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Abstract

The input to theMAXIMUM SAVING PARTITION PROBLEM consists of a se¥ = {1, ..., n}, weightsw;, a functionf, and
a family .# of feasible subsets &f. The output is a partitioiSy, . . ., S;) such thats; € &, andzjev wj— Zf’:l f(S;)is

maximized. We present a gene%ﬂapproximation algorithm, and improved algorithms for special cases of the furfction
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and f(S)=max{w;|i € S} is the skill level required to
process the subs8bn a single machine. The problem
Consider the following scheduling problem. Jobs js to partitionV into feasible subsets so that the total
(or itemg from a given seV have to be assigned (or cost is minimized.
packed to a set of identical machines for processing.  |n an interesting special case, the feasible subsets
Owing to various constraints, the feasible assignments are defined solely byairwisecompatibility relations.
to a single machine, are constrained to a fan#fy ~ These relations can be defined by a graph, where an
of feasiblesubsets.”” is anindependencer heredi-  edge indicates that its two ends are not compatible.
tary system. This means that if a subSatf jobs can  The feasible sets are then the independent sets of the
be assigned to a machine (i.6..,€ ), then all the  graph. In this case, our problem is a node coloring
subsets oS are in.#”. The cost of assigning a subset problem, in which the cost of a legal coloring is the
§ € & to a machine isf(5), and it is a function of  sum of costs of its color classes as prescribed.by
individual job parameters); i € S. For examplew; Even this special case is very hard to solve or even to
may denote the skill level required to process job  approximate since it generalizes theDE COLORING
PROBLEM Where f (§) = 1 for everyS € .
The coloring case withy'(S) = maxw;|i € S} has
* Corresponding author. been_ studied if5], wht_ere i.t is proved that this pr(_)b—
E-mail addresseshassin@post.tau.ac(R. Hassin), lem is NP-hard even in bipartite and other restricted
monnot@lamsade.dauphine(@. Monnot). families of graphs. Other types of weighted coloring
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and partitioning problems are studied for instance in
[1,3,4,12,13]

It is natural to assume théts sub-additive, i.e., for
any two disjoint subsetSandT, f(SUT)< f(S) +
f(T). Moreover, we assume that{i}) =w; and thus,
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We now present some notation. The input to the
MAXIMUM SAVING PARTITION PROBLEM consists of the
family ¥ of feasible subsets f={1, ..., n}, element
weightsw;, i € V, and the sub-additive set function
f. The output is a partitioiiSy, . .., S;) of V such that

the worst possible solution, that assigns each jobtoas$; € ,i=1,....1,and}_; .y w; — Zﬁzlf(si) is

distinct machine, costgor =3, w;.

In this paper, we are mainly interested in a maxi-
mization version of the problem, tiveaXIMUM SAVING
PARTITION PROBLEM where the goal is to maximize
the savingobtained by a solution relative to the worst
case of performing each job individually on a sepa-
rate machine. Formally, an instance of theximum
SAVING PARTITION PROBLEM is given by an indepen-
dence systemiV, %) and a non-negative sub-additive
functionf from 2". An independence system is a pair
(V, %) whereV is a ground set an& is a collec-
tion of subsets o¥ which are said to be independent,
satisfying the condition i.e. if € &# and§’ C S,
thenS’ € Z. Trivially, any singleton oV is indepen-
dent. The goal is to find a partitioffy, . .., Sx) of V
with S; € Z such thaty", ., w({v}) — Y5 w(s) is
maximum. An interesting case of this problem, called
COLOR SAVING PROBLEM is when the solutions are
node colorings. In particular whefi(S) = 1,VS #

@, an optimal cost igV| — y(G), i.e., the number
of colors saved by an optimal coloring. For this spe-
cial case of thecOLOR SAVING PROBLEMWith a sin-
gle weight there are approximation algorithms that
guarantee at leas} [7], § [11], 2 [9,14] and 283

[8] of the maximum possible saving. It has been ob-
served in[10] that the same bounds also apply to
the more general problem of packingsets in an in-
dependent system. (Onljl4] specifically uses the
structure of the node coloring problem in a graph.)
A notable example of such a problemBs\ PACK-
ING, however, it is shown ifi6], that this problem has

maximized. We note b@PT an optimal solution and
by optits cost. Similarly, we note baPXthe approx-
imate solution and bgpxits cost. We usep: (V') to
note the maximum savings in the problem induced by
the subsets/’ C V, and thusopr = opt(V). Simi-
larly, we useapx(V’) andapxto denote the savings
obtained by our algorithm. Av;-itemis an item of
weight w;, and ak-set is a set of sizé& When an
algorithm adds a subs& to the solution, this also
means that the problem is reduced to the one induced
by V\S, i.e., the items ofS are removed fronv and
subsets intersectingare removed frony”.

We first describe a matching based algorithm and
prove that it guarantees%'alapproximation for several
interesting functiorf. We then describe improved ap-
proximations. Finally, we prove some hardness results.
An open question is how to use the improved results
for COLOR SAVING with a single weight obtained by
Halld6rssori9], Duh and Firef8], or Tzeng and King
[14] to improve the performance of our algorithms.

2. J-approximation
Algorithm optimal 2-packing:

1. Consider the collection of feasible 2-sets. For
eachseS={i, j} € &>, defined(S) =w; + w; —
f(S).

2. Compute a maximum weight matching in .%»
using the weightsl, and add these sets A°X

3. For every element add #PX a singleton set.

an approximation scheme with respect to the saving toorem 1

criterion.

Some approximation results are given [B]
for the coloring version of the problem with
f($) = max{w;|li € S}, and in particular a3-
approximation in general graphs. We will generalize

opt < 2apx for each of the following set functions
Min: £(S) =min{w; : i € S}.
Max: f(S) =maxX{w; :i € S}.

and strengthen this result by obtaining the same bound Mean: f(S) = %Zies w;.
for general independence systems and a variety of Suppose thatS = {1,...,1}, w1>--- >w;, and

optimization criteria, and by improving the bound
when there are only two different weights in the
input.

0<a <1is a given constant
Max-Convex f(S) =ow1 + (1 — a)wo.
Ext-Convex f(S) =ow1 + (1 — 0)w;.
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Proof. Consider a subsefy = {v1, ..., v} € OPT.
We will show thatSg contains a matchiny! with at
least half its saving, and then the claim will follow by
summation over the sets@PT. W.l.0.g., suppose that
So={1,...,/} andw1> --- >wy. If | is even takeM
to be{l,2},{3,4},...,{{—1,1}. If | is odd takeM to
be{l,2},{3,4},...,{{ — 2,1 — 1}, {l}. In each case,

. F®<S [Z wi + f<s0>}

SeM ieV
and therefore

apx(So) = Z w; — Z f(S)
ieV SeM
1
>3 [Z w; — f(So)] . D
ieV

Note that for each of the functiorisn Theorem 1,
if the maximum size of a subset in the input is at most
2, then the algorithm is optimal. On the other hand,
even whenw; = 1, Vi, there exist instances yielding
the ratio% for each of the functiong

In some cases, we have another algorithm with bet-
ter time complexity @Qn log n).

Algorithm First Fit 2-packing.

1. Sort the items in decreasing order of weight.

2. Pack the first item with the first next item that ac-
cepts it, if such an item exists. Otherwise, form a
singleton set with the first item.

Theorem 2. AlgorithmFirst Fit 2-packing returns a
%—approximation for the functiondin, Max, Max-
Convex and Ext-Convex.

Proof. For Min: We say that av;-itemi is savedby

a solution if it is packed into a set that contains g
item, j >i . We observe that iff is saved byOPT and
not by First Fit 2-packing, then the latter has saved
another (unique) itenj; with greater weight.

For Max, we will prove the result by induction on
|[V]. Let Sbe the first set found by the algorithm. If
S={1}, then the result is clearly true. Assume tlat
{1, i}. By construction of algorithmQPT cannot pack
anitemj for j < i with 1. Thusept(V\S) > opt —2w;.
Indeed, IetS}‘1 and S;’.‘z be the sets of an optimal solu-
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tion .* containing items 1 andrespectively (maybe
Jj1 = Jj2). Now, consider the solution df\ S given by
the restriction of#* to V\S. For the seSj.‘p\S with

= 1,2, we save an item, (maybe this item does
not exist in S* and in the case, we assume that we
have added a fictive item with weight 0) satisfying
Wr, S wj.

Finally, we deduce
apx =w; +apx(V\S) > w; + % (opt — 2w;) > % opt.

For Max-Convexand forExt-Convex, the previous
property ofOPTgivesopt (V\S) = opt —2(1— o) w1 —
20w;. Thus, using inductive hypothesis we deduce for
the two functions
apx 2 (1 — o0)wy + ow; + % opt(V\S) > % opt. U
Remark 3. For the functionMean, Algorithm First
Fit 2-packing does not guarantee the ral%o For in-
stance, consideCOLOR SAVING with Mean, and G
consists of the bipartite graph where the left set is
L = {v1, va, vs} and the right set iR = {v>, v3}, and
only edgeqv1, v3) is missing. The weights are given
by w1 = w2 = K andwz = wg = ws = 1. We have
apx==5>2 K+3 given by{vs, vs}, {v2} and{vs, vs} whereas
opt = 7’”11 given by the bipartitior.. = {v1, va, vs}
andR_{vz, v3}. Thus, we obtain thaﬁﬂ approaches

3 asK goes to infinity.

Remark 4. If we modify Algorithm First Fit 2-
packing to accept more than two elements in a set
when possible, then we may not achieve the rétio
For instance, if we consid&OLOR SAVING with Min
and G consists of 2 triangle$vy, v2, v3}, {v2, v3, ve}
and 2 edgesva, vs) (vs, vg) With w1 = wp = w3 =3
and wg = ws = wg = 1, thenapx = 4 given by
{v1, vg, vs}, {v2}, {v3} and {ve}, whereasopt = 9
given by{vs, ve}, {v2, v4} and{vs, vs}.

On the other hand, if we consider functidex,
then the modified AlgorithmFirst Fit 2-packing
which accepts a maximal number of items for each
subset is also a}—approximation, even in the un-
weighted version. This bound is attainable, as it
can be seen from the following example. Consider
COLOR SAVING and G consists of a chain of four
nodes(v1, va, v3, v2) and wy = wr = w3z = wg = 1;
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thenapx =1 given by{v1, v2}, {v3} and{vs}, whereas
opt = 2 given by{vs, vz} and{vz, va}.

3. Generic algorithm

This algorithm is a generalization of Hassin and
Lahav’s algorithn]11] and it will be used in Sections
4-6.

Algorithm 1.

1. While there exists a 3-set add it to the solution;
2. Apply Algorithm optimal 2-packing.

4. Min criterion: approximation results

We now describe an improved algorithm that guar-
antees a better thac}: approximation factor for the
Min criterion.

Suppose that there ardlifferent values of weights
and they are sorted in decreasing orders - - - > w,,
and assuma; 11 = o w; With 0 < o; < 1.

Algorithm 2.

1. Fori=1tor do

1.1. While there exists a feasible 3-81S|=3 and
S contains at least twav;-items, add it to the
solution;

1.2. Consider the family/’, of feasible 2-sets con-

taining at least one;-item. Solve a maximum
matchingM in 5. Add to the solution the sets
resulting from the matching and add to the so-
lution a singleton for every;-item.

Theorem 5. Algorithm2 is a -approximationwhere
B =min{%, 155} and o« = max; ;.

Proof. The proof is by induction orjV|. Consider

i €{l,...,r}and letSbhe a 3-set chosen in Step 1.1.
Observe that by construction, there isng-item with

j <i. By the induction hypothesis,

apx = 2w;+Popt(V\S) = 2w;+f(opt—3w;) = Popt.

Algorithm 2 obtains a maximum saving fromw;-
items, but an optimal solution may do better with
respect to the-items withx € {w;y1,..., w,}. Let
Sbe the item set of the matching and the freew;-
items found in Step 1.2. Denote byhe number of
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sets in the matching. We have by induction:
apx =lw; + apx(V\S) Zlw; + Popt(V\S).
On the other hand, we observe that

opt <I(w; + wi+1) + opt(V\S).

We now explain this inequality. When adding items to
a given set, each added item may adajpd at most
the weight of one item (either itself—if its weight is
not the minimum in its set, or the weight of another
item that this item replaces as the minimum weight
item in a set). In our case, the saving per added item
can bew; with j >i or w;. However, the maximum
saving due to weights); is gained by our algorithm
in Step 1.2, and it is exactlyw;. Hence, no higher
saving ofw; weights is possible, and the maximum
saving for the optimum is due to weights ., and
therefore,opt — opt (V\S) <lw; + [w;41.

Combining the two inequalities withy; <o, we
obtain

apx lw; + Popt(V\S)
opt ~ l(w; + wiy1) + opt(V\S)

. w; .
> mm{—,ﬁ} > mln{
w; + wit1 1

apx

=]

If the weights are in{1, ..., B} with B>2 then
ag%l_ and Algorithm 2 returns at least al-
approximation.

Now, we analyze Algorithm 1 from Section 3 for
the Min criterion.

Theorem 6. Algorithm1 is ay-approximationwhere
y=2
) = 50102 Ol

Proof. In its first step, Algorithm 1 inserts into
the solution 3-sets. LetS be such a set, then
opt(V\S)>opt — 3w and thus

apx 22w, + apx(V\S) > 2w, + y(opt — 3w1)
= (20102 - - - o, w1 — 3yw1) + yopt.
In the second stage, since there are no 3-sets, Algo-

rithm 1 appliesoptimal 2-packing and produces an
optimal solution in the remaining instancelJ

Let 6 be the value ofx that solves i
2(oaoz---0p). If o = maxo; <J then we apply
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Algorithm 2. Otherwise, we apply Algorithm 1. The
resulting bound is§ for < 3, ¢, for <<, and
2(aop- - 0,) for a>4. It obtains the lowest value
wheno = 6.

Consider now the bi-valued case; we have

0= ﬁT‘l ~ 0.823, and wherx = ¢ the resulting
bound isy = ¥%=% ~ 0.548.

Corollary 7. Thereis aﬁT‘l-approximation foMin
criterion whenw; € {s, b}.

5. Max criterion: approximation results

We now describe an improved algorithm that guar-
antees a better thac}: approximation factor for the
Max criterion.

As previously, suppose that there amifferent val-
ues of weightsvy > - - - > w,, and assume; .1 =o; w;
with 0 <o; < 1.

Algorithm 3.

1. Fori=1tor do
1.1. While there exists a feasible 3-s&tvhich
only containsw j-items with j <i, add it to the
solution;
1.2. Consider the family”, of feasible 2-sets that
contain onlyw ;-items with j <i. Solve a maxi-
mum matchingM in %% and add to the solution
the sets resulting from the matching;

2. Forevery item, add to the solution a singleton set.

Theorem 8. Algorithm 3 returns af-approximation
wheref = min{3, 11, } with o = max o

Proof. The proof is by induction orjV|. Consider

i €{1,...,r}, and letS be a 3-set chosen in Step
1.1. Observe th& contains at most one ;-item with

j <i.Thus,opt(V\S)>opt — 3w; and

apx 22w; + B(opt — 3w;) = Popt.

Suppose that the matchimg found in Step 1.2 has
| sets. Since>o;, we have

apx =lw; + Plopt — lw; — lw;y1)
= popt + lw; (1 — B — 0; f) > Popt.

R. Hassin, J. Monnot / Operations Research Letters 33 (2005) 242-248

The reason again is that the matching gives the max-
imum possible saving ofv;-items, soopt may only
save morew; ;1-values.

For Step 2, the proof is trivial since only 1-sets
remain. [

If the weights are in{1,..., B} with B>2 we
deduce that Algorithm 3 returns at least -
approximation.

Theorem 9. Algorithm 1 is a y-approximation where
20110000l
V= l+210(123(2~-~06,< .

Proof. The proofis by induction ofW|. First, assume
thatS = {i, j, k} with w; <w; <wy. By the definition
of Max, we haveopt(V\S) >opt — w; — w; — w1
sincew; <wj. Thus,

apx Zw; +w;j + y(opt —w; —w; — wi) =yopt.

sincew; Zw,, w;=>w,.

Now, if there are no 3-sets, then it is easy to see
that Algorithm optimal 2-packing gives an optimal
solution. [J

Letd be the value of: that solves; = (25222
If <o then we apply Algorithm 3. Otherwise, we
apply Algorithm 1. The resulting bound fsfor o< 3,

1 1 20110000,
TFo for §<a<5, andm for OC>5

Whenr = 2, we have the bound¥2- ~ 0.585.
V2+1

2011000+ 0y

Corollary 10. There is a%-approximaﬁon for
Max criterion whenw; € {s, b}.

6. Mean criterion: approximation results

Theorem 11. Algorithm1is ay-approximation where
v — Aoqo---0y
)= 3(1+ogop--oy)

Proof. The proofis by induction ofV|. First, assume
thatS=/{i1, i, i3}. By the definition oMean, we have

Wiy + Wi, + Wig

3
VA\S) > - = —
opt(V\S) Zopt SW1 >
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Indeed, IetS}‘ be the set of an optimal solution con-
taining item:; for j =1, 2, 3 in the present instance.
We have

3
opt<opt(V\S)+ >
IS1—1
X Tow W
|S%]
where for any se§, w(S) = ), qw;. Finally, since
w(ij\{ij})g (|S7| — 1))w; the result is deduced
Thus, we obtain

IRCA
ERRTHIHE

2

apx Z é(wil + Wi, + wig)

Wi; + Wi, + Wi
2

Now, if there is no 3-set, then it is easy to see

that Algorithm optimal 2-packing gives an optimal
solution. [

3
+ 7 (opt - Ewl - > =vopt.

7. Min criterion: hardness results

Now, we will study the version wherg” is the set
of independent sets in a graph and the criteiin .
We call this version th@VEIGHTED NODE COLORING
PROBLEM with Min -criterion. Here, we are interested
in the standard version of coloring, not in color sav-
ing. So, whenw; =1, Vi=1, ..., n, we exactly obtain
the same coloring problem. We show that even this re-
stricted version is hard for approximation in bipartite
graphs with weights 1 and 3. On the other hand, when
wy € {1, 2}, theWEIGHTED NODE COLORING PROBLEM
with Min -criterion is polynomial in bipartite graphs
and an optimum solution is just given by a 2-coloring.
Remark that these results also hold for tite OR SAv-
ING PROBLEM with Min -criterion.

Theorem 12. TheWEIGHTED NODE COLORING PROB-
LEM with Min -criterion is StronglyNP-hard even in
bipartite graphs and the function w only takes values
1 and3.

Proof. We apply a reduction from 1AEXT IN BIPAR-
TITE GRAPHS This latter problem is defined by: given
a bipartite graphG = (V, E) whereV = L U R and
L = {v1, v2, v3}, there exists a 3-colorings1, S2, S3)

of G such thatv; € S; for i =1, 2, 3. This problem
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was shown to be NP-complete [i2]. Consider an in-
stance of 1-REXT. We build an instancé = (G, w)
of the WEIGHTED NODE COLORING PROBLEMWe add
two nodesv] andv, in R and link v to v, v3 and
v, to v1 andvg. Note thatG' is still bipartite. Finally,
we setw,,, = w,, = wy; =1 andw, = 3 for the other
nodes ofG’.

We prove that there exists an optimum weight col-
oring € of G’ with opr <3 if and only if there exists a
3-coloring(S1, S2, S3) of Gwith v; € §;, i =1, 2, 3.

If (S1, S2, S3) withv; € S;, i =1,2,3is such a 3-
coloring of G, thenS; = S1 U {v1}, S5=S2 U {v5} and
S3 is a coloring of G” with value 3.

Conversely, let% be a coloring ofG’ with a cost at
most 3. It is easy to observe that this coloring contains
at most three stable sefs, S2, S3. Assume thab is
in S1; if v} ¢ S1, then the value of is at least 4 since
vy cannot be withv; and cannot be withvz. Thus
{v1,v]} € S1 and Sy does not contaim, andvz. We
apply the same argument and deduce fhatv,} <
S and thusvz € S3, which conclude the proof. ]

Corollary 13. TheWEIGHTED NODE COLORING PROB-
LEM with Min -criterion is not27™ -approximable for
any polynomial p unlesg® = N P.

Proof. We apply the proof of Theorem 12 where we
only change the value of functiom by: w,, = w,, =
wy, = 1 andw, = 3- 2P™ for the other nodes of’.
Then, itis NP-complete to decide betwegn < 3 and
opt>3.2rM 0O
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