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Abstract

The subject of this paper is a mechanisin that allows customers to overtake others. In our
system, customers observe the queue length upon arrival, and have the option of overtaking
some or all of the customers already present in the queue. Overtaking is associated with a
fixed price per overtaken customer. If & customer chooses to overtake some but not all of the
present customers, he overtakes the last customers in the quoue. Cugtomers incur a fixed cost
per every unit of time in the system, and their goal is to minimize their own expected total cost.
We would like to characterize the symmetric equilibrium strategies of our model, However,
it turns out that this mission is much harder in our system than in related priority queueing
systems analyzed in the literature. We consider several types of symmetric strategies and find
out, that the set of equilibrium symmetric strategies is quite reach and includes surprisingly odd
strategies. In addition, we compare overtaking with preemptive priority systems, We assume
that the server can induce the customers to choose, among the equilibrium strategies, the one
which maximizes its profits. Under this assumption, we compare the server’s profits in the two
models and find, somewhat surprisingly, that the system of overtaking gives the server higher

profits.
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1 Introduction

Priority sale in queueing systems is a common mechanism used to improve service and increase
profits. In such regimes, a customer has the option of purchasing priority, out of a menu of options,
and obtain service before some others who arrived earlier. Of course, later arrivals who purchase
higher priority may overtake the previously overtaking customer, and this may serve as a further
incentive to purchase priority. It is expected that customers take all this into consideration when
choosing their purchase strategy. Since a customer’s strategy responds to other customers strategy,
the result is an equilibrium strategic behavior.

The subject of this paper is a different mechanism that allows customers to overtake others. In
our system, customers observe the queue length upon arrival, and have the option of overtaking
some or all of the customers already present in the queue. As more customers overtake others,
the more inclined an individual should be to do so himself. In other words, this is a follow the
crowd {F'I'C) situation. Overtaking is associated with a fixed price per overtaken customer. If a
customer chooses to overtake some but not all of the present customers, overtaking applies to the
last customers in the queue. Customers incur a fixed cost per every unit of sojourn time in the
system, and their goal is to minimize their own expected total cost. Our model assumes a single
server Markovian queue where customers are identical in all (statistical) parameters.

‘We exclude balking, and hence there is no question of social optimality here. However, different
strategies affect the rate of profit to the server.

We set up two main goals:

o We would like to characierize the symmetric equilibrium strategies of our model. However,
it turns out that this mission is much harder in our system than in related priority queueing

systems analyzed in the literature. We consider several types of symmetric strategies and find




out that the set of equilibrium symmetric strategies is quite rich and includes surprisingly
odd strategies. We characterize some particular families of equilibrium strategies, but it is
clear that these are not the only equilibrium strategies. .We found some surprising results of
unexpected strategies which, for some parameters, are equilibrium strategies. For example, a
strategy like: overtaking a single customer when observing one customer in the system upon
arrival, overtaking none when chserving two or three, overtaking four customers when observ-
ing four, overtaking three customers when observing five, and not overtaking any customer

otherwise, can be an equilibrium.

» We compare overtaking with preemptive priority systems. We assume that the server can
induce the customers to choose, among the equilibrium strategies, the one which maximizes
its profits. Under this assumption, we compare the gerver’s profits in the two models and

find, somewhat surprisingly, that the system of overtaking gives the server higher profits.

One of the interesting findings in our work is that sometimes it is worthwhile to observe a longer
queue since then the customers’s expected cost is lower.

The paper is organized as follows: In Section 2 we formally present our model. In Section 3 we
survey relevant literature on strategic behavior in queueing systems with priorities. In Section 4 we
try to characterize the equilibrium strategies of our model. We find that it is difficult to characterize
all strategies that can be equilibrium and therefore consider some attractive special cases. In
Section 5 we consider strategies of overtaking &k customers if there are at least k& customers in the
gystem, and overtaking all of them otherwise. In Subsection 5.1 we ask whether it is worthwhile
to observe a longer queue when all customers follow this strategy and the answer is sometimes yes.
In Subsections 5.2 and 5.3 we consider mixed strategies. In Subsection 5.2 we consider mixtures
between overtaking &k or k— 1 customers, and in Subsection 5.3 we consider mixtures with overtaking

k, k—1 or k — 2 customers. In both cases we give necessary and sufficient conditions for these




strategies to define an equilibrium. In Section 6 we compare the server’s maximum expected profit
per customer under equilibrium conditions in two models. The first is our m(;del, and the second
is the model analyzed by Adiri and Yechiali [1] and by Hassin and Haviv [9], in which there are
two priority classes. In this model two FCFS queues are formed in front of a single server, one
for priority customer and the other for ordinary customners. An arriving customer buys priority if
and only if the total rmumber of customers in the system is at least a threshold n. There may be
numerous equilibria, in both models. We assume that the server can choose the equilibrium which
maximizes its expected profit. Under thig assumption we prove that the server’s expected profit
per arrival in our model is greater than the server’s expected profit per arrival in the second model.
Our proof is partially analytic and partially based on a numerical computations. In Section 7 we
analyze equilibria where at most one customer is overtaken. We consider pure and mixed threshold
strategies. We give necessary and sufficient conditions for these strategies to define an equilibrium.

Finally, Section 8 contains concluding remarks and open problems.

2 Model description

In our observable M /M /1 model, customers purchase priority. This priority enables overtaking
present customers. Upon arrival, a new customer observes the queue length and announces the
number of customers that he overtakes. There is & fixed cost C, per overtaken customer, and
customers have homogeneous waiting costs. We assume that the reward the client receives after
he is served is high enough so that, he leaves the system (renege) before he is served only when
the queue length is very long, but this has a very low probability. Therefore, we assume that there
is no reneging. In addition, there is no balking, and & customer cannot overtake after joining the
queue. The service discipline is preemptive resume. Let C, denote the cost per unit of time to a

customer for staying in the system (either waiting or being served). All customers have the same




waiting time value Cy,. We denote the rate of arrival by A, and the service rate by u. Note that
the case C, < %ﬂ hag a trivial unique equilibrium since overtaking all present customers is clearly
a dominant strategy. Therefore, we assume %‘ﬂ < Ch.

As more customers overtake others, the more inclined an individual should be to do so himself.
In other words, this is a follow the crowd (FTC) situation. The rationale behind this terminology is
that in an F'T'C case, the higher the values selected by the others, the higher is one’s best response.

In a Nash equilibrium no customer has anything to gain by changing his or her own strategy
unilaterally. In a symmetric equilibrium all customers use the same strategy.

Consider a static version of the model, where the number of customers to be served is fixed
and they are all present at the time the service begins. Moreover, no future arrivals are expected.
In this case there is a unique equilibrium in which no customer overtakes any other customer. To
see why this is true note that from the assumption of our model that %“L < Uy, a dominant best
response of the last customer is not overtaking, therefore a best response of the customer whose
position before the last one is not overtaking either, and if we continue this way the result is that
no one is overtaking, In the sequel we show that while never overtaking is always an equilibrium
strategy, in the dynamic model there are numerous of the equilibrium strategies as well.

‘We analyze pure and mixed threshold strategies, and also other strategies in the dynamic model.
We look for equilibrium conditions in each of these strategies.

We compare overtaking with preemptive priority systems. We assume that the server can
induce the customers to choose among the equilibrium strategies, the one which maximizes its
profits, Hence, server’s goal i to induce all customers to overtake all customers who are currently

in the system.




3 Related literature

There is an extensive literature on priority queues. In this section we review the literature on
strategic behavior in queueing systems with priorities and server’s profit maximizing under different
priovity regimes,

There are three basic priority disciplines [11, 3]: preemptive resume, preemptive repeat and
non preemptive, In a preemptive resume discipline the service of a customer is interrupted when
a customer belonging to a higher priority class arrives, and will be resumed from the point of
interruption, In a preemptive repeat discipline the service of a customer is interrupted upon arrival
of customer belonging to a higher priority class, and will start from the beginning. In a non
preemptive discipline the service of the customer in service is completed even if a customer of

higher priority arrives. In our model the priority discipline is preemptive resume.

¢ Adiri and Yechiali [1] analyzed an M/M/1 model with two priority classes. In their model
the priority discipline is preemptive resume and two FCFS queues are formed in front of a
single server, one line for priority customers and one for ordinary customers. Upon arrival and
after observing the length of the two queues, a customer decides whether to purchase priority.
Customers cannot purchase priority while waiting., Adiri and Yechiali assumed a given price
for priority and computed an equilibrium solution of the following type: buy priority if and
only if the number of customers in the ordirary queue is at least a threshold n. We compare

the server’s expected profit in this model to the server’s expected profit in our model.

Hassin and Haviv [9] continued this line of research. They extended the set of possible
strategies to include mixed strategies of the following kind: for some nonnegative real number
z = n+p, where n is an integer and 0 £ p < 1, a customer who observes a total of k customers

in the system joins the ordinary queue if £ € n — 1, does so with probability p if k = n, and




otherwise buys priority. They show that multiplicity of equilibria is possible. Moreover, in
general there is an interval of integer thresholds that define stable equilibria and between each

pair of such equilibria there is an unstable mixed equilibrium,

s Kleinrock [12] considers that relative position in queue is determined according to the size
of a customers bribe (which is paid before the customer sees the queue length). Such a
policy allows the customer himself to affect his own queue position, rather than the classical
approach of assuming that a customer is preassigned to some (possibly continuous) priority
clags. For the case of Poisson arrivals, arbitrary service time distribution, and arbitrary
distribution of customer bribe, obtained the average waiting time for customers as a function
of their bribe. Both preemptive and nonpreemptive disciplines are considered. Examples are
presented for various bribing distributions, which demonstrate that many well-known priority
queuing systems are special cages of this bribing situation. Furthermore, a cost function is
defined after introducing the notion of an impatience factor {which converts seconds of wait
into dollarg). Conditions for optimum bribing are then determined, where the optimization
refers to minimizing the average cost subject to a mean bribe constraint. An example for

exponential gervice and exponential bribing is carried out and the results are plotted.

e Lui [13], Glazer and Hassin [5] and Hassin [8] consider a scheme of auctioning or bribery in
an unchservable queue, i.e., at time a customer’s need for service arises, he irrevocably either
joing the queue or balks, It is not possible for him to observe the queue length before making
this decision. In this model, each customer chooses the amount he wishes to pay for priority
and then he is placed in the queue ahead of those who paid smaller amounts. It turns out

that this decentralized scheme can be used to induce a socially optimal joining rate.

e Myrdal [14] claimed that corrupt officials may deliberately cause administrative delays in




service so as to attract more bribes. Lui [13] referved to this claim as Myrdal’s hypothesis,
and argued that the hypothesis is not always true. For example, if increasing the rate of
service is costly to the server, then without a bribe the server has no incentive to supply
service, and bribes induce faster service. However, Hassin [8] compared the service rate
chosen by a profit maximizer to the socially optimal rate, showing that from this point of
view Myrdal's hypothesis is correct. In this paper we show that when the service is slower,

i.e., 4 is lower, then the server’s profit is higher.

Rosenblum [16] explores a market model where customers trade queue positions. The result
is that the customers will be served in decreasing order of value of time, which is known the
socially optimal order. But thers is a strong assumption in this model that customers do
not consider profits that might be gained from transactions in the future, but consider only
the reward they receive for the service and their cost of waiting, This model is a kind of
overtaking model, but as opposed to our model a customer overtakes other customers only if

both he and the overtaken customers agree to this overtaking,.

Hassin, Puerto and Fernandez [10] consider a relative priority approach, where the priority
given to a class also depends on state variables associated with other classes. They show that
relative priority in an n-class queueing system can reduce server and customer costs. This
property is demonstrated in a single server Markovian model where the goal is to minimize
a non-linear cost function of class expected waiting times. The priority regimes which they
consider are: FCFS, absclute preemptive priorities and DPS (discriminatory processor shar-
ing). Special attention is given to minimizing server’s costs when the expected waiting time

of each class is restricted.
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4 Pure equilibrium strategies

In our model, customers observe the number of customers who are already in the system, and
then decide how many customers to overtake. We refer to the number of customers that an
arriving customer observes as the total number in the system including the customer in service,
but not including the new customer himself. In this section we analyze pure strategies defined by
a vector {ky, ko, ...}, where k; is the number of customiers that an arriving custemer, who observes
i customers in the system, overtakes. Clearly, &; < <.

Define f; ; to be the expected waiting time of a customer given that there are 4 customers in
front of him (including a customer in service), and § customers behind him and total number of
customers in the system is ¢ + 1 4+ j. In addition define f_1 ; =0.

The expected time till either a service completion or a new arrival occurs is - + . With proba-
bility = Jm the service completion occurs before a new customer arrives, then his expected waiting
time is f;_1,4. With probability ﬁ_n a new customer arrives before a service completion oceurs, then
the new arrival overtakes the present customer if & ;41 > 4, and doesn’t overtake if k41 < 4.

Hence, we get

i1 A .

f‘i‘j = }\+ 'u fz 1d '|' f‘:‘.+1,_}) kz‘—!—j—O—l > (13')
1 }\ ,

Ffui =7 p +5 _l_#fz fm+1, kivjri < 7. (1b)

If &; < K for all ¢ for some K, this provides boundary conditions, namely f;; = %,Vj 2 K

If a new customer observes ¢ customers, and decides to overtake & customers, his expected
waiting cost is Cly fikx -+ kCo.

The pure strategy (ki, kg, ks,...) defines an equilibrium if overtaking k; customers is a best
response of a new customer who observes 4 customers for i = 1, 2,.... Therefore, the conditions for

equilibrium are:
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CooFiboky + KiCo € Cufip g +kCo, if i =1,2,...and k= 0,1,...,4

We could not give analytic characterization to the equilibrium strategies. However, we applied
numerical analysis to see which strategies are equilibrium for some values of A, ¢ and (%

We compute strategies (ki, ko, kg, k4, ks, kg) with & = 0,¥i 2= 7, i.e Tl = 5040 options. Table
1 contains a list of all strategies such that at least for some values of the input parameters A,
i, and g—; they define an equilibriwm. In particular, our study shows that even strategies like -
(1,0,0,4,3,0) or {0,2,0,0,5,5) can be equilibrium strategies,

For example, Figure 1 shows the values of ()\,%;) for which the strategies (0,2,0,0,5,5),
(1,0,0,4,3,0), (1,0,3,3,0,0), and (1,2,3,4,4,0) are equilibrium.

There is a detailed example in Appendix-A.,
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ka1 ha kg ka ks kqg
ky | kg | ka kq kg ke

0 2 2 2 0,1 0
] 0 o 0 ] 0,6

0 2 2 2 2 0,1,2
0 0 [+ ] i 1

0 2 2 3 3 0,3
] 0 0 o 2 2

0 2 2 1 4 1
0 [+ I+ 0 3 a

0 2 3 3 [ [
0 ¢ ¢ ] 4 3,4

0 2 3 3 3 0,1,2,3
] [+ [ 0 5 0,4,6,6

0 2 3 4 4 6,4
0 [+ 0 1 1 0,1

[ 2 3 4 5 B
[ [+ o 2 2 0,1,2

1 a k] [ 1] [
G o 0 3 3 0,2,3

1 0 B o 4 3,4
[+ [ 0 4 ¢ 0,8

1 o 0 [¢] b 4,5,8
o [ 0 4 3 0

1 o 0 4 3 0
0 [ 0 4 4 0,3,4

1 ] ] 4 4 ©,8,4
0 0 0 4 B 0,5

i 0 ] 4 8 0,5
¢ o 1 1 o o

1 0 3 3 0 [
o [ 1 1 [ 0,1

1 0 3 3 3 0,2,3
¢ 0 2 2 0,1 o

1 Q 3 4 4 4
[ 0 2 2 2 0,1,2

1 0 3 4 B 5
] 0 2 2 3 3

1 1 [+ [ o o
o 0 3 3 3 1,2,3

1 1 ¢ ¢ 2 2
] 1] 3 3 4 4

1 1 1 e, Q o
o 0 3 4,0 0 0

1 1 1 1 i 0,1
0 3 3 0 5 5

1 1 2 2 2 2,2
0 9 3 a 0,2,3 9

1 1 3 3 3 0,2,3
0 [ a 1 1 9,3,

1 1 a 4 4 4
Q 4] 3 4 b 6

L 2 o [ 0 o
o 1 1 0,1 o 0

1 2 2 ¢ 0 0
9 i 1 1 1 0,1

1 2 3 3 0,1 0
o i 1 2 2 2

1 2 2 2 2 0,1,2
k] 2 [ ¢ [¢] [+]

1 2 2 3 3 3
] 2 [ [ 5 E.6

1 2 2 4 4 4
0 2 ¢ 4 4 0,4

1 2 3 3 o [+
o 2 [+ 1 5 B

i 2 3 3 3 0,2,3
0 2 2 | o, 0 ¢

i 2 3 4 4 0,4

Table 1; These strategies are equilibrium strategies for some values of A, p and

Lo
Chy
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5 Overtaking k£ customers

In this section we consider strategies of the form %&; = min {k,i}, i.e., overtaking % customers if
there are at least k customers, and overtaking all of them otherwise. Denote this strategy by .
We ohserve that if the strategy of all customers is Xy, i.e., not overtaking others, then from the
assumption of our model that %ﬂ < Cy, the best response of a new customer is also not overtaking,.
Therefore ¥ is always an equilibrium. In addition, we show that 2o, or equivalently, k; = ¢ for all
Cu

i i8 a unique equilibrinm when C, < %ﬂ, 3, 4=10,1,... is an equilibrium when %!’- £ 0, € pa

otherwise g is a unique equilibrium, see Figure 2.

The region of G_ in which The ragion of C_ In which The region of C_in which
£ _ s a unique equilizrium Ei, 1=01,... Is an squilibrium ED is a unigue equilibrium
5 | f { €,
c,/n C/ uh)

Figure 2: The region of C, in which the ¥;, ¢ = 0,1, ... is an equilibrium or a unique equilibrium.

Theorem 5.1 The strategy L, k= 1,2,... defines an equilibrium if and only if

(2)

S
"

Proof: We divide the proof into two parts.

* Suppose that a new customer observes § 2 k customers. By overtaking %k, he guarantees
his place in the queue, because behind him there are & customers, and only they will be
overtaken by new customers. Overtaking any additional customer costs C, and saves %’ By

assumption C, > %’i there is no reagon to overtake more than %k customers.

15




If he overtakes k customers, his expected cost is

' 1 _
ColLTE e, 3)

Otherwise, if he overtakes 1 customers, i < k, all future customers overtake him till he finishes
his service and leaves the system. Therefore his expected waiting time is 41— busy periods,

and his expected cost is

Gr1—i

C,
w LA

+iCh. (4)

The strategy defines an equilibrium if and only if overtaking %k customers is a best response

) 41—k li c. 1 AMj+1-k
of a new customer. Hence, Coy P72 + kG € Culisy +1iC,, or g2 < =45 + M_Eﬁmj)ﬁ

for i = 0,1,...,k—1and § = k,k+ 1,.... The minimum of {ﬁ—&-%%} over

i=0,1,....,k—1and j =k,k+1,...is obtained at 1 = 0 and § = k. Therefore the condition

is gi £ “1 5+ F(.u%m

¢ Suppose that a new customer observes § = 1,2,...,&k—1 customers, and chooses overtaking all
of them. His expected cost is Cwﬁ + jC,. Otherwise, if he chooses overtaking ¢ customers,
i=0,1,...,4 — 1, his expected waiting time is § + 1 — ¢ busy periods, and his expected cost
is C’wijﬁ% + 4C,. In equilibrium overtaking all customers in the queue should be a best
response of a new customer. Therefore Cwﬁ + 30, < C’w% +iC, for j=1,2,...,k—1

. . C
andz=0,l,-.-:.7—1:0rUigpi/\'

5.1 Overtaking & customers -Is it worthwhile to observe a longer queue?

One of the interesting questions about Ty strategy is: Is it worthwhile to observe a longer queue?
The ¥ sirategy enables a customer who observes at least & customers upon arrival to overtake

k of them, and by that to ensure that all future customers wiil not overtake him. In contrast, a

16




customer who observes less than k& customers upon arrival cannot ensure that. He just can overtake
all present customers, but all future customers will overtake him till his service completion. We
find that there are input parameters for which a customer prefers to observe a longer queue.

Denote the number of observed customers by j.

Theorem 5.2 Suppose that = < g—;” € Li)\ and that oll customers follow the ¥y, strategy. Then:

1
i !

1. The expected cost as o function of 7 is bult from two lnear functions, one for § < k, and the

second for j = k.
2 If W)\—’\i < g—;, then the the funclion is monotone increasing for any j (Figure 3-a).

3. If gf; < m, then the global minimuwm is ot & (Figure 3-b). Otherwise, if E@A——/\f < gﬁ,

then the global minimum is af 0.

4. 1f g—: < %, when § = k and 3 < k, then o new customer prefers to observe a

longer queue, i.e., § groter than smaller (Figure 3-c).
Proof:

+ Suppose that a new customer observes § 2 k customers. Then according to X he overtakes
k of them. Future arrivals customers do not overtake him, and therefore, his expected cost is

ow% + kC,.

e Suppose that a new customer observes j < k customers. Then according to X he chooses
overtaking all of them. Future customers overtake him, and therefore, his expected cost is

Cuzts + iCo
Hence, the expected cost of a new customer is
f+1—k
Cl T o 2k
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1 , .
Cp— 70, <k
= A

The functions C'wji;:—k 4+ kC, and C’m”%)\ + 7, are both monotone increasing in j. If szfl__)\ +

. it]—k . . i .
430, < C’w?*_#_- + kC, when 5/ =k — 1 and j = k, or equivalently Eﬁ)\] £ % then the expected
cost of a new customer as a function of the number of customers in the system is a monotone
and increasing. Otherwise, this function is built from two monotone increasing functions with a
break-point at k.

Since both functions are monotone increasing then k is a global minimum if a new customer
prefers to observe k rather than an empty queue, ie., Cw% + kC, < erl)\, or equivalently,
é%‘: < W#A—T) If a new customer prefers to observe an empty queue rather than k then 0 is a
global minimum and then Cwai—)\ < Cwi + kC,, or equivalently, W(#A;T) < %‘:7

A new customer prefers to observe a longer queue, i.e., prefers to observe § = k customers

rather than j' < k, if Owiﬁ;k + k(< C‘mﬁ + 5'C,, or equivalently if g—; < ’L_(’ji ;3\ ,Ei _Jf“) "

For example, see Figure 3. In figure a the function is monotone increasing which means that an
arriving customer always prefers to observe a shorter queue. In figure b an arriving customer prefers
to observe k = 4 rather than 0 customers in the system. If he observes & = 4 customers, then he
overtakes all of them and all future arrival customers do not overtake him, and his expected cost is
% +kC, = 5. Otherwise, if he observes 0 customers, then all future arrival customers overtake him,
and hig expected cost is % = 8. In conclusion, in this case we get that %ﬂ + kCy =.5 < % =8,
i.e., it is worthwhile to observe a longer queue. In figure ¢ an arriving customer prefers to observe 0
rater than k = 12 customers in the system. If he observes k = 12 customers, then he overtakes all of

them and all future arrival custormers do not overtake him, and his expected cost is %-‘i +kC, = 13.
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Otherwise, If he observes 0 customers, then all of them and all future arrival customers overtake him,

and his expected cost is “—Ciwx = 8. In conclusion in this case we get that %ﬂ +kC, =13 > I%UX =8,

i.e., it is worthwhile to observe a shorter queue.

expected cost of 2 new customer

expacted cost of & new customer

k=4, Co=3, Cw=4, p=2, =1

T -

expected cost of a new custoer

.
.
a
J
: L . L ' L
1 2 3 4 3 B 7
1ha numbet of cuslomers In tha system
k=12, Co=1, Cw=2, n=2, A=7/4
. 4
. 4
[}
L}
» .
. @ [
*
L
*
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P
2 3 4 5 6 7 a8 & 10 11 12 13
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k=4, Co=1, Cw=2, =2, h=T/:
T—T—T

L

T T T T T T

1 L . 1 1 1 1

O Nt & @ e

=3

L P .
4 5 6 7 8 & 10 11 12 13 14
the numbar of custemers in the system

Figure 3: Expected cost as a function of the number of observed customers.

5.2 Overtaking k customers - two actions mixed strategy

In this section we consider the mixed strategy 3y . The mixed strategy Xy, is defined as follows:

For a given integer k 2 1 and a vector p = (px, Prt1,...) such that p; € [0,1] for every i = k, ...,

a customer who observes upon arrival ¢ > k customers in the system (including the one in service)

overtakes k customers with probability p; and & — 1 customers otherwise. If there are at most k—1

customers in the system, the customer overtakes them all.
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Theorem 5.3 The mized strateqy Xy, defines an equilibrium if and only ifﬁ £ (% £ LT}X , and

for some x € [max {O Q\ﬂ)— [ é’; ]} mm{l M [ Cou}}]

At
Pr =,

; _ M _C N
Pr+1 = —3 [1 Ejﬁ] M

D =1-—&&, Vjz2
In particular, such x satisfies the following:

L af L (Ati)?
m s Cw S PR EATY

1.0€$§Q‘:"—fﬁ[1—

(Otp)? /\+,L_L
20szs L of Hp2HpAtAT) < C‘w I

Qb [ Oy Mt
3. m el oA e <1, if 2

n

=

é’lé‘

2
< min { 1y, S0},

J&

For example, suppose that % = %;E, then pr = 0 and pg4q = 1.
Proof: We say that a customer is in state (4, ) if there are exactly 4 customers in front of him
(including the one in service) and exactly j customers behind him. We denote by fi,j the expected
(residual) waiting time of a customer in state (%, j) given that all future customers adopt the strategy

Yog,p- In addition let f_y ; = 0.

o Consider a customer in state (¢, ) where j < k — 2. Clearly, all future customers overtake

him, Therefore, his waiting time amounts to a total of ¢ + 1 busy periods, and

= Visk-z (5)

o Consider a customer in state ( — 1,k — 1), 7 2 1. The expected time till e1ther a servics
completion occurs or a new arrival is ﬁ With probability ﬁ a new customer arrives
before a service completion occurs. The new arrival overtakes k customers with probability
Djtk-1, 0 this case the customer’s expected residual waiting time is f; 1. Otherwise, the
new arrival overtakes only & — 1 customers and the customer’s position is guaranteed, with
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expected waiting time fj_1 5 = ﬁ With probability Ti? the service completion occurs before
a new arrival, and then the customer’s expected residual waiting time is f;_g x—1. Therefore,

| A1 AMl-piyp-1} g
fimtp—1 = 55+ dpfiek-1+ S5 et S5 721

or equivalently,

1 Aj !
Fip-1 =5 [()\+M)fj—1,k—1 ~pfiop-1~-1-{1 *pj+kﬁ1)““‘3j| , J=l. {6)
Pitk—1 7

In particular,

fip—1= )\ka [(.U + A for1—1— (1~ Pk)%] . (7)

Consider now a customer who cbserves k + 7 — 1 customers upon arrival, where j > 1. If he
overtakes k cuStomers, he guarantees his position in the queue and his expected cost is C’w% +
kC,. Otherwise, if he overtakes only k-1 customers, his expected cost is Cy fj -1+ (k—1)Co.
For 3 to define an equilibrium strategy, it must be that the customer is indifferent between

the two options, hence

Co | 7 )
hel = T, Y=, 8
fj‘ak 1 Cw i 2 ( )
Substituting fi -1 from (8) in (7} gives
1C, A
P = X"—““w [(,\ +uwfor-1-1- —} : (9)
o 1

Substituting f; z—1 from (8) in (6) for j = 2 gives

k1 A
Pl =1+ Y [}Jafo,kl -+ M] . _ (10)

For j = 2, substituting f; k-1, fj—1,k—1, and f;_ox_1 from (8) in (6) gives,

C .
Py = 1= g, Wiz (11)
[#]
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We denote g, by z. Substituting pr from (9), and pyyq from (10), in py + %&pk+1 gives

At p Cu 7 :
= — 11— — . 12
=254 Coﬂ] e (12)

H | /\ 2 v A ? i
Since 0 € pry1 < 1, we get that 1:—';) [Xi—” - ugjﬁ] LTS iﬁL [1— C%F] Z = py, hence we

must get that 0 € = £ 1. Therefore,

Q4w o Gl cpcmmly QP Cu
max{[), Py 5 O £r<minsl, sy 1 .

We consider these cases:

i C (A+p)? 1 X (0t )? o
1. Eéﬁém. Inthlsc%eUg\méj)— 1—## .

Q)R Gy o Mg :
2. PITES T S S Rt In this case 0 £ o £ 1.

A ; Atp)? - A i) »
3. 7"# < % < rmn{#ﬁ,(—?‘i}. In this case ng)_ [X-:-I_;.s - ng] Lz <l

We now analyze the other equilibrium conditions and show that they are satisfied if and only if

Cy 1
G S =

¢ The best response of a new customer who observes j < k — 2 customers is overtaking all of
them. Hence, Cy fo; + Cof < Cufj-11+Col, 1=0,1,2,...,7 — 1. Substituting fo; and f;—i;
from (5), this gives

— < (13)

¢ Consider the best response for a new customer who observes k — 1 customers. If he overtakes
all of them, his expected cost is Cyfok—1 + Colk — 1). Otherwise, if he overtakes only
I < k — 2 customers, his expected waiting time is f;_;;, substituting f;_;; from (5) we get

that his expected cost is C'w% + Cyl. In equilibrium the best response is overtaking all

customers, hence Cy, for—1 + Co(k — 1) < C'w% +Cl, or gﬁ- < (,J,_,\ﬁc(;fﬁuz) — ;:‘i'i‘_ll. fok—1

is bounded from above hy the expected length of a busy period, because it is the maximum
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time till a customer in service leaves the system, even if all new arrival customers overtake

: k-l Jo k-1 bt 1 | |
him. Therefore, GoNGR—T=D ku—l—l = GENGT=D — p=AE=1=l = = and we get the

condition (13).

e The last case that we should check is if a new customer observes 7 2 & customers and chooses
overtaking only m < k — 2 customers, then his expected cost is8 Cyfi—mm -+ mCo. In a

symmetric equilibrium the best response is overtalking & customers and not less. Therefore

Cow fjmmm + mCo 2 Cy -L— + kCo, or fiomm =

)+ "’T Substituting fi—mm
from (5) we get, Li_ “cqi(k""m)”k‘%,or

k41 iy
< A + M‘T,u,_k:'\-%l ype and L(ﬁ 'K)) T ﬁ Therefore we get the condition

(o

(13).

Observation 5.4 Theorem 5.3 shows that for any £ =1,2,... ppy; =1 - GQLL

", Vi 2 2. There is

& different approach for calculating p; when § — co. A customer who observes j+k — 1 customers,
and overtakes k — 1 of them will be overtaken till a new arrival chooses to not overtake & customers
with probability 1 — pje. In other words, the time till the choice of an arriving customer is not
overtaking has a geometric distribution, with probability 1 —p;, for success, and probability pyi g
for failure. Hence, the number of customers who arrive till the choice of the arriving customer is

. . 1
not overtaking, is ——
L overtaking, is T pion

— 1 {not including the customer who chooses not to overtake). Therefore,
the residual expected waiting time of a customer who observes j + & — 1 customers, and overtakes
k — 1 of them, consists of the service times of all customers who arrive till the first time he isn’t
overtaken, plus j service times of customers that were before him, plus one service time of himself.

s 1 ,
———1]+1 1
J+(1"Fj+k )Jr J+1*Pj+k

W 7

Hence, when § — o fjx—1 = . Substituting f;z-1 from (8) gives when

j—ooop=1- (%; which is proved in Theorem 5.3 .
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A (symmetric) equilibrium strategy is, by definition, a best response against itself. However, it
need not to be the unique best response. Specifically, let ¢ be an equilibrium strategy. There may
be a best response strategy z # y such that z is strictly a better response against itself than y is.
In this case, v is unstable in the sense that when starting with y, it may be that the players adopt
the best response z, and then a new equilibrium, at », will be reached. If no such z exists then %
is said to be an evolutionarily stable strategy or EESS. Note that if y is an equilibrium strategy and

it is the unique best response against itself, then it is necessarily ESS.
Theorem 5.5 The equélibrium mized strategy Ly p is nol ESS.

Proof: Denote the equilibrium mixed strategy ¥ p by y. Consider a strategy z = >, | =
(1,2,...,k—1,k—1,...). In Section § we show that this is an equilibrium strategy, and now we
show that this strategy is strictly a better response against itself than y is, i.e., if all customers
use z then z is the best response. If an arriving customer observes j 2 & — 1 customers, then from
the assumption of our model that %—‘* < (0, hig best response is to overtake only k — 1 customers
because then all future customers do not over take him. Therefore, z is strictly a better response

against itself than y is. L

5.3 QOvertaking k£ customers - three actions mixed strategy

In this section we check whether there is an equilibrium strategy, where customers are indifferent
between overtaking &, & — 1 or & — 2 customers.

Now the mixed strategy ¥gp is defined as follows: For a given integer & = 1 and a matrix

k—1

L o
Ttk
p=| »7} »f,, | such that pf_l,p;? e [0,1] for every ¢ =k —1,... and j§ = k,.... A customer

who observes upon arrival ¢ > k customers in the system (including the one in service) overtakes

k customers with probability p¥, & — 1 customers with probability pff‘l, and k -- 2 customers with
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probability pf“z

=1- p;'-f’ - pff_l. A customer who observes upon arrival k — 1 customers in the

system {including the one in service) overtakes k - 1 customers with probability p;:j, and k — 2

customers otherwise. If there are at most k — 2 customers in the system, the customer overtakes

them all.

Theorem 5.6 The mized strategy Yy p defines a unique equilibrium where customers are indifferent

between overtaking k, k — 1 or k — 2 customers if and only of L
gk, m

B Eel k-1

=%, b =Y, P =2
koo Atw | G | B

Prsi = [1 ﬁ‘ﬂ pEETe

ol = O = 2R p O =P A Qe b)) .
k+1 AAF A2 pAtp?) A p b

p2+_j =1—gf‘w Vi22,

Pig =0 Vi>2,

c+z<€1,

Py +pky; <1 Vizl

o 1
STh S H—A7

Proof: We say that a customer is in state (4,7) if there are exactly ¢ customers in front of him

(including the one in service) and exactly j customers behind him. Define f; ; to be the expected

waiting time of a customer in state (4,7} when all future customers adopt the strategy Ty p,. In

addition let f_;; =0.

e Consider a customer who observes k+7—1 customers upon arrival, where § > 1. If he overtakes

k customers, he guarantees his position in the queue and his expected cost is C’w% + k.

Otherwise, if he overtakes & - 1 customers, his expected cost is Cy f; k-1 + (k —1)C,. Finally,

if he overtakes & — 2 customers, his expected cost is Cy fi41,k—2 + {k — 2)C,. By assumption
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the customer is indifferent between the three options, hence

C j .
fj,k—l - C_O + i’) VJ 2 1) (14)
and,
C, 1 .
fik—2= 250' + '?T, Vi > 2. (15)

Consider a customer who observes k—1 customers upon arrival. If he overtakes k—1 customers,
his expected cost is Cyfor—1 -+ (k — 1)C,. Otherwise, if he overtakes k — 2 customers, his
expected cost is Cyy f1 g—2 + (k—2)C,. By assumption the customer is indifferent between the
two options, hence

Cy
Jok—1 = flp-2— c. (16)

Consider a customer who observes k& — 4, 7 2 2 customers upon arrival. If he overtakes
all of them then his waiting time is equivalent to a busy period and his expected cost is
Cwlogk—j + (k — 7)Co, or equivalently Owﬁ + (k — 5)C,. Otherwise, if he overtakes only
i < k — j customers, his waiting time is equivalent to & — j — ¢ 4 1 busy periods and his
expected cost is O, fz—;—i: + iC, , or equivalently Cw’“;jf% + iC,. The strategy defines
an equilibrivm if and only if overtaking all customers is a best response of a new customer.

Hence, Cw;u—i-)\ +(k—4)C, < Cw% + (5, or equivalently %Z < E"E“X

Consider a customer in state (j — 1,k — 1), § = 1. The expected time till the next arrival
or service completion occurs is Flu With probability ﬁ a new customer arrives before a
service completion occurs. The new arrival overtakes & customers with probability p;? k1
in this case the customer’s expected residual waiting time is f;5—1. Otherwiée, if the new
arrival overtakes only & — 1 customers {with probability p?;é_l), or k — 2 customers (with
probability 1— pg? Lkl p;?;é_l), the customer’s position is guaranteed, with expected waiting
time f; 3% = f; ‘With probability X%I the service completion occurs before a new arrival,
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and then the customer’s expected residual waiting time is f;_gr—1. Therefore, for 7 = 1

/\(lﬁp".’ ) .
. R +k—1/ F
Fimtp1 = x5 + s ficek-1+ ,{4_” Fie—1+ =10

or equivalently,

Aj .
fig—1= A+ ) fi—1p-1 — wfj—2k—1 — 1 - m (1 [ 1)] izl (17

AJ-%-k 1

Substituting f) 5.1 from (14) in (17) for j = 1 gives

y 1C

M=o [ i -1-2]. 9

Substituting fy x—1 and fo g1 from (14) in (17} for j = 2 gives

=

p
S| =

A
Py =1+5 - =2 [#fo,k—l + ;} . (19)

For j > 2, substituting fjx—1, fj—1k—1, and fj_px—1 from (14) in (17) gives,

phy =1 “’t Vi > 2 (20)

We denote p¥ by 2. Substituting fos—1 from (18) in (19) gives

. __)\+u[1_6‘w]_ t (21)

Prt1 = =3 o) ~xwa”

Consider a customer in state (7 — 1,k — 2), j 2 2. The expected time till the next arrival
or service completion occurs is Wl,u With probability ﬁ a new customer arrives before a
service completion occurs. The new arrival overtakes k customers with probability pg? kg A0
k—1 customers with probability p o k g+ in both cases the customer’s expected residual waiting
time is f; k2. The new arrival overtakes k - 2 customers with probability 1 — p;? k2 pﬁ;é_g,
in this case customer’s expected residual waiting time is f;_; y_1. With probability J‘— the
service completion occurs before a new arrival, and ther the customer’s expected residual
waiting time is f;_s 2. Therefore, for j > 2
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‘ Mok otplT AL—p¥ o= PiTa_p)
. — 1 itk—2 +k 2 +k—2 +h—27 p,
.fjfl,.'cgz ~ e -+ A+”.f_j 2,k—2 + )\+,u,J fj,k 2+ 4 Mo L fj—l,k—l)

ot equivalently,

I B
My —a P an) (22)

[()\ + i fic1k2 — pfi—2p—2—1— A (1 — P yh e p?;;_g) fj~1,k~1] 2

fip—2 =

Consider a customer in state (1,5 — 2}. The expected time till the next arrival or service
completion occurs is Wl,d With probability ﬁ—ﬁ a new customer arrives before a service
completion occurs. The new arrival overtakes & customers with probability p':,g and overtakes
k — 1 customers with probability p;:‘l, in both cases the customer’s expected residual waiting
time is faz—g. The new arrival overtakes & — 2 customers with probability 1 — pch pz 1
in this case customer’s expected residual waiting time is fi _;. With probability ;\-%; the
service completion cccurs before a new arrival, and then the customer’s expected residual
waiting time is fyx_2. Therefore,

+ m_f 2 I—?GWLfl k—1 . Substituting far_o from

fle-2 = A}r + i fop-2

(15) and f1 1 from (14) and p§ = = gives

/\igg (er1egf?). (23)

1
fip—2=—+

-+
p ,\+,uf0‘k2

Consider a customer in state (0,k — 2). The expected time till the next arrival or service
completion occurs is ﬁ With probability 7\-)I\—_1L a new customer arrives before a service
completion occurs. The new arrival overtakes & — 1 customers with probability p,,c 1, in
this case customer’s expected residual waiting time is fi y_2, and overtakes k — 2 customers
with probability 1 — pﬁ:i, in this case customer’s expecled residual waiting time is fog—1.

- M-phD)
Therefore, for 2 = M_# + /\j“_'ul fre-2 + =5 o1
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Substituting fo ;1 from (16) gives

1 A No2 o
_p = e 1-— . 24
Jop—2 i A+#f1k 23 40 ( pk,l) (24)

Substituting fz x—2 from (15), fyx—1 from (14), k=2, and § = 2 in {22) gives

C.,
o
p = ToX

A
(A 1) frgea — 2fok- 2—1—5]—1—$ (25)
Substituting fs p—o and fa o from (15), fa 1 from (14), p",g_H from (21), and 7 = 3 in (22)
gives
k-1 _ M I Cu
LBy, P, v 1] 9
Substituting f;x—o,f5—1,k—2,fj—2,4—2 from (15) and f;_15—1 from (14) in (22) gives p;:;; =

1—pfy ;= E.C;—“LH,VJ' > 2, and substituting pf, ; from (20) gives
pie =0, ¥ji>2 (27)

We denote pﬁj by y and pg—l by =.

Substituting fi y—o from (23) in (24) gives

(Nl +142) - M+l —y))|. (28

1 A G,
Jop—2= [( ) + =

A2+ Ap 4+ p? H Cp

Substituting this fy -z from (28) in (25) gives

A 2
2= G [0 W fips — o, 1 2] -

(29)
l—z- MAET AL [Az(ﬂ'f + 14 Z) - )\(}\ + ,M){]. — y)] .
Substituting f; g—o from (29) in (26) gives
oot BROZ ) G () A A )y — 1) w{Mkis)
Pet1™= PYEENDIPLEmyED LY T R
0Lz L,0gLy<1,02<£1,0<g79p £ 1,0« pk+1\1,becausetheya.reall
probabilities.
In addition p'“ Ly pf < 1 for every i = k,..., because if a customer observes i customers,
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then the sum of probabilities for overtaking k or k — 1 not greater than one {the sum is equal

to one for the sum of all three probabilities, for overtaking k, k — 1 and & — 2 customers).

The equilibrium conditions are not an empty range. A detailed example is given in Appendix-B.

6 Profit maximization

In this section we compare two models. In both of them the customers purchase priority, customers
are identical except their arrival time, there is no balking or reneging, and decisions are made upon
arrival and cannot be changed later. The service disciplines are preemptive resume. We compare

the server’s maximum expected profit per customer under equilibrium conditions.

6.1 Maximum profit in the current priority (CP) model

The first model is the model of Section 2. In this model purchasing priority enables overtaking
present customers. Upon arrival, a new customer decides on the number of current customers
that he overtakes, and pays per each overtaken customer a fixed cost. In this model an arriving
customer overtakes customers who are currently in the system, but future customers may overtake
him. Therefore, we call this discipline current priovity discipline and denote this model by CP.

We already showed that there may be numerous equilibria in this medels. For example, always
overfaking & customers, i.e., Zg, k& = 0,1,2..., are equilibrinm strategies. In particular strategy
Yoo, in which an arriving customer overtakes all customers who are currently in the. system. Note
that 2., induces a last-come fist-served order of service.

Notice that C, is a parameter that can be changed by a server, as opposed to €, which is

a given parameter. Denote by C7 the value which the server chooses in order to maximize its
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expected profit.

Theorem 6.1 The mazimum profit in the CP model among all equilibrium strategies is received

from Yoo with C* = M—C}g.

Proof: C, = %’X it is the maximum price for overtaking any customer and still X,, defines an
equilibrium, In Theorem 5.1 we showed that under any other equilibrium strategy the price per
each overtaken customer is not higher and the number of overtaken customers is not higher either.
Therefore, the maximum profit is received from . with this price. n

We assuine that the server can choose the equilibrium which maximizing its expected profit.
Hence, it will choose X, strategy in the CP model. The profit from a customer is the cost which
this customer pays. In the CP model it is C, per each overtaken customer. Denote by II°F the
server’s expected profit per customer in the CP model where an arriving customer always overtakes
all present customers, i.e., Yo, strategy, and the price per overtaken customer is the maximum price
which satisfles the equilibrium conditions, i.e., C}. The server’s expected profit per customer (who

A

overtakes all present customers) is C*L, where L = 7y is the expected number of customers in

the system. Therefore,
A

HGP == m‘cw (30)

6.2 Maximum profit in the absolute priority (AP) model with threshold n=0

The second model which is analyzed by Adiri and Yechiali [1], and Hassin and Haviv [9] has two
priority classes. In this model two FCEFS queues are formed in front of a single server, one for
priority customer and the other for ordinary customers. For a given threshold.va,lue n 2 0, an
arriving customer buys priority if and only if the number of customers in the ordinary queue is at
least n. In other words, this is an absolute priority discipline, and therefore denote this model hy

AP. If a customer purchases priority then he overtakes all customers in the ordinary queue, and
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becomes the last customer in the priority queue. The price for becoming a lower priorvity ordinary
customer is 0, this assumption is without loss of generality since there is no balking or reneging.
Denote by @ the price of purchasing priority, and by W(n) the expected time in the system of
the last customer in the ordinary queue when there are no customers in the priority queue and n
in the ordinary one, and all use the pure threshold strategy n. The following theorem is proved by

Hassin and Haviv [9]:

Theorem 6.2 The integer threshold strategy n, n = 1, specifies an equilibrium if and only if

é + Qf — EG—’”J/\ L CWin) £ 0+ %ﬂ The threshold n = 0 specifies an equilibrivm if and only if

6+ S g G
The profit from a customer is the cost which this customer pays. In the AP mode] it is 8, if
a customer buys priority, otherwise it is zero. Denote by TIAF (n} the server’s expected profit per
eustomer in the AP model as a function of a threshold n, and by O,g. the maximum price for buying
priority which satisfies the equilibrium conditions. In this section we compute the maximum profit
in the AP model with threshold nn = 0. In this case all customers use the pure threshold strategy
n = 0, therefore the strategy is always buying priority, and from Theorem 6.2, Opan = WA—ATG""’
so that TIAF(0) = Omaq.

Since mcw < (M—_’\A)—ZC’w, it follows that, IIAP(0) < TP, i.e., the server’s expected profit
per arrival in the CP model is greater than the server’s expected profit per arrival in the AP model

with threshold n = 0.

6.3 Maximum profit in the absolute priority (AP) model with threshold n2 1

In this section we compute the maximum profit in the AP model with threshold n 2 1. Denote
by P, the probability that the number of customers in the system (both ordinary and priority

queues) is at least m, in the AP model under the threshold strategy n. P, = P(L 2 n) = (%)” We
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assume that all customers use the pure threshold strategy n 2 1. From Theorem 6.2, in this case

Oinaz = Cu {W(n) + ﬁ — i] =y [W(n) + W/\—r\—)] Since an arriving customer buys priority if

T
and only if the number of customers in the queue is at least n, 1TAF (n) = OrnazFr = Omax (ﬁ) , OT

equivalently

T w s

We say that a customer in the ordinary queue is in state {4, §) if there are exactly ¢ customers in

AP (n) = € [W(n) L] (’\Y (31)

front of him in the ordinary queue {including the one in service), exactly j customers behind him
in the ordinary queue, and no customers in the priority queue. We denote by f; ;(n) the expected
(residual) waiting time of a customer in state (4, 7) given that all future customers adopt the pure
threshold strategy n. In addition let f_; ;(n) = 0. Hence W {n) = fo—1,0(n).

We now express the equations for calculating W{n).

e Suppose that the state is (4, 7) such that i+ 7 <n—1,i=1,...,n—2and §=0,...,n— 2.
The expected time till the next arrival or service completion is ﬁ“ With probability X—'L;TL
the service completion occurs before a new arrival, and then the customer’s expected residual
waiting time is f;_1;(n). With probability ﬁ a new customer arrives before a service
completion occurs and since ¢ - j < n —1, i.e., there are legs than n customers in the system,
a new customer does not overtake any customer and the customer’s expected residual waiting

time is f3 j41(n). Therefore, for ¢, jsuch thati+j <n—1,i=1,...,n—2and j =0,...,n—2,

1 I A
. =— 4" £ 4. AN ) 9
fi5(n) P + )\+#f 1,5{n) + )\_]_'ufw+1(”) (32)
s Suppose that the state is ({,n —4—1) ,¢ = 1,...,n — 1, i.e., there are n customers in the

system. Then, all future arrivals will overtake the customer, till the number of customers in

the queue is reduced by one. This is a busy peried, Hence, fori=20,,..,n - 2,

fimiman) = 2 + fiaia(n) (39
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In particular,

Win) = fa—10(n) = ;i—)\ + fn—2,0(n). (34)

o If the state is (0,7), 7 € 0,1...,n— 2, the expected time till the next arrival or service
completion is XTlrE With probability 5%# a new customer arrives before a service completion
occurs and since § < n — 1, i.e., there are less than n customers in the system, a new arriving
customer does nol overtake any customer and the customer’s expected residual waiting time

is fo,j41(n). Therefore,

1 A .
Joj(n) = pu + +#f0,j+1(ﬂ), i€0,1,...,n—2. (35)
Lemma 6.3
P M A,
W(l) = ﬁ and TIAP (1) = CWW—E}T)%J
2 32
Wi(2) = j#j)?z; and 11AP(2) = OMZ“(J;?/:;\% X (ay,

3 2 2 a3 4 J7Ne,,2 3 4
W(S) 3T AN A ) and HAP(S) = 3pt H8AT TS AN A (A)S.

T ()R- A2 (e =A%) I

In these cases TIAY (n) < II°P.

Proof: If n = 1, then all new arrivals buy priority and overtake the present ordinary customer. In
this case when the ordinary customer’s service ends the system becomes empty. Thus his waiting

time amounts to a busy period. Therefore,

Substituting (36) in (31) gives 1T (1) = Cy bl—/\ + IL{.U—)\—X)-] ﬁ, or equivalently,

Atp A

AP _
T VTS

Comparing ITAP(1) from (37) to II°F from (30) we get that TIAF(1) < 1P,

Observation 6.4 W(2) = f1,0(2).
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Now we compute W{2),

* Suppose a customer is in state (0,0). The expected time till the next arrival or service
completion occurs is A_-I—_lp, ‘With probability ﬁ” & new customer arrives before a service
completion occurs. Then, the new arrival observes one customer upon arrival, therefore he
does nol buy priority and does not overtake the present customer in the ordinary queue.

Hence,
1 A

2= ——
Joo(2) A+M+A+u

Jo1(2). (38)

* Suppose a customer is in state (0,1). All future arrivals will observe two customers or more
upon arrival, therefore, they will buy priority and overtake the present customers in the
ordinary queue till the number of customers in the ordinary queue is reduced by one, and it

is equal to a busy period. Hence,

foar® = . (39)

¢ Suppose a customer is in state (1,0). All future arrivals will observe two customers or more
upon arrival, therefore, they will buy priority and will overtake the present customers in the
ordinary queue till the number of customers in the ordinary queue is reduced by one, and it

is equal to a busy period. Hence,

Fi0(@) = 2= + fool?). (40)

Substituting (39) in {38} gives,

! A I '
2 = = .
foo(2) = 5 TutEe Y (41)

Substituting (41) in (40) gives, f10(2) = ’—j‘% Since W(2) = f1,0(2),

A4 20
pZ— 22

W2} =

35




2
Substituting (42) in (31) gives I*F(2) = G, L%f’g + m:‘j}] (ﬁ) , OT equivalently,

202 + 22y + A2 ()\)2
MAF(Q) =, = 222 T2 (2 43
@ p(p? — M) \p (43)

Comparing AP (2) from (43) to TI°F from (30) we get that IIAT(2) < II°F.
Observation 6.5 W(3) = f(2,0)(3).
Now we compute W(3).

s Suppose a customer is in state (0,0). The expected time till the next arrival or service
completion occurs is j\_}_—#. With probability )\-/I\Tu a new customer arrives before a service
completion occurs. Then, the new arrival observes one customer upon arrival, therefore he
does not buy priority and does not overtake the present customer in the ordinary queue.

Hence,

1 A
= m + mfu,l@)' {44)

foo(3)

e Suppose a customer is in state (0,1). The expected time till the next arrival or service
completion occurs is ﬁ With probability A—j‘_—” a new customer arrives before a service
completion occurs. Then, the new arrival observes two customer upon arrival, therefore he

does not buy priority and does not overtake the present customer in the ordinary queue.

Hence,

R
T Adp Adp

J0,1(3) fo.2(3). (45)

e Suppose a customer s in state (0,2). All future arrivals will observe three customers or more
upon arrival, therefore, they will buy priority and will overtake the present customers in the
ordinary queue till the number of customers in the ordinary queue is reduced by one, and it

is equal to a busy period. Hence,
1

Jo2(3) = PEyY (46)
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e Suppose a customer is in state (1,0). The expected time till the next arrival or service
completion occurs is XTIFE With probability %hu a new customer arrives before a service
completion occurs. Then, the new arrival observes two customer upon arrival, therefore he
does not buy priority and does not overtake the present customer in the ordinary queue.
With probability X_flf—# & service completion occurs before an arrival of a new customer, then

the customer’s expected time is foo(3). Hence,

1
At

A
At

f1,0(8) = + ﬁ#“ﬁ},o(:ﬂ + f1,1(3). (47)

¢ Suppose & customer is in state (1,1). All future arrivals will observe three customers or more
upon arrival, therefore, they will buy priority and overtake the present customers in the
ordinary queue till, the number of customers in the ordinary gueue is reduced by one, and it

! LL A ! '

¢ Suppose a customer is in state (2,0). All future arrivals will observe three customers or more
upon arrival, therefore, they will buy priority and will overtake the present customers in the
ordinary queue till the number of customers in the ordinary queue is reduced by one, and it

is equal to a busy period. Hence,

fon(3) = ;%; + f1,0(3). (49)

Substituting {46) in (45), gives
f0a(3) = 5155 (50)

Substituting (50) in (48), gives
ha(d) = 25, )
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Substituting (50) in {44), gives

2N
sl3) = G Ty o2

Substituting (52) and (51) in (47) and the result in (49) gives, fo,o(3) = 2 iﬂi’)‘j&gfﬁg)\a

Since W(3) = fa,0,
3 7y ,,2 2 3
W(3) e+ TApS +4Ap 4 X
(A + )2 (12 — A%)

. . . . ] 3 2 2 a 3 s
Substituting (53) in (31) gives TTA"(3) = Cy [Sﬂ(ﬂﬁz(ﬁi’%—;)\ + u(.u/\—)\)] (ﬁ) , Or equiva-

(53)

lently,
24 4 818 2,2 4433 4 3
[AP (3) = ¢, A BT T T AN ) (5> . (54)
PN+ @2 (2 - A2%) 1
Comparing IT*P(3) from (54) to TI°F from (30) we get that TTAY(3) < TI°P.
o

Since it is difficult to find general expressions to f; ;(n), we numerically compute these values. In

all cases we found that TTAP (n) < TI°C. Some results are illustrated in the next Subsection 6.4.

6.4 Numerical Analysis of profit maximization

The graphs in Figure 4 present the server’s expected profit per customer in the AP model as a
function of the threshold n and arrival rate A. For every A the server’s expected profit is higher
when the threshold n is smaller. There are A values for which the function is convex, for example
A = 0.3. There arve A values for which the function is concave, for example A = 0.99, and there are

A values for which the function is neither convex nor concave, for example A = 0.9,

As presented in Tables 2 and 3, TI°T is much grater than IIAF(n) for all presented parameters.

Therefore, the server can obtain a higher profit in our model.
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In addition, we see in Figure 5, as expected, that when the service is slower, i.e., i is lower, the

server's profit is higher. This result is expected since there is no balking.

25

The server's prafit per custemer, p=1
T T

Tha server's proflt per customer, =1
T

A=0.05

The setvar's profll par cuslomar, j=1

250
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Figure 4: The server's expected profit ITI*F(n) as a function of the threshold n and arrival rate A.
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A | IAP(4) | IAP(7) | TIAP(10) | 1P

0.1 ] 0.0004 | 0.0000 | 0.0000 | 0.0123

0.2 | 0.0073 | 0.0001 0.0000 | 0.0625

0.3 | 0.0406 | 0.0018 0.0001 0.1837

0.4 | 0.1452 | 0.0143 | 0.0012 | 0.4444

0.5 0.4149 | 00768 | 0.0126 | 1.0000

0.6 | 1.0666 | 0.3241 0.0805 | 2.2500

0.7 | 2.5746 | 1.2067 | 0.5149 b.4444

0.8 | 6.5393 | 4.4083 | 2.7315 | 16.0000

0.9 | 20.8894 | 19.3777 | 16.6511 | 81.0000

Table 2: Server’s expected profit per customer in CP and AP models, ¢t = 1.

p | TAP(4) | AP (7) | ITAP(10) | TIOF

0.2 | 2.0743 | 0.3838 | 0.0630 | 5.0000

0.3 | 0.2143 | 0.0126 | 0.0006 | 0.8333

0.4 0.0466 | 0.0012 [ 0.0000 | 0.2778

0.5 1 0.0146 | 0.0002 | 0.0000 | 0.1250

0.6 | 0.0057 [ 0.0000 | 06.0000 | 0.0667

0.7 | 0.0026 | 0.0000 | 0.0000  0.0397

0.8 | 0.0013 | 0.0000 , 0.0000 | 0.0255

0.9 | 0.0007 | 0.0000 { 0.0000 | 0.0174

1.0 | 0.0004 | 0.0000 | 0.0000 | 0.0123

Table 3: Server's expected profit per customer in CP and AP models, A =0.1.
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TFigure 5: The server’s expected profit per customer in AP model as a function of p.

7 A threshold strategy for overtaking a single customer

7.1 Overtaking one customer - pure threshold strategy

The pure threshold strategy o, is defined as follows: a new customer overtakes one customer if

there are n or more customers in the system, and does not overtake any customer otherwise.

Theorem 7.1 The pure threshold strotegy o, defines an equilibrium if and only if ﬁi—)\ < gfu- <

X
=2}

Proof: When all others apply the pure threshold strategy .., a new customer’s best response
does not overtake more than one customer, since by overtaking one customer the new customer
guarantees his place in the queue and from the assumption of our model that %1— < (U, there is
no benefit in overtaking more than one. In addition, if a customer observes n — j customers, j =

2,3,...,n then not overtaking any customer is the best response since he will never be overtaken,
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and from the assumption of our model that %‘i < (O, there is no benefit in overtaking any customer.

* Suppose that a new customer observes n — 1 customers. If he does not overtake, all future
arrivals will overtake him as long as his position is n or more. The time it takes for the new cus-

tomer till he reaches position n— 1 is equal to a busy period. So the customer’s expected cost

is % (1%9 +n— 1). Otherwise, if the new customer overtakes a single customer, he guar-
antees his place in the quene and his expected cost is C’w&ﬁl -+ Cy. In symmetric equilibrinm
n—1

the best response of a new customer is not overtaking. Hence, %ﬂ(ﬁ +n-1) £ C'w—-'um +Cy,

and this inequality gives the first condition for an equilibrium, ﬁ < g&

w

s Suppose that a new customer observes n + j customers, j =0,1,2,..., and doesn’t overtake
any customer. Then all future arrivals will overtake him as long as his position is n or more.
Hence his waiting time consists of 5 + 2 busy periods (reducing the number of customers by
J+2), plus n — 1 service periods. His expected cost is then %L (% +n— 1). Otherwise,
if a new customer overtakes a single customer, he guarantees his place in the queue and his
expected cost is C’w%";—j + Y. In symmetric equilibrium the best response of a new customer
is overtaking. Hence, C‘wﬁ:—j 4+ s £ %— (-31:% +n - 1), or equivalently gf'; < iﬁ—f{%, and

FAFFA s s s Co ptA s g i
‘{L(T/%T is minimum for § = 0. Therefore, 72 < sy 18 the second condition for an equilib

rium.

7.2 Overtaking one customer - mixed threshold strategy

The mixed threshold strategy o, , where 0 < p < 1, is defined as follows: a new customer overtakes

one customer if there are at least n -+ 1 customers in the system, does not overtake any customer if
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there are at most n — 1 customers in the system, and if there are exactly n customers in the system

he overtakes one customer with probability p, and does not overtake any customer otherwise.

Theorem 7.2 The mized threshold strategy o, p defines an equilibrium if and only if “%A £ % £

ﬁﬁ&i-% ond p = pe, where pe = K“"'/\)észﬁ:i‘\%—Cw),

Proof: Define fi(p) to be the expected waiting time in position i, when 4 iz the last customer in
the gueue, given that all customers follow the strategy oy p.

The expected waiting time in position n is computed as follows: the expected time till either
a service completion or a new arrival occurs is X-ll-_p With probability X_%ﬁ the service completion
occurs before a new customer arrives, in this position his place is guaranteed, and the expected
walting time f,_1(p), consists of n — 1 service periods. With probability :,\—j:ﬂ a new customer
arrives before a service completion occurs, then the new arrival overtakes the n-th customer with
probability p and his expected waiting time is fp41(p). Otherwise, if the new customer doesn’t
overtake the n-th customer, the n~th customer’s position is guaranteed, and his expected waiting
time is n service periods. The expected waiting time in position n + 1 is computed as follows: in
this position all future arrivals will overtake the last customer, therefore his waiting time will be
the busy period (which means to reduce the number of customers in the system to n), plus fu(p).

Hence, we get

1 o on—1 A )
falp) = [P LIS S + P [anﬂ(p) +{1 ﬁp)ﬁ] . (55a)
1 1 1
Far1(p) = pE R fulp) = e fnlp). (55b)

Substituting {55b) in (55a) gives

Ap )\n] . (56)

1
Under the pure threshold strategy oy, the new customer does not overtake more than one customer,

since by overtaking one customer the new customer guarantees his place in the queue and from the
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assumption of our model that %ﬁ < (, there is no benefit in overtaking more than one.

8

e Suppose that a new customer observes n customers. If he overtakes a single customer, he

guarantees his place in the queue and his expected waiting time is n service periods, plus Co.
Otherwise, if he does not avertake, all future arrivals will overtake him, therefore his expected
waiting time is a single busy period, plus f,,(p). In equilibrium a new customer is indifferent

between overtaking a single customer or not overtaking. Hence, Cy fn41(p) = Cw% + Oy, or

Cu |75 + fn(p)} = Cu® + C,. Substituting f,(p) from (56 gives p, — (H{Zett=Cu),

Because p. is & probability, we require that 0 < p, < 1. The denominator of p. is always
positive, so the numerator must be positive too. Therefore Co(p—A) —Cy > 0, or gi > Fwi_»\’
and this is one of the conditions for an equilibrium in a pure threshold strategy.

The condition for pe < 1is (u+ A) (Colpp — A) — Coy) < Co(pe— A), or @g‘@; < ﬁéﬁ%)’ and this

ig the additional condition for an equilibrium in a pure threshold strategy.

If pe is an equilibrium strategy, then the best response of a new customer who observes n — 1
customer is not to overtake. If he does not overtake, he will be n in the system, and his
expected waiting time will be f,(p). Otherwise, if he overtakes, he guarantees his place in the
queue and his expected waiting time is n — 1 service periods, plus C,. Therefore we should

get Cuwln(p) < Cw”T:l + C,, or W%U%T) > 0, and this is always true.

Concluding remarks

We did not analyze social optimization since the customers are statistically identical, i.e.,
we assume homogeneous time values, and in addition we do not allow balking. Hassin [7]

observed that if there is an option for balking then priorities have a positive influence on
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gocial welfare even if all customers are identical. If the customers are not identical, for
example, have heterogeneous time values then apparently in our model the customers with
lower time values will be at the end of the queue and others will overtake them. These issues

are for further study.

When assuming heterogeneous time values, the simplest and most intuitive model of an
incentive compatible pricing scheme is that of Ghanem [6]. Ghanem proved the intuitive
result that for social optimization higher priority should be given to customers with a higher

time value,

Fairness among customers is a fundamental issue for queueing systems. In many situations
we notice that customers wish for fair service and fair waiting time. The issue of fairness is
raised frequently in the context of evaluating queueing policies and its resolution is not simple
at all. Avi-Ttzhak and Levy |2| propose a fairness measure enabling to quantitatively measure
and compare the level of fairness associated with various queusing systems. They propose
yardsticks that can be used as standards for evaluating the fairness of various queueing sys-
tems with one class of customers, and for comparing different disciplines to each other. They
focused on the issue of customer seniority which is crucial in many queueing systems and
used an axiomatic approach to develop fairness measure that is based on this notion. Raz,
Avi-Ttzhak, and Levy [15] develop a quantitative model for studying priority and classification
systems, focusing on the relative fairness of these mechanism. Their analysis provides a mea-
sure of fairness for these systems. They limit the discussion to systems where job classification
is based only on service characteristics. One of their results is that from fairness perspective,
providing preferential service to shorter jobs may be justified in many cases. For comparison,

they provide the fairness analysis for an equivalent system where jobs are served in the order
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of arrivals (FCFS). They conclude that in many cases prioritization of short jobs over the long
jobs leads to higher fairness {than that of FCFS), nonetheless, in some cases IFCI'S is more
fair. In queueing systems with priorities the issue is how priorities and preferential service
affect fairness. In queueing systems with priorities which involve costs (waiting cost, priority
cost) such as our model the issue of how priorities and preferential service affect fairness has

not been explored and evaluated at all. This is an interesting subject for future research.

Appendix-A

In Section 4 we analyzed pure strategies in the observable model where customers observe the
number of people who are already in the system, and then decide how many custemers to overtake.
Those pure strategies are defined by a vector (k1, ko, ...}, where k; is the the number of customers
that a new customer overtakes if he observes 4 customers in the gystem upon arrival, Clearly,
k; < 1. We found some very surprising results of unexpected strategies which for some parameters
are equilibrinm strategies. In this appendix we give (0,2,0,0,5,5) strategy as an example for such
unexpected strategy.

The equations for (0,2,0,0,5,5) strategy are:

fig=5 ¥z

fou4= x5 + 33514

fia= v + o foa + xinla

fig = ﬁ + 5 ficat ﬁu%’}, Viz2
fos = pl;; -+ ;:):;;fo,a

fus = 5t + xhpfos + xinfes

foa = 3 + s fia + xafas
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fia =
foz=
fia =
fog =
faz =
fin =
fop =
fii =
fo1 =
fag =
fii =
Fil =
Joo
Fio =
fap =
fap =

fao =
fs0=
Jip =

i T o fies T s fia
Wl_“- + ﬁfo,a
vtk + xinfia
vis + g fie + xpfae
v o fae g fas
v+ i1 + 33 fss
r.lﬂ}; + ﬁfl,l

vt for + e
ﬁ -+ jﬁfl,l -+ j\'_??ﬁfﬂ,ﬁ
s+ sl + s fa

0 S .
Py + )\_._#fS,l + A+“f5,1

3
-

L LA r
7T oaei-n + g i
1 A
o T xafor

1 A
s e foo + X 20

The equilibrium conditions are:

k1 =10:

&> fio— fos

ky=2:

gf, < fip = foz

i

Wi

i

W

W

W
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S < Lo foa)

ky =0

&> fag— faig)y 1<i<3
&o > Moo — farig), 1<E<4
ks =5

Go < Hfismi— fos), 15495
ks =5

& < glfoo— fu)

So < 3(fs1 — fi5)

&e < §(faz— fis)

& < 3(f33 — fus)

< foa—fi5

> fis — Jfis

Lo
Cuw
Go
cﬂ)

For example f;; matrix for A = 1,4 = 1.4, —gﬁ-

0,8232 1.2187 00,8333 0.5875 1.3240
2.1594 1.9176 1.940) 2.3985 2.3456
2.8902 Z.9133 J.3072 3.3526 2.6778
3.8976 4.3079 4. 2768 3,6930 3.16%92
5.2850 5,2605 4. 6312 94,1348 3.7534
6.2274 $.5941 5.06811 4, 6596 4.3919
&.5468 5.5939 5.8537 5.2433 5,0619
6.9256 6.4559 $,1027 £.68713 £.7504
7.36240 €.5730 5. 6970 £.52088 6.9456
7.851% 1.5367 7.3259 7.2065 7.1552
8.3877 B8.1384 7.9807 T.8373 7.60643
B.9636 B.76399 B.6590 B.5956 B.5"56
8,5722 9.4243 9.3404 9.3014 ,2882

Figure 6: f;; matrix for A=1,u= 1.4, %
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[ A N ]

7143
4286
ig2g
as71
5714
2857
0000
7142
4286
1429

.8571
«STh4
L2857

0,7143
1.4286
2.1429
2.8571
3.5714
4,2857
5.0000
5.7143
6.4266
1.1429
7.8571
8.5714
2.285%7

o

L R R A

7143
4286
14z8
BS71

LET14
L2857
.0000
TL43
1285

1429

8571

5714
2857

a.7143
1.,4288
z.1429
2,8571
3.5714
2857
ooog
7143
428€
1428
Bs71
5714
2837

- I I N

Il
—

7143
1286
1429
16571
E714
.28587
.0o00
7143
qz86
1129
7.8571
B.5714
§.2857

e AN D =D




Appendix-B

In Section 5.3 we analyzed a mixed strategy i , where customers are indifferent between overtak-
ing k, k£ — 1 or k — 2 customers. We gave necessary and suflicient conditions to this strategy to

define an equilibrium. Tn this appendix we give an example to show that the equilibrium conditions

k
1P

DI
o bt

are not an empty range. Suppose that A = 1, u = 2, % = 0.7, then z = %,y =5,2=
0.7916, p‘;:_l__% = 0.0477, for every k 2 1 satisfy the all conditions.

It is meaning that if a customer observes k — 1 customers upen arrival, then with probability % he
overtakes k — 2 customers or all of them. If a customer observes k customers upon arrival, then
with probability i he overtakes & — 2 or k — 1 customers, and with probability % he overtakes k
customers. If a customer observes & + 1 customers upon arrival, then with probability 0.1607 he
overtakes k — 2 customers, with probability 0.0477 he overtakes k — 1 customers, and with prob-
ability 0.7916 he overtakes k customers. IFinally, if a customer observes k 4+ 2 or more customers
upon arrival, then with probability 0.625 he overtakes k — 2 customers, and with probability 0.375
he overtakes & customers. .

The equilibrium conditions are:

fipmr=&+ 4,521,

fina =26+ 507> 2,

Jor—1= frr—2— &%

For example lets take k = 3, and suppose that if a new customer observes 15 or more customens

upon arrival he does not overtake any of them.

P = 0.25, p3 = 0.25, p = 0.5,
pi = 0.1607, p? = 0.047, p§ = 0.7918,

pj = 0.0.625, p =0, p? = 0.375, ¥j > 5.
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Caleulating f; ;:

j=a

Jig =11 Vi

Joa= ﬁ_— XA— (s +p3)fos +p3f1,2)

fia= x5+ xigfoe + 53 (0 + pi)fis + pif20)

fop= A}m + 5k fie A+y. ({pt + p¥) a3 + PEfs2)

frig = 1= + 5 foe + ;\%ﬁ ((pig + Pl f1us + Py f122)

- 13
froe =5 T wpfe F 3

_ 14
fis2 = ,\Jm + iS22 + ,\Jm m

for = x5 + x5 (pafoz +pifL)
fi1 = x5 + st foa + ﬁ (p3fis + (2 4+ p3) o)

shosfu ﬁ (pifoz + (P54 03 fa1)

Jizg = )\_IHL + ;\+“f111 + >\+# (plyfize + (Pl + pl4) fra,1)

Fian = x5 + s fiza + 18
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0.6478 0.6333 0.5000
1.3405 1.29596 1.0000
1.9129 1.7997 1, 5000
Z.4136 2.2998 2 .0000
2.9220 2.79589 2.5000
3.4293 3.2989 3.0000
3.9348 3.7989 3. 5000
4,4368 4.2999 4.0000
4.9418 4.8000 4.5000
5,4439 5.3000 5.0000
5.9455 5.7999 5,5000
6.4463 6,2997 &.0000
6.59446 6.7979 n. 5000
7.4282 7.2848 7.0000
7.8171 7.6899 7.5000

Figure 7: fi; matrix 0 <{ <18 and j =1,2,3. A=1, p =2, %‘3 =0.7
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