (4), the result follows.

6 Conclusion

In this paper, we have studied the complexity and the appration of theG. CUT PROBLEM Some results
are given, but many open problems exist. What is the exacptaity of theG,. cuT PROBLEMON lines or
rings (ie., induced paths or cycles)? Is heTRIC Ge-cuT PROBLEMadmit a PTAS or iAPX-complete?
Another interesting direction for further research is tadst the maximun@ .. cut problem.
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