
Operations Research Letters 33 (2005) 242–248

Operations
Research
Letters

www.elsevier.com/locate/dsw

Themaximumsaving partition problem

Refael Hassina, Jérôme Monnotb,∗
aDepartment of Statistics and Operations Research, Tel-Aviv University, Tel Aviv 69978, Israel

bLAMSADE CNRS, Université Paris-Dauphine, France

Received 3 March 2004; accepted 22 July 2004
Available online 6 October 2004

Abstract

The input to theMAXIMUM SAVING PARTITION PROBLEM consists of a setV = {1, . . . , n}, weightswi , a functionf, and
a familyS of feasible subsets ofV. The output is a partition(S1, . . . , Sl) such thatSi ∈ S, and

∑
j∈V wj −∑l

i=1 f (Si) is

maximized. We present a general1
2-approximation algorithm, and improved algorithms for special cases of the functionf.

© 2004 Elsevier B.V. All rights reserved.

Keywords:Partitioning; Color saving; Approximation algorithms; NP-complete

1. Introduction

Consider the following scheduling problem. Jobs
(or items) from a given setV have to be assigned (or
packed) to a set of identical machines for processing.
Owing to various constraints, the feasible assignments
to a single machine, are constrained to a familyS
of feasiblesubsets.S is an independenceor heredi-
tary system. This means that if a subsetSof jobs can
be assigned to a machine (i.e.,S ∈ S), then all the
subsets ofSare inS. The cost of assigning a subset
S ∈ S to a machine isf (S), and it is a function of
individual job parameterswi i ∈ S. For example,wi

may denote the skill level required to process jobi,
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andf (S)=max{wi |i ∈ S} is the skill level required to
process the subsetSon a single machine. The problem
is to partitionV into feasible subsets so that the total
cost is minimized.
In an interesting special case, the feasible subsets

are defined solely bypairwisecompatibility relations.
These relations can be defined by a graph, where an
edge indicates that its two ends are not compatible.
The feasible sets are then the independent sets of the
graph. In this case, our problem is a node coloring
problem, in which the cost of a legal coloring is the
sum of costs of its color classes as prescribed byf.
Even this special case is very hard to solve or even to
approximate since it generalizes theNODE COLORING

PROBLEMwheref (S) = 1 for everyS ∈ S.
The coloring case withf (S) = max{wi |i ∈ S} has

been studied in[5], where it is proved that this prob-
lem is NP-hard even in bipartite and other restricted
families of graphs. Other types of weighted coloring
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and partitioning problems are studied for instance in
[1,3,4,12,13].
It is natural to assume thatf is sub-additive, i.e., for

any two disjoint subsetsSandT, f (S ∪ T )�f (S) +
f (T ). Moreover, we assume thatf ({i})=wi and thus,
the worst possible solution, that assigns each job to a
distinct machine, costswor =∑

i∈V wi .
In this paper, we are mainly interested in a maxi-

mization version of the problem, theMAXIMUM SAVING

PARTITION PROBLEM, where the goal is to maximize
thesavingobtained by a solution relative to the worst
case of performing each job individually on a sepa-
rate machine. Formally, an instance of theMAXIMUM

SAVING PARTITION PROBLEM is given by an indepen-
dence system(V ,F) and a non-negative sub-additive
function f from 2V . An independence system is a pair
(V ,F) whereV is a ground set andF is a collec-
tion of subsets ofV which are said to be independent,
satisfying the condition i.e. ifS ∈ F and S′ ⊆ S,
thenS′ ∈ F. Trivially, any singleton ofV is indepen-
dent. The goal is to find a partition(S1, . . . , Sk) of V
with Si ∈ F such that

∑
v∈V w({v})−∑k

i=1w(Si) is
maximum. An interesting case of this problem, called
COLOR SAVING PROBLEM, is when the solutions are
node colorings. In particular whenf (S) = 1,∀S 
=
∅, an optimal cost is|V | − �(G), i.e., the number
of colors saved by an optimal coloring. For this spe-
cial case of theCOLOR SAVING PROBLEMwith a sin-
gle weight there are approximation algorithms that
guarantee at least12 [7], 2

3 [11], 3
4 [9,14] and 289

360
[8] of the maximum possible saving. It has been ob-
served in[10] that the same bounds also apply to
the more general problem of packingsets in an in-
dependent system. (Only[14] specifically uses the
structure of the node coloring problem in a graph.)
A notable example of such a problem isBIN PACK-

ING, however, it is shown in[6], that this problem has
an approximation scheme with respect to the saving
criterion.
Some approximation results are given in[5]

for the coloring version of the problem with
f (S) = max{wi |i ∈ S}, and in particular a1

2-
approximation in general graphs. We will generalize
and strengthen this result by obtaining the same bound
for general independence systems and a variety of
optimization criteria, and by improving the bound
when there are only two different weights in the
input.

We now present some notation. The input to the
MAXIMUM SAVING PARTITION PROBLEM consists of the
familyS of feasible subsets ofV={1, . . . , n}, element
weightswi , i ∈ V , and the sub-additive set function
f. The output is a partition(S1, . . . , Sl) of V such that
Si ∈ S, i = 1, . . . , l, and

∑
j∈V wj −∑l

i=1 f (Si) is
maximized. We note byOPTan optimal solution and
by opt its cost. Similarly, we note byAPX the approx-
imate solution and byapx its cost. We useopt(V ′) to
note the maximum savings in the problem induced by
the subsetsV ′ ⊆ V , and thusopt = opt(V ). Simi-
larly, we useapx(V ′) andapx to denote the savings
obtained by our algorithm. Awi-item is an item of
weight wi , and ak-set is a set of sizek. When an
algorithm adds a subsetS to the solution, this also
means that the problem is reduced to the one induced
by V \S, i.e., the items ofSare removed fromV and
subsets intersectingSare removed fromS.
We first describe a matching based algorithm and

prove that it guarantees a12 approximation for several
interesting functionf. We then describe improved ap-
proximations. Finally, we prove some hardness results.
An open question is how to use the improved results
for COLOR SAVING with a single weight obtained by
Halldórsson[9], Duh and Fürer[8], or Tzeng and King
[14] to improve the performance of our algorithms.

2. 1
2-approximation

Algorithm optimal 2-packing:

1. Consider the collection of feasible 2-setsS2. For
each setS ={i, j} ∈ S2, defined(S)=wi +wj −
f (S).

2. Compute a maximum weight matchingM in S2
using the weightsd, and add these sets toAPX.

3. For every element add toAPXa singleton set.

Theorem 1.

opt�2apx for each of the following set functions:
Min : f (S) = min{wi : i ∈ S}.
Max: f (S) = max{wi : i ∈ S}.
Mean: f (S) = 1

|S|
∑

i∈S wi.

Suppose thatS = {1, . . . , l}, w1� · · · �wl , and
0��<1 is a given constant.
Max-Convex: f (S) = �w1 + (1− �)w2.

Ext-Convex: f (S) = �w1 + (1− �)wl.
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Proof. Consider a subsetS0 = {v1, . . . , vl} ∈ OPT.
We will show thatS0 contains a matchingM with at
least half its saving, and then the claim will follow by
summation over the sets inOPT.W.l.o.g., suppose that
S0 = {1, . . . , l} andw1� · · · �wl . If l is even takeM
to be{1,2}, {3,4}, . . . , {l − 1, l}. If l is odd takeM to
be {1,2}, {3,4}, . . . , {l − 2, l − 1}, {l}. In each case,

∑
S∈M

f (S)� 1

2

[∑
i∈V

wi + f (S0)

]
,

and therefore

apx(S0) =
∑
i∈V

wi −
∑
S∈M

f (S)

� 1

2

[∑
i∈V

wi − f (S0)

]
. �

Note that for each of the functionsf in Theorem 1,
if the maximum size of a subset in the input is at most
2, then the algorithm is optimal. On the other hand,
even whenwi = 1, ∀i, there exist instances yielding
the ratio 1

2 for each of the functionsf.
In some cases, we have another algorithm with bet-

ter time complexity O(n log n).

Algorithm First Fit 2-packing .

1. Sort the items in decreasing order of weight.
2. Pack the first item with the first next item that ac-
cepts it, if such an item exists. Otherwise, form a
singleton set with the first item.

Theorem 2. AlgorithmFirst Fit 2-packing returns a
1
2-approximation for the functionsMin , Max, Max-
Convex, andExt-Convex.

Proof. For Min : We say that awi-item i is savedby
a solution if it is packed into a set that contains awj -
item, j > i . We observe that ifi is saved byOPTand
not byFirst Fit 2-packing , then the latter has saved
another (unique) itemji with greater weight.
For Max, we will prove the result by induction on

|V |. Let S be the first set found by the algorithm. If
S={1}, then the result is clearly true. Assume thatS=
{1, i}. By construction of algorithm,OPTcannot pack
an itemj for j < i with 1. Thus,opt(V \S)�opt−2wi .
Indeed, letS∗

j1
andS∗

j2
be the sets of an optimal solu-

tionS∗ containing items 1 andi respectively (maybe
j1 = j2). Now, consider the solution ofV \S given by
the restriction ofS∗ to V \S. For the setS∗

jp
\S with

p = 1,2, we save an itemrp (maybe this item does
not exist inS∗

jp
, and in the case, we assume that we

have added a fictive item with weight 0) satisfying
wrp �wi .

Finally, we deduce

apx = wi + apx(V \S)�wi + 1
2 (opt − 2wi)� 1

2 opt.

ForMax-Convexand forExt-Convex, the previous
property ofOPTgivesopt(V \S)�opt−2(1−�)w1−
2�wi . Thus, using inductive hypothesis we deduce for
the two functions

apx�(1− �)w1 + �wi + 1
2 opt(V \S)� 1

2 opt. �

Remark 3. For the functionMean, Algorithm First
Fit 2-packing does not guarantee the ratio12. For in-
stance, considerCOLOR SAVING with Mean, andG
consists of the bipartite graph where the left set is
L = {v1, v4, v5} and the right set isR = {v2, v3}, and
only edges(v1, v3) is missing. The weights are given
by w1 = w2 = K andw3 = w4 = w5 = 1. We have
apx=K+3

2 given by{v1, v3}, {v2} and{v4, v5}whereas
opt = 7K+11

6 given by the bipartitionL= {v1, v4, v5}
andR={v2, v3}. Thus, we obtain thatapx

opt
approaches

3
7 asK goes to infinity.

Remark 4. If we modify Algorithm First Fit 2-
packing to accept more than two elements in a set
when possible, then we may not achieve the ratio1

2.
For instance, if we considerCOLOR SAVINGwith Min
andG consists of 2 triangles{v1, v2, v3}, {v2, v3, v6}
and 2 edges(v4, v6) (v5, v6) with w1 = w2 = w3 = 3
and w4 = w5 = w6 = 1, then apx = 4 given by
{v1, v4, v5}, {v2}, {v3} and {v6}, whereasopt = 9
given by{v1, v6}, {v2, v4} and{v3, v5}.
On the other hand, if we consider functionMax,

then the modified AlgorithmFirst Fit 2-packing
which accepts a maximal number of items for each
subset is also a12-approximation, even in the un-
weighted version. This bound is attainable, as it
can be seen from the following example. Consider
COLOR SAVING and G consists of a chain of four
nodes(v1, v4, v3, v2) andw1 = w2 = w3 = w4 = 1;
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thenapx=1 given by{v1, v2}, {v3} and{v4}, whereas
opt = 2 given by{v1, v3} and{v2, v4}.

3. Generic algorithm

This algorithm is a generalization of Hassin and
Lahav’s algorithm[11] and it will be used in Sections
4–6.
Algorithm 1.

1. While there exists a 3-set add it to the solution;
2. Apply Algorithmoptimal 2-packing.

4. Min criterion: approximation results

We now describe an improved algorithm that guar-
antees a better than12 approximation factor for the
Min criterion.
Suppose that there arer different values of weights

and they are sorted in decreasing orderw1> · · ·>wr ,
and assumewi+1 = �iwi with 0< �i <1.
Algorithm 2.

1. For i = 1 to r do
1.1. While there exists a feasible 3-setS, |S|=3 and

S contains at least twowi-items, add it to the
solution;

1.2. Consider the familySi
2 of feasible 2-sets con-

taining at least onewi-item. Solve a maximum
matchingM in Si

2. Add to the solution the sets
resulting from the matching and add to the so-
lution a singleton for everywi-item.

Theorem 5. Algorithm2 is a�-approximation,where
� = min{23, 1

1+� } and� = maxi �i .

Proof. The proof is by induction on|V |. Consider
i ∈ {1, . . . , r} and letSbe a 3-set chosen in Step 1.1.
Observe that by construction, there is nowj -item with
j < i. By the induction hypothesis,

apx�2wi+�opt(V \S)�2wi+�(opt−3wi)��opt.

Algorithm 2 obtains a maximum saving fromwi-
items, but an optimal solution may do better with
respect to thex-items with x ∈ {wi+1, . . . , wr}. Let
Sbe the item set of the matchingM and the freewi-
items found in Step 1.2. Denote byl the number of

sets in the matching. We have by induction:

apx = lwi + apx(V \S)� lwi + �opt(V \S).
On the other hand, we observe that

opt� l(wi + wi+1) + opt(V \S).
We now explain this inequality. When adding items to
a given set, each added item may add toopt at most
the weight of one item (either itself—if its weight is
not the minimum in its set, or the weight of another
item that this item replaces as the minimum weight
item in a set). In our case, the saving per added item
can bewj with j > i or wi . However, the maximum
saving due to weightswi is gained by our algorithm
in Step 1.2, and it is exactlylwi . Hence, no higher
saving ofwi weights is possible, and the maximum
saving for the optimum is due to weightswi+1 and
therefore,opt − opt(V \S)� lwi + lwi+1.
Combining the two inequalities with�i ��, we

obtain

apx

opt
� lwi + �opt(V \S)

l(wi + wi+1) + opt(V \S)
� min

{
wi

wi + wi+1
,�
}

� min

{
1

1+ �
,�
}
. �

If the weights are in{1, . . . , B} with B�2 then
�� B−1

B
and Algorithm 2 returns at least aB

2B−1-
approximation.
Now, we analyze Algorithm 1 from Section 3 for

theMin criterion.

Theorem 6. Algorithm1 is a�-approximation,where
� = 2

3�1�2 · · · �r .

Proof. In its first step, Algorithm 1 inserts into
the solution 3-sets. LetS be such a set, then
opt(V \S)�opt − 3w1 and thus

apx�2wr + apx(V \S)�2wr + �(opt − 3w1)

= (2�1�2 · · · �rw1 − 3�w1) + �opt.

In the second stage, since there are no 3-sets, Algo-
rithm 1 appliesoptimal 2-packing and produces an
optimal solution in the remaining instance.�

Let � be the value of� that solves 1
1+� =

2
3(�1�2 · · · �r ). If � = maxi�i �� then we apply
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Algorithm 2. Otherwise, we apply Algorithm 1. The
resulting bound is23 for �� 1

2,
1

1+� for 1
2 ����, and

2
3(�1�2 · · · �r ) for ���. It obtains the lowest value
when� = �.
Consider now the bi-valued case; we have

� =
√
7−1
2 ≈ 0.823, and when� = � the resulting

bound is� =
√
7−1
3 ≈ 0.548.

Corollary 7. There is a
√
7−1
3 -approximation forMin

criterion whenwi ∈ {s, b}.

5. Max criterion: approximation results

We now describe an improved algorithm that guar-
antees a better than12 approximation factor for the
Max criterion.
As previously, suppose that there arer different val-

ues of weightsw1> · · ·>wr , and assumewi+1=�iwi

with 0< �i <1.
Algorithm 3.

1. For i = 1 to r do
1.1. While there exists a feasible 3-setS which
only containswj -items with j� i, add it to the
solution;
1.2. Consider the familySi

2 of feasible 2-sets that
contain onlywj -items withj� i. Solve a maxi-
mum matchingM in Si

2 and add to the solution
the sets resulting from the matching;

2. For every item, add to the solution a singleton set.

Theorem 8. Algorithm3 returns a�-approximation,
where� = min{23, 1

1+� } with � = maxi �i .

Proof. The proof is by induction on|V |. Consider
i ∈ {1, . . . , r}, and letS be a 3-set chosen in Step
1.1. Observe thatScontains at most onewj -item with
j < i. Thus,opt(V \S)�opt − 3wi and

apx�2wi + �(opt − 3wi)��opt.

Suppose that the matchingM found in Step 1.2 has
l sets. Since���i , we have

apx� lwi + �(opt − lwi − lwi+1)

= �opt + lwi(1− � − �i�)��opt.

The reason again is that the matching gives the max-
imum possible saving ofwi-items, soopt may only
save morewi+1-values.

For Step 2, the proof is trivial since only 1-sets
remain. �

If the weights are in{1, . . . , B} with B�2 we
deduce that Algorithm 3 returns at least aB2B−1-
approximation.

Theorem 9. Algorithm1 is a �-approximation where
� = 2�1�2···�r

1+2�1�2···�r .

Proof. The proof is by induction on|V |. First, assume
thatS = {i, j, k} with wi �wj �wk. By the definition
of Max, we haveopt(V \S)�opt − wi − wj − w1
sincewk�w1. Thus,

apx�wi + wj + �(opt − wi − wj − w1)��opt.

sincewi �wr, wj �wr .
Now, if there are no 3-sets, then it is easy to see

that Algorithm optimal 2-packing gives an optimal
solution. �

Let� be the value of� that solves 1
1+� = 2�1�2···�r

1+2�1�2···�r .
If ��� then we apply Algorithm 3. Otherwise, we
apply Algorithm 1. The resulting bound is23 for �� 1

2,
1

1+� for 1
2 ����, and 2�1�2···�r

1+2�1�2···�r for ���.

Whenr = 2, we have the bound
√
2√

2+1
≈ 0.585.

Corollary 10. There is a
√
2√

2+1
-approximation for

Max criterion whenwi ∈ {s, b}.

6. Mean criterion: approximation results

Theorem 11. Algorithm1 is a�-approximation where
� = 4�1�2···�r

3(1+�1�2···�r ) .

Proof. The proof is by induction on|V |. First, assume
thatS={i1, i2, i3}. By the definition ofMean, we have

opt(V \S)�opt − 3

2
w1 − wi1 + wi2 + wi3

2
.
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Indeed, letS∗
j be the set of an optimal solution con-

taining itemij for j = 1,2,3 in the present instance.
We have

opt�opt(V \S) +
∑3

j=1

×
( |S∗

j | − 1

|S∗
j |

wij + w(S∗
j \{ij })

|S∗
j |(|S∗

j | − 1)

)

where for any setS, w(S) = ∑
l∈Swl . Finally, since

w(S∗
j \{ij })�(|S∗

j | − 1))w1 the result is deduced
Thus, we obtain

apx� 2

3
(wi1 + wi2 + wi3)

+ �
(
opt − 3

2
w1 − wi1 + wi2 + wi3

2

)
��opt.

Now, if there is no 3-set, then it is easy to see
that Algorithm optimal 2-packing gives an optimal
solution. �

7. Min criterion: hardness results

Now, we will study the version whereS is the set
of independent sets in a graph and the criterionMin .
We call this version theWEIGHTED NODE COLORING

PROBLEMwith Min -criterion. Here, we are interested
in the standard version of coloring, not in color sav-
ing. So, whenwi=1, ∀i=1, . . . , n, we exactly obtain
the same coloring problem.We show that even this re-
stricted version is hard for approximation in bipartite
graphs with weights 1 and 3. On the other hand, when
wv ∈ {1,2}, theWEIGHTED NODE COLORING PROBLEM

with Min -criterion is polynomial in bipartite graphs
and an optimum solution is just given by a 2-coloring.
Remark that these results also hold for theCOLOR SAV-

ING PROBLEMwith Min -criterion.

Theorem 12. TheWEIGHTED NODE COLORING PROB-

LEM with Min -criterion is StronglyNP-hard even in
bipartite graphs and the function w only takes values
1 and3.

Proof. We apply a reduction from 1-PREXT IN BIPAR-

TITE GRAPHS. This latter problem is defined by: given
a bipartite graphG = (V ,E) whereV = L ∪ R and
L= {v1, v2, v3}, there exists a 3-coloring(S1, S2, S3)
of G such thatvi ∈ Si for i = 1,2,3. This problem

was shown to be NP-complete in[2]. Consider an in-
stance of 1-PREXT. We build an instanceI = (G′, w)

of theWEIGHTED NODE COLORING PROBLEM. We add
two nodesv′

1 and v′
2 in R and link v′

1 to v2, v3 and
v′
2 to v1 andv3. Note thatG′ is still bipartite. Finally,
we setwv1 =wv2 =wv3 = 1 andwv = 3 for the other
nodes ofG′.
We prove that there exists an optimum weight col-

oringC of G′ with opt�3 if and only if there exists a
3-coloring(S1, S2, S3) of G with vi ∈ Si, i = 1,2,3.

If (S1, S2, S3) with vi ∈ Si, i = 1,2,3 is such a 3-
coloring ofG, thenS′

1= S1∪ {v′
1}, S′

2 = S2 ∪ {v′
2} and

S3 is a coloring ofG′ with value 3.
Conversely, letC be a coloring ofG′ with a cost at

most 3. It is easy to observe that this coloring contains
at most three stable setsS1, S2, S3. Assume thatv1 is
in S1; if v′

1 /∈ S1, then the value ofC is at least 4 since
v′
1 cannot be withv2 and cannot be withv3. Thus

{v1, v′
1} ⊆ S1 andS1 does not containv2 andv3. We

apply the same argument and deduce that{v2, v′
2} ⊆

S2 and thusv3 ∈ S3, which conclude the proof.�

Corollary 13. TheWEIGHTED NODE COLORING PROB-

LEM with Min -criterion is not2p(n)-approximable for
any polynomial p unlessP = NP .

Proof. We apply the proof of Theorem 12 where we
only change the value of functionw by: wv1 =wv2 =
wv3 = 1 andwv = 3 · 2p(n) for the other nodes ofG′.
Then, it is NP-complete to decide betweenopt�3 and
opt�3 · 2p(n). �
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