
THE SCHEDULING OF MAINTENANCE SERVICE

Shoshana Anily† Celia A. Glass‡ Refael Hassin§

Abstract

We study a discrete problem of scheduling activities of several
types under the constraint that at most a single activity can be sched-
uled to any one period. Applications of such a model are the schedul-
ing of maintenance service to machines and multi-item replenishment
of stock. In this paper we assume that the cost associated with any
given type of activity increases linearly with the number of periods
since the last execution of this type. The problem is to find an opti-
mal schedule specifying at which periods to execute each of the activity
types in order to minimize the long-run average cost per period.

We investigate properties of an optimal solution and show that
there is always a cyclic optimal policy. We propose a greedy algorithm
and report on computational comparison with the optimal. We also
provide a heuristic, based on regular cycles for all but one activity
type, with a guaranteed worse case bound.

Keywords: Scheduling, maintenance.

†Faculty of Management, Tel-Aviv University, Tel-Aviv 69978, Israel.
anily@taunivm.tau.ac.il

‡Faculty of Mathematical Studies, University of Southampton, Southampton SO9 5NH,
England. cag@maths.soton.ac.uk

§Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv
69978, Israel. hassin@math.tau.ac.il

1 Introduction

We study a problem of scheduling activities of several types. We find it
convenient to describe it in terms of scheduling maintenance service to a set
of machines.

We consider an infinite horizon discrete time maintenance problem of m
machines, M1, ...,Mm. The cost of operating a machine at any given period
depends on the number of periods since the last maintenance of that machine.
We start with a linear cost structure where each machine i is associated with
a constant ai and the cost of operating the machine in the j-th period after
the last maintenance of that machine is jai, for j ≥ 0. We assume that no
cost is associated with the maintenance service. Each period service may be
given to at most one of the machines. The problem is to find an optimal
policy specifying at which periods to service each of the machines in order
to minimize the long-run average operating cost per period.

Another application of this model concerns the problem of infinite hori-
zon, discrete time, multi-item replenishment of m items where at each period
the stock of at most one of the items may be replenished. The only costs
involved are item-specific linear holding cost that are incurred at the end of
each period. Let di denote the demand per period of item i and let hi be its
unit holding cost per period. Define also ai = dihi. The cost of holding the
stock of the ith item j periods prior to the next replenishment of that item
is therefore jai.

In the maintenance problem the cost related to a machine is increasing
up to its next service and in the replenishment problem the cost related to
an item is decreasing up to its next reorder point. However, the average long
run cost of the systems are of the same structure.

We start by proving that there is an optimal schedule which is cyclic, in
Section 2 and proceed in Section 3 to present an algorithm for finding an
optimal solution, based on network flow techniques. The two machine case is
solved directly in Section 4 and lower bounds of an optimal value presented in
Section 5. In Section 6 we present a heuristic with a bounded error guarantee.
However, for practical purposes we recommend the simple rule presented in
Section 7. It is easily programmed, requires very little computing time, and
as demonstated by a numerical study in Section 8, produces near-optimal
solutions. We conclude the paper with a list of open problems.

Papers containing analysis of similar type problems are [2, 3, 4, 5, 7, 8,

1

10, 12]. In particular, in the model treated in [8], there are bounds for each
machine on the length of time without maintenance and the problem is to
compute a minimum length cyclic policy obeying these bounds. In [12, 10]
the exact maintenance intervals for each of the machines are given, and the
problem is to minimize the number of servers needed to form a schedule.

2 Existence of an optimal policy

A policy P , is a sequence P = i1, i2, ... where ik ∈ {1, ...,m} for k = 1, 2, ...
denotes the machine scheduled for service during the k-th period. A policy
is cyclic if it consists of repetitions of a finite sequence i1, ..., iT . Such a
sequence is said to generate the policy. The minimum length of a generating
sequence is denoted T (P). For example, 122212221... is cyclic with T = 4.
Any set of T (P) consecutive periods constitutes a basic cycle of P . A cyclic
policy P is sometimes identified with its generating sequence S, so that we
use T (S) for T (P).

Without loss of generality we assume that a1 ≥ a2 ≥ ... ≥ am. Moreover,
we scale the ai values so that am = 1. For a policy P , let C(t, P) denote the
average cost over periods 1, ..., t. Clearly, we can restrict ourselves to policies
with bounded average costs and therefore we can define for each such policy
P the lim sup of its sequence of average costs:

C(P) = limt→∞C(t, P).

A policy is optimal if it minimizes C(P). We let C∗ denote the average
cost of an optimal policy.

Theorem 2.1 There exists an optimal cyclic policy for the above defined
problem.

Proof: The proof of Theorem 2.1 follows directly from Lemmas 2.2 and 2.3
below. These lemmas show that it is sufficient to consider cyclic policies with
bounded cycle length. Since there are finitely many such policies it follows
that there exists an optimal cyclic policy.

Lemma 2.2 For every policy P there exists a policy P ∗ such that the number
of periods between two consecutive maintenance services to Mi is bounded
from above by 2m(a1/ai + 1) for i = 1, ...,m and C(P ∗) ≤ C(P).

2

Proof: Let P be given by an infinite sequence (i(t))∞t=1 where i(t) denotes the
machine maintained according to P at period t. Let t(P) be the first period
in which, according to policy P , machine with index i(t(P)) is maintained at
period t(P) but is not maintained during the following b2m(a1/ai(t(P)) + 1)c
periods. We may assume that there exists a finite t(P) since otherwise there
is nothing more to prove. In order to construct a suitable policy P ∗, we
will define a sequence of policies Pk, for k = 0, 1, ..., P0 = P , for which the
cost incurred at any period l, l ≥ 1, by policy Pk does not exceed the cost
incurred by policy Pk−1 at the same period, and t(Pk) > t(Pk−1). Policy Pk is
constructed from policy Pk−1 as follows: let i′ = i(t(Pk−1)), that is according
to policy Pk−1, Mi′ is not maintained for b2m(a1/ai′ +1)c consecutive periods
after it was maintained at period t(Pk−1). Consider period τ1 = t(Pk−1) +
b2ma1/ai′c+1. The cost of operating M ′

i at period τ1 is at least 2ma1. During
the next 2m−1 periods after period τ1 Mi′ is not maintained, therefore there
exists a machine Mi′′ that is maintained during these periods at least three
times. Suppose that the second (third) maintenance of Mi′′ during these
2m − 1 periods occurs at period τ2 = τ1 + δ1 (τ3 = τ1 + δ2) for 2 ≤ δ1 <
δ2 ≤ 2m− 1. The new policy Pk is identical to Pk−1 at all periods except at
period τ2; according to policy Pk at period τ2 Mi′ is maintained instead of
Mi′′ . Consequently, t(Pk) > t(Pk−1).

We now prove that, for any period l, l ≥ 1, and for any given integer
k, the cost incurred by Pk at period l does not exceed the cost incurred by
Pk−1 at the same period. Take some positive integer k. In order to compare
the costs of the two policies Pk and Pk−1 for each period it is sufficient to
consider machines Mi′ and Mi′′ since they are the only ones affected by the
above change. Clearly, the cost for each period under both policies at the first
τ2−1 time periods is identical. After period τ3 the cost associated with Mi′′ is
identical for both policies. Under policy Pk, machine i′ obtains an additional
service prior to period τ3. Thus from period τ3 on, the cost incurred at each
period by Mi′ is not larger under policy Pk than the respective cost according
to policy Pk−1. It remains to compare the cost of these two machines in
periods τ2, τ2 + 1, ..., τ3 − 1: the saving on Mi′ at each period during this
interval is at least 2ma1. The additional cost due to Mi′′ during each of
these periods is at most ai′′(τ3 − τ1 − 1) < 2mai′′ which is bounded from
above by 2ma1, since τ3 − τ1 − 1 < 2m. Thus, the cost of Pk is no greater
than that of Pk−1 for all periods.

3

According to the above construction, policies (Pj)
∞
j=k coincide on the first

t(Pk) periods. As t(Pk) is monotone increasing we conclude that a limiting
policy P ∗ exists. By construction, the cost at each period of P ∗ is bounded
from above by the respective cost of P for all periods, resulting in C(P ∗) ≤
C(P).

As a result of Lemma 2.2 it is sufficient to look at the class of policies P in
which the number of periods between two consecutive maintenance services
to each Mi is not greater than 2m(a1 + 1) since we have scaled the ais to
ensure that 1 = am ≤ ai.

Define the state of the system at a given period as a vector s1, ..., sm,
where si denotes the number of periods since the last maintenance of Mi.

Lemma 2.3 For each policy P ∈ P there exists a cyclic policy P ′ ∈ P for
which C(P ′) ≤ C(P).

Proof: In view of Lemma 2.2, the number of possible states for each Mi

for a policy P ∈ P is bounded from above by 2m(a1/ai + 1) ≤ 2m(a1 + 1).
Therefore, the total number of possible states, considering the m machines,
is bounded by (2m(a1 + 1)m) . In view of the finiteness of the state space
and the stationarity of the model, there exists a policy P ∗ ∈ P that is cyclic
and C(P ∗) ≤ C(P).

Remark 2.4 Theorem 2.1 enables us to refer from now on to cyclic policies
only. We will do so implicitly in the rest of the paper. Indeed, we will refer
to a policy by its defining cycle.

3 A finite algorithm

Let the state at a given period be a vector (s1, ..., sm) where si ∈ {0, 1, ...}
specifies the number of periods since the last service to Mi.

An optimal policy can be computed through network flow techniques.
Specifically, consider a directed graph with a vertex set corresponding to the
states (s1, ..., sm) satisfying

4

1. si ∈ {0, ..., ui} i = 1, ...,M , where ui is an upper bound on si;

2. si 6= sj for i 6= j;

3. si = 0 for some i ∈ {1, ...,m}.

The arc set consists of arcs from a vertex (s1, ..., sm) to the vertices (s1 +
1, ..., sk−1 + 1, 0, sk+1 + 1, ..., sm + 1), for k = 1, ...,m. The cost associated
with each of these arcs is equal to

∑
i aisi. Our task is to compute a minimum

average cost cycle in this graph. This can be accomplished in time that is
quadratic in the number of nodes ([9]). However, the number of states, and
hence the algorithm’s complexity, is exponential even when the a values are
bounded.

We want to determine low upper bounds on {si} in an optimal solution.
The lower are these bounds the larger are the problems that we can optimally
solve. From Lemma 2.2 we have si ≤ 2m(a1/ai + 1) for i = 1, ...,m. In
particular, s1 ≤ 4m. Indeed we conjecture that s1 ≤ m is also correct. We
will reduce the other bounds and give the new values in terms of the bound
on s1.

Theorem 3.1 Let u1 be an upper bound on the value of s1 in an optimal
policy. Then,

ui =

√
4
a1

ai

(u1 + 1)

is an upper bound on si, i = 2, ...,m.

Proof: We derive the bounds under the assumption that si is not bounded
by u1. (They trivially hold in the other case.) Suppose Mi i 6= 1 is serviced
according to an optimal policy at period t and then is not serviced for si ≥ u1

consecutive periods till period t + si + 1. We will compare the cost of adding
a service to Mi instead of one of the services to M1. We search for the period
t̃ closest to t + (si + 1)/2 in which M1 is serviced; replace this service by a
service to Mi. Since, (according to the definition of u1) M1 must obtain service
during any u1 +1 consecutive periods, the period t̃ at which this exchange is
made must satisfy |t+(si +1)/2− t̃| ≤ (u1 +1)/2. Let ci(τ) denotes the total
cost due to Mi for periods 1, ..., τ − 1 if the machine is serviced in period 0
and is not serviced during periods 1, ..., τ − 1, i.e., ci(τ) = aiτ(τ − 1)/2.

5

The cost incurred by deleting the service to M1 is at most c1(2u1 + 2)−
2c1(u1 + 1) or a1(u1 + 1)2. The least saving due to Mi is

ci(si + 1)− ci(
si − u1

2
)− ci(si + 1− si − u1

2
) =

ai
si(si + 2)− u1(u1 + 2)

4
.

Note that the cost of the other machines Mj, j 6= i, j 6= 1 is not affected
by the above exchange. If the maximum additional cost due to M1 were
strictly less than the least saving due to Mi then we could reduce the total
cost per cycle by the above exchange, contradicting the optimality of the
starting policy. Therefore, by simple algebra, the concavity of the square
root function and the fact that u1 > 1, we conclude that si ≤

√
4a1

ai
(u1 + 1).

4 Two machine case

We now solve the problem with two machines.

Theorem 4.1 An optimal solution C∗ to the 2-machine problem with cost
constants a1 ≥ 1 and a2 = 1 is the policy with basic cycle length τ ∗ containing
one service to M2, where τ ∗ is the unique integer satisfying

(τ ∗ − 1)τ ∗ ≤ 2a1 < τ ∗(τ ∗ + 1).

Proof: Consider an optimal policy P and suppose that M2 is maintained at
least twice during a cycle. From theorem 2.1 we may assume that P is cyclic.
Denote its cycle length by τ . We show first that M2 is not maintained in any
two consecutive periods and then that each interval between two consecutive
services of M2 must have the same cost. From this it follows that there is an
optimal policy with a basic cycle containing precisely one service of M2. We
refer to a policy of this type with basic cycle length τ as P (τ). We then show
that the cost function C(P (τ)) is convex in τ and find its minimum value.

Suppose first that there are two or more consecutive periods with service
to M2. Consider the average cost of the solution P ′ with T (P ′) = τ − 1
obtained by cancelling one of these services. Then,

(τ − 1)C(P ′) ≤ τC(P)− 2a1

6

so that

C(P ′) ≤ C(P) +
C(P)− 2a1

τ − 1
.

But C(P) ≤ a1 since the alternating policy with a period of size 2 has an
average cost of (1 + a1)/2 ≤ a1. Hence, C(P ′) < C(P), a contradiction.

Since P is a cyclic policy we may consider a basic cycle starting at any
point in the cycle. We shall consider a basic cycle starting with a service to
M2. We may then partition it into parts, each starting with a service to M2,
terminating in a service to M1 and otherwise containing only services to M1,
since services to M2 do not occur consecutively, from above. Then, C(P)
is the weighted (in the number of periods) average of the average costs of
the parts. We can produce a new policy by repeating a part with the lowest
average cost; the average cost of the policy produced is at most C(P) and
its basic cycle contains a single service to M2.

The total cost per cycle due to P (τ) is
∑τ−1

i=1 i + a1 = τ(τ−1)
2

+ a1. Thus,
the average cost

C(P (τ)) =
τ − 1

2
+

a1

τ
. (1)

Our task of finding an optimal solution C∗, reduces to computing the integer
τ ∗ that minimizes C(P (τ)) = τ−1

2
+ a1

τ
. Since C(P (τ)) is a strictly convex

function in τ , this task is achieved by differentiating C(P (τ)) with respect
to τ and rounding. If

√
2a1 is an integer then τ ∗ =

√
2a1. Otherwise, we

compare C(P (b
√

2a1c)) with C(P (d
√

2a1e)) and choose τ ∗ as the cycle giving
a lower average cost. This leads to the expression in the statement of the
theorem.

5 Lower bounds

In this section we derive lower bounds on the cost of an optimal policy.

Theorem 5.1 A lower bound on the cost of an optimal solution is given by

m∑
i=2

(i− 1)ai.

7

Proof: At each period there must be at least one machine that has not
been maintained during the last m − 1 periods, another one that has not
been maintained for at least m − 2 periods, and so on. A lower bound is
obtained when we assume that the machines that have not been maintained
for a longer time are those with lower costs.

This bound is strengthened by the following theorem.

Theorem 5.2

LB1 =
m∑

j=1

m∑
i<j

√
aiaj

is a lower bound on the cost of an optimal policy.

Proof: Consider a relaxation of the problem in which we assume that any
number of services may be performed in a single period. The variables in the
relaxed problem are integers T and n1, ..., nm where T is the length of the
basic cycle and ni represents the number of times Mi is maintained during the
basic cycle, for i = 1, . . . ,m. There is a single constraint that

∑m
i=1 ni = T .

The objective is to minimize the average cost per unit time. Consider a
machine Mi. Let τ (j), for j = 1, . . . , ni, denote the integer number of periods
in the intervals in a basic cycle between services to Mi. Then the total cost
of servicing Mi is ai

2

∑ni
j=1(τ

(j) − 1)τ (j). While optimizing this expression we

further relax the constraints and allow the variables τ (j) to be continuous.
Thus, the intervals between services are no longer restricted to be integer and,
since we allow services to overlap, the service times to each of the machines
may be optimized independently, apart from the constraint on the sum of
the ni’s.

This function is optimized by taking equi-distance intervals τi = T/ni. In
this case, the average cost associated with Mi is just (niai(τi − 1)τi)/2T =
ai(τi − 1)/2, and the total average cost of the relaxed problem is bounded
from below by the solution value to the following problem:

minimize 1
2

∑m
i=1 ai(τi − 1),

subject to: ∑m
i=1(1/τi) = 1.

By deleting constant factors in the objective function and applying La-
grangian relaxation we obtain an equivalent form of the problem:

8

minimize
∑m

i=1(aiτi)− λ(1−∑m
i=1(1/τi)).

The solution to this problem satisfies the following system of equations

λ = aiτ
2
i for i = 1, ...,m,∑m

i=1 1/τi = 1,

and is therefore given by λ = (
∑m

j=1
√

aj)
2 and τi = τR

i where

τR
i =

m∑
j=1

√
aj/
√

ai.

The cost of the corresponding solution is

1

2

m∑
i=1

ai(τ
R
i − 1) =

1

2
(

m∑
i=1

√
ai)

2 − 1

2
(

m∑
i=1

ai) =
∑
i<j

√
aiaj = LB1, (2)

giving a lower bound on the optimal cost of the original problem.

Remark 5.3 Observe that the bound of Theorem 5.1 is a weaker bound
than LB1 since, according to our assumption, for i < j, ai ≥ aj, thus√

aiaj ≥ aj.

Remark 5.4 The lower bound LB1 may be far from optimum when τR
1 is

close to 1, i.e. a1 >>
∑m

i=2 ai. The actual average cost due to M1 in the
optimal policy will be much greater than M1’s contribution to LB1. In order
to see this gap, consider again the 2-machine problem with a2 = 1 and M2 is
served exactly once in a cycle. The continuous relaxation of the average cost
function (1) provides a lower bound of

√
2a1 − 0.5 on the optimal average

cost. Then,

lim
a1→∞

C(P (τ ∗))

LB1
≥ lim

a1→∞

√
2a1 − 0.5
√

a1

=
√

2, (3)

where τ ∗ denotes the optimal basic cylce length.
When a1 is large relative to the other costs, the optimal solution will

include consecutive services to M1 and the quality of LB1 will be poor. We
now present a lower bound that will perform well exactly in these cases. This
observation is validated by computational results presented in Section 8.

9

Let C1i denote the solution value, i.e. the minimum average cost, of the
two machine problem consisting of M1 and Mi.

Theorem 5.5 LB2 =
∑m

i=2 C1i is a lower bound on the cost of an optimal
policy.

Proof:
Consider a relaxation of the problem in which we assume that machines

Mi, for i = 2, ...,m, can be serviced simultaneously. The condition
∑m

i=1 ni =
T ensures that for each additional machine service in a given time period
there is a corresponding empty time period with no service elsewhere in the
basic cycle.

A lower bound on the cost of a solution to the relaxed problem is given
by costing maintenance to M1 at a1 for each time period in which it is not
serviced and to M2, ...,Mm in the usual way. This is equivalent to accruing
a cost due to M1 of a1 for each of the services to M2, ...,Mm.

Thus solutions to this relaxed problem, with lower bound costs, corre-
spond to an amalgamation of m−1 2-machine problems for Mi and M1, i ≥ 2.
Therefore, the least cost of the latter

∑
i≥2, C1i = LB2, provides a lower

bound to the former and hence to the original problem.

6 Bounded error heuristic

In this section we develop a simple policy and show that its worst case ratio
error is bounded by 2.5. According to the proposed policy the machines,
except possibly M1, are maintained in equi-distant time intervals which are
machine dependent, where the time intervals are given as integer power of
two. Before proceeding with the algorithm we need to describe some prop-
erties of a policy in which machines are maintained at frequencies which are
integer powers of two.

Lemma 6.1 If
∑m

i=1 2wi = 2W for some integers W , and w1 ≤ . . . ≤ wm,
and m > 1, then there is a partition of the set {w1, . . . , wm} at some integer
` for which ∑̀

i=1

2wi =
m∑

i=`+1

2wi = 2W−1.

10

Proof: See, Lemma 1 in [6].

Lemma 6.2 Given τ1, τ2,, τm such that
(i)

∑m
i=1 τ−1

i ≤ 1 and
(ii) τi = 2`i , `i ∈ IN for i = 1, ...,m,
there exists a policy with a basic cycle length of T = max{τi}, in which
Mi is serviced at equi-distant intervals of length τi each. This policy can be
constructed in O(m log m) time.

Proof: Suppose that the indices are ordered so that τ1 ≤ τ2 ≤ ... ≤ τm.
According to such a policy Mi must be serviced ni times during a cycle
where

ni =
T

τi

= 2wi , wi = `m − `i ∈ IN.

Thus, the number of services to each machine during a cycle is an integer
powers of two and n1 ≥ n2 ≥ ... ≥ nm.

Without loss of generality we assume that
∑

τi
−1 = 1, or equivalently,

that
∑

ni = T = 2`m . Otherwise, we may introduce dummy machines
Mm+1, ...,Mm+k, with τi = 2`m = T for i = m + 1, . . . ,m + k. Each of
these machines will be serviced once during the cycle to fill the k gap periods
with services.

The required policy is fully specified by the periodicity τi and the ti, the
first period in the basic cycle in which Mi is serviced for i = 1, ...,m. It
can be constructed by repeated applications of Lemma 6.1 as demonstrated
below. In the initial step we start with the set, A = {M1, ...,Mm} and we
allocate all of the T periods in a basic cycle to the machines in A without
specifying the assignment of machines to periods. We set τ(A) = t(A) =
1 meaning that machines from A are serviced each τ(A) periods starting
from t(A). (Only t(A) is required for the algorithm, we define τ(A) just
for the sake of the description.) In the second step of the procedure we
partition A into two subsets, B and C, as follows. Let ` be as in Lemma
6.1 with

∑`
i=1 ni =

∑m
i=`+1 ni, then take B to be {M1, ...,M`} and C to be

{M`+1, ...,Mm}. We allocate the periods to B and C in an alternating fashion:
BCBCBC...BC. We set τ(B) = τ(C) = 2, t(B) = 1, and t(C) = 2. We
repeat this procedure for the machines within each set. In the general step, if
a set F is partitioned into sets G and H, then we allocate the periods assigned

11

to F in order GHGH . . . and set τ(G) = τ(H) = 2τ(F), t(G) = t(F), and
t(H) = t(F) + τ(F). The process is repeated as long as there are sets
consisting of more than one machine. It ends with sets {Mi} such that
τ({Mi}) = τi. Setting ti = t({Mi}) we obtain the required poicy.

To implement the algorithm we first compute the partial sums Nj =
n1 + ... + nj for j = 1, ...,m. This takes linear time. Then, each application
of Lemma 6.1 requires a binary search in the relevant range of the values Nj

and takes O(log m) time, while defining the tj values takes constant time. In
total there are m− 1 such iterations. The complexity of ordering the indices
and constructing the policy is therefore O(m log m).

We now proceed with the description of a power of two heuristic. We
start with a generally infeasible solution which is known to have low cost,
namely the solution to the relaxed problem induced by LB1 described in
Section 5. From it we construct a schedule with basic cycle length which is
an integer power of two, in which the frequency of maintenance service to any
of M2, ...,Mm is reduced by at most a factor of 2 to an integer power of two.
This schedule is completed by providing the most expensive machine, M1,
with services at all periods in which none of M2, ...,Mm is serviced. Thus all
machines other than M1 are serviced at regular intervals which are powers
of 2, while M1 is possibly not. Recall that a1 ≥ a2 ≥ . . . am. The trivial case
m = 1 is excluded from consideration.

Power-of-two heuristic:

For i = 1, ...,m:
τR
i ←

∑m
j=1
√

aj/
√

ai ;
`i ← the integer satisfying 2`i−1 < τR

i ≤ 2`i ;
τ̃i ← 2`i .

Construct a schedule with services at regular intervals
τ̃i = 2`i for i = 1, . . . ,m,
as specified a in proof of Lemma 6.2.

Complete the schedule by using all “gap” periods, where none
of M1, . . . ,Mm is serviced, for additional services to M1.

12

Theorem 6.3 Let C be the average cost of the solution produced by the
Power-of-Two heuristic. Let C∗ be the average cost of an optimal solution.
Then, C ≤ 2.5C∗.

Proof:
In the power of two solution, Mi for i = 2, . . . ,m is serviced every τ̃i

periods and therefore has average cost ai(τ̃i−1)/2. The total cost due to M1

over any τ̃1 periods is at most a1τ̃1(τ̃1 − 1)/2, since M1 is serviced at least
every τ̃1 periods. As the cost due to M1 is only accrued in periods in which
M1 is not serviced, the average cost in such periods is at most a1τ̃1/2. Now,
by construction, the proportion of periods without service to M1 during a
basic cycle of length T is

∑
i≥2 1/τ̃i. Therefore,

C ≤ 0.5
m∑

i=2

ai(τ̃i − 1) + 0.5a1τ̃1(
m∑

i=2

τ̃−1
i).

Since τ̃i ≤ 2τR
i , and

∑m
i=2(τ̃i)

−1 ≤ ∑m
i=2(τ

R
i)−1 = 1− (τR

1)−1,

C ≤ 0.5
m∑

i=2

ai +
m∑

i=2

ai(τ
R
i − 1)+a1τ

R
1 (1− (τR

1)−1) = 0.5
m∑

i=2

ai +
m∑

i=1

ai(τ
R
i − 1).

Now, from equation (2),
∑m

i=1 ai(τ
R
i − 1) = 2LB1 and applying Theorem 5.1

and Remark 5.3 gives 0.5
∑m

i=2 ai ≤ 0.5LB1. Thus, we obtain the inequalities,
C ≤ 2.5LB1 ≤ 2.5C∗, which completes the proof.

Remark 6.4 In this paper we assume that the operating cost of a machine
is linearly dependent of the time since its last service, starting with zero cost
at the period a service is given. Alternatively, we could assume that the cost
at that period is already ai. The average cost associated with any solution
differs between the two versions by a constant

∑
i ai, and therefore they are

equivalent with respect to optimal solutions. However, the version we treat is
harder to approximate with respect to the error ratio since both the optimal
and approximate solutions are smaller and hence their ratio increases. When
the cost functions starts at ai,

LB1 =
∑
i<j

√
aiaj +

m∑
i=1

ai

13

while the τR
i are exactly as in the other case. Analyzing the same power-of-

two heuristic, even without completing the schedule with additional services
to M1 at the last step of the heuristic, results in a worst case ratio of 2. The
analysis is much simpler for this version of the problem, since the average
cost due to Mi over any τ̃i consecutive periods is ai(τ̃i + 1)/2 for i = 1, ...,m.
Thus we obtain the inequalities

C ≤ 0.5
m∑

i=1

ai(2τ
R
i + 1) =

m∑
i=1

ai(τ
R
i + 1)− 0.5

m∑
i=1

ai = 2LB1− 0.5
m∑

i=1

ai < 2LB1.

The heuristic therefore has a worst-case bound of at most 2.

7 Greedy heuristics

In this section we propose a greedy heuristic that enables us to approximately
solve problems which are too large to be optimally solved by the algorithm
of Section 3. We give some intuitive motivation for its design. The proposed
greedy heuristic is tested computationally and results are reported in Section
8.

We compare the total cost incurred for each of the machines since the
last time they were serviced, assuming that they are not serviced in the next
period, and select the one with the largest such total cost for service in the
next period.

Greedy rule - GR:

Take (s1, ..., sm) at period t;

take an element î in argmax{ai(si + 2)(si + 1) : 1 ≤ i ≤ m};
service Mî in period t + 1.

The incentive for this heuristic, arises from the lower bound LB1 ob-
tained from the continuous relaxation of the problem described in Section

14

5. In this relaxation, when the time is continuous, the cost incurred by Mi

grows linearly at a rate ai with intercept 0. Thus, the total cost incurred
between two consecutive maintenance services to Mi given at distance of τ
time units one from the other is aiτ

2/2 (the area of the respective triangle).
By substituting τR

i for τ for i = 1, ...,m, we find that the total cost incurred
between two consecutive services to Mi is constant.

Remark 7.1 For the 2-machine case the policy produced by the greedy al-
gorithm is an optimal policy. To see this observe that in the greedy algorithm
we service M2 after τ − 1 consecutive services to M1 for the smallest value
of τ that satisfies a2(τ + 1)τ > 2a1. But this value of τ is the optimal basic
cycle length for the 2-machine case, from Theorem 4.1.

Remark 7.2 One might have thought that the marginal cost would be a
better criteria than total cost of a partial interval, i.e. using aisi in place of√

aisi in the algorithm. But it can be shown that the resulting algorithm has
an unbounded worse case ratio even in the two machine case.

8 Computational results

In this section we test the performance of the greedy heuristic GR proposed in
Section 7 and the effectiveness of the lower bounds LB1 and LB2 derived in
Section 5. We applied the greedy algorithm with the following tie-break rule:
when î is not uniquely defined take the largest index among the candidates
for selection. The initial state was arbitrarily chosen to have si = i − 1 i =
1, 2, ...,m. For small size problems, i.e. m = 3 and m = 4, we compute the
optimal solution, denoted by OPT , according to the algorithm proposed in
Section 3.

For the three-machine problem we also include the basic cycle length
T for each of the two schedules, OPT and GR. We use LB to denote
max{LB1, LB2}. In order to facilitate the comparison we use bold letters for
LB. The effectiveness of the lower bounds and of the heuristic is measured
by the ratios OPT/LB and GR/OPT for m = 3 and m = 4, and by the
ratio GR/LB in all other cases.

15

Results of our computational experiments, for a selection of instances
with 3,4,5 and 10 machines, are presented in Tables 1 to 4.

a1 a2 LB1 LB2 OPT GR TO TG
OPT
LB

GR
OPT

1 1 3.00 2.00 3.00 3.00 3 3 1.000 1.000
2 1 3.83 3.00 4.00 4.00 3 4 1.044 1.000
2 2 4.83 3.50 5.00 5.00 3 8 1.035 1.000
5 1 5.47 5.33 5.50 5.50 4 4 1.005 1.000
5 2 6.18 6.17 7.00 7.00 4 4 1.133 1.000
5 5 9.47 7.67 10.00 10.00 5 12 1.056 1.000
10 1 7.32 8.00 8.00 8.00 4 5 1.000 1.000
10 2 9.05 9.33 9.50 10.00 4 5 1.018 1.000
10 5 12.47 11.50 13.33 13.33 6 6 1.069 1.000
10 10 16.32 14.00 17.25 17.25 16 16 1.057 1.000
30 1 11.95 14.50 14.50 14.50 8 8 1.000 1.000
30 2 14.64 17.25 17.29 17.39 17 18 1.002 1.006
30 5 19.96 22.25 22.25 22.25 8 8 1.000 1.000
30 10 25.96 27.25 28.44 28.50 9 10 1.044 1.002
30 30 40.95 37.25 42.92 42.92 13 13 1.048 1.000
50 1 15.14 19.00 19.00 19.00 10 10 1.000 1.000
50 2 18.49 22.64 22.67 22.67 21 21 1.001 1.000
50 5 25.12 29.50 29.50 29.50 10 10 1.000 1.000
50 10 32.59 36.17 36.50 36.50 10 10 1.009 1.000
50 30 51.28 49.50 55.00 55.23 15 13 1.073 1.004
50 50 64.14 59.50 66.82 66.82 17 17 1.042 1.000

Table 1: Results for examples with 3 machines (a3 = 1).
TO ≡ T (OPT), TG ≡ T (GR)

16

a1 a2 a3 LB1 LB2 OPT GR OPT/LB GR/OPT

1 1 1 6.00 3.00 6.00 6.00 1.000 1.000
2 1 1 7.24 4.50 7.33 7.33 1.012 1.000
2 2 1 8.66 5.00 8.80 8.80 1.016 1.000
2 2 2 10.24 5.50 10.40 10.40 1.016 1.000
5 1 1 9.71 8.00 10.00 10.00 1.030 1.000
5 2 1 11.46 8.83 11.75 11.75 1.025 1.000
5 2 2 13.39 9.67 13.73 13.73 1.025 1.000
5 5 1 14.94 10.33 15.00 15.00 1.004 1.000
5 5 2 17.21 11.17 17.50 17.50 1.017 1.000
5 5 5 21.71 12.67 22.25 22.25 1.025 1.000
10 1 1 12.49 12.00 12.50 12.50 1.001 1.000
10 2 1 14.65 13.33 15.00 15.00 1.024 1.000
10 2 2 16.94 14.67 17.50 17.50 1.033 1.000
10 5 1 18.87 15.50 19.50 19.50 1.033 1.000
10 5 2 21.52 16.83 22.50 22.57 1.046 1.000
10 5 5 26.78 19.00 27.87 27.87 1.041 1.000
10 10 1 23.65 18.00 24.50 24.50 1.036 1.000
10 10 2 26.68 19.33 27.50 28.00 1.031 1.000
10 10 5 32.70 21.50 34.00 34.00 1.040 1.000
10 10 10 39.49 24.00 40.45 40.45 1.024 1.000
30 1 1 19.43 21.75 21.75 21.75 1.000 1.000
30 5 1 28.67 29.50 29.50 29.50 1.000 1.000
30 5 5 39.44 37.25 40.50 40.50 1.027 1.000
30 10 1 35.60 34.50 37.00 37.00 1.039 1.000
30 10 5 47.51 42.25 49.67 51.33 1.045 1.020
30 10 10 56.44 47.25 58.42 58.64 1.035 1.004
30 30 1 52.91 44.50 55.84 55.85 1.055 1.000
30 30 5 67.69 52.25 70.50 70.62 1.042 1.002
30 30 10 78.76 57.25 81.50 81.50 1.035 1.000
30 30 30 106.43 67.25 108.47 108.47 1.019 1.000

Table 2: Results for examples with 4 machines (a4 = 1).

17

a1 a2 a3 a4 LB1 LB2 GR GR/LB

5 1 1 1 14.94 10.67 15.00 1.004
5 5 1 1 21.42 13.00 21.75 1.015
5 5 5 1 29.42 15.33 29.50 1.003
5 5 5 5 38.94 17.67 39.50 1.014
10 5 1 1 26.27 19.50 26.75 1.018
10 10 5 1 42.26 25.50 43.00 1.018
30 10 5 1 59.39 49.50 61.83 1.041
30 30 1 1 65.86 51.75 68.77 1.044
30 30 30 1 123.86 74.50 126.95 1.025
30 30 30 30 201.91 97.25 204.00 1.010
100 1 1 1 46.00 54.57 54.57 1.000
100 30 5 1 125.81 119.79 127.50 1.013
100 30 30 5 209.59 169.48 217.15 1.036
100 100 30 5 294.23 206.14 304.67 1.035

Table 3: Results for examples with 5 machines (a5 = 1).

a1 a2 a3 a4 a5 a6 a7 a8 a9 LB1 LB2 GR GR/LB

10 1 1 1 1 1 1 1 1 64.46 36.00 64.50 1.001
10 9 8 7 6 5 4 3 2 224.91 65.17 229.55 1.021
10 10 10 3 3 3 1 1 1 153.03 55.00 153.50 1.003
10 10 10 10 10 1 1 1 1 189.06 60.00 190.00 1.005
10 10 10 10 10 10 10 10 10 388.46 84.00 389.50 1.003
100 1 1 1 1 1 1 1 1 126.00 122.79 126.50 1.004
103 1 1 1 1 1 1 1 1 320.00 398.00 398.00 1.000
103 103 1 1 1 1 1 1 1 1534.0 1353.8 1615.7 1.053

Table 4: Results for examples with 10 machines (a10 = 1).

In addition, for the case of m = 20 and ai = 21 − i for i = 1, ..., 20 we
obtained the following results: LB1 = 1796.35, LB2 = 272.83 and GR =
1833.69 and hence, GR/LB = 1.021.

The results confirm that lower bounds LB1 and LB2 are both useful.
Bound LB1 performs better most of the time, while LB2 consistently does

18

better for cases when a1 is large compared with the other ai values; the larger
m the larger should be the relative size of a1 for LB2 to outperform LB1.
So for m = 3 LB2 frequently outperforms LB1 whereas it rarely does so for
larger m.

The lower bound, LB, gives values within 8% and 6% of the optimum
for 3 and 4 machines respectively in our experiments. Moreover, for larger
problems the GR solution and hence the optimal solution are within 6% of
the lower bound.

All the evidence is that GR gives a very good approximation to the op-
timal solution, especially for large values of m. It performs within 2% of
optimality for our examples with m = 3 and 4 and within 6% of LB for
larger m.

9 Conclusions

In this paper we address a scheduling problem which may appear simple
at first sight. We present a simple rule that seems to give satisfactory ap-
proximate results. However, our theoretical analysis is not complete. We
described a finite algorithm of exponential complexity. We suspect that the
problem is NP-hard when the number of machines is part of the problem’s
input, but have so far not succeeded in proving it.

Even the three machine problem is difficult to solve analytically or by a
polynomial time algorithm. In preliminary work presented in [1] our approach
has been to classify cases and solve them to optimality. For the remaining
cases we present a heuristic with a guaranteed worse case bound of 5%.
Solving the three machine case to optimality is the subject of current research.

We assumed that the cost functions are linear. However, the results of
this paper might be generalized to any convex function.

References

[1] S. Anily, C.A. Glass and R. Hassin, “Scheduling of maintenance
services to three machines”, OR Preprint no. OR58, Faculty of
Mathematical Sciences, Southampton University, 1994.

19

[2] R. Chandrasekaran, A. Mukhopadhyay and P. Yang, “Optimal or-
dering policies for a capacity constrained two-item inventory sys-
tem”, Working Paper, The University of Texas at Dallas, 1992.

[3] R. Chandrasekaran, A. Mukhopadhyay and P. Yang, “Optimal or-
dering policies for a capacity constrained multi-item inventory sys-
tem”, Working Paper, The University of Texas at Dallas, 1992.

[4] C.A. Glass, “Feasibility of scheduling lot sizes of three products on
one machine”, Management Science 38, 1992, 1482-1494.

[5] C.A. Glass, “Feasibility of scheduling lot sizes of two frequencies
on one machine ”, European Journal of Operational Research 75,
1994, 354-364.

[6] R. Hassin, “A dichotomous search for a geometric random variable”,
Operations Research 32, 1984, 423-439.

[7] R. Hassin and N. Megiddo, “Exact computation of optimal inven-
tory policies over an unbounded horizon”, Mathematics of Opera-
tions Research 16, 1991, 534-546.

[8] R. Holte, L. Rosier, I. Tulchinsky and D. Varvel, “Pinwheel schedul-
ing with two distinct numbers”, Theoretical Computer Science 100
1992, 105-135.

[9] R. M. Karp, “A characterization of the minimum cycle mean in a
digraph”, Discrete Mathematics 23, 1978, 309-312.

[10] A. Mok, L. Rosier, I. Tulchinsky and D. Varvel, “Algorithms and
complexity of the periodic maintenance problem”, Microprocessing
and Microprogramming 27 1989, 657-664.

[11] R. Roundy, “98%-Effective Integer-Ratio Lot-Sizing for One-
Warehouse Multi-Retailer Systems”, Management Science 31,
1985, 1416-1430.

[12] W. Wei and C. Liu, “On a periodic maintenance problem”, Opera-
tions Research letters 2 1983, 90-93.

20

