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1 Introduction

1.1 Problem Definition

In this article we model, and analyze the cluster identification of

molecules (CIM), which is a clustering problem in a finite metric space.
CIM2 has the following characteristics which separate it from other cluster-
ing models:
1. In most models outliers are a small portion of the data set, whereas in
CIM they may be the vast majority of the objects. (see Figure 1)
2. The clusters identified by CIM are compact and their diameter is bounded.
3. There is a lower bound on the number of objects in a cluster.
4. Clusters may be very close to one another, as a result of the bound on
the diameter. What may be considered as one cluster in other clustering
models is considered as several clusters in CIM. (see Figure 2).
5. The number of clusters is not known a-priori to the clustering procedure.

In this paper we present CIM and model it as a maximum profit cov-

erage problem (MPCP). The model is a measure to be optimized, rather
then a heuristic.

Consider a finite set S in a metric space M with a distance function d. A
ball with center t and radius r is the subset B(t, r) = {x ∈ M |d(t, x) ≤ r}.
We say that the ball covers the points of S that it contains. Given a set
of balls B of radius r, a coverage P = {S ′

1, . . . , S
′
l} is a set of clusters such

that each of them consists of points covered by a single ball of B. Let
S′

P = ∪l
i=1S

′
i, and define the profit of P as

∑

q∈S′

P
wq − c|P |, where c is the

cost of a ball used by P , and wq is a revenue obtained by covering q ∈ S.
The maximum profit coverage problem (MPCP) is the problem of
finding a coverage with maximum profit.

1hassin@post.tau .ac.il
2The problem originated in COMPUGEN LTD. in the field of “in silico” drug design.
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Figure 1: One cluster and some outliers

1.2 Related Work

The MPCP is related to the budgeted maximum coverage problem,
which has a

(

1 − 1
e

)

-approximation using a greedy algorithm [14]. This
approximation bound cannot be used to approximate MPCP .

1.2.1 Clustering

There is a large variety of clustering models, as reflected for example in the
survey by Du and Paradalos [5], and they have numerous applications in
many different areas. Even simple variants are known to be NP-hard and
therefore research has been focused on approximation algorithms and heuris-
tics. The heuristics used in practice are often based on empirical experience
(e.g [16]). Most measures (i.e. objective functions to be optimized) are
based on a given number of clusters and the relation of the between-clusters
weight and the in-cluster weights.

Most heuristics are based on two main methods. One is the hierarchical
method, which re-partitions the set until a stopping condition is met, or an
aggregation presses which begins by considering each point as a cluster and
then merging close clusters until a stopping condition is met [11, 15, 18, 23,
24]. The second is the k-means heuristic, where a mean of a cluster is the
average of the clusters points. This non hierarchical method initially takes k
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Figure 2: Due to the bound on the diameter, two clusters and outliers

point of the set which are mutually farthest apart, at this point each cluster
has one point. Next, it examines each point in the set and assigns it to
the nearest cluster. This continues until all the points are grouped into k
clusters [11]. Both heuristics take the number of clusters as input, and do
not return compact clusters of bounded diameter.

An important class of clustering problems is probabilistic clustering. It
arises when the data consists of a set of points generated by an unknown
mixture of distributions, and the problem is to estimate the parameters of
each of the distributions creating the mixture, and its weight in the mixture.
This task is commonly done by likelihood maximization (for example [19]).
The mixture models solved by likelihood maximization can also be applied
to cases where the number of distributions is unknown. There are methods
for estimating the number of distributions [22].

1.2.2 Clustering with outliers

In statistics, outliers are defined as data objects which originated from a
different probabilistic mechanism [2]. When clustering of data is considered,
the intuitive definition of outliers becomes “points which do not belong to
any of the clusters”. A more specific definition is derived from the clustering
target or the clustering process [4, 6, 7, 10, 16, 27, 28]. In the case of the
CIM, the outliers are objects in a neighborhood not dense enough, according
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to the given definition of density.
The natural problem of clustering a data set containing outliers, when

the number of clusters is not predetermined, is usually solved by heuristics.
Models for k-median and k-center with outliers are introduced in [3]. For
k-median outliers were considered by demanding payment on unclustered
points and for k-center the number of points which are considered as outliers
was added to the model. Heuristics for clustering data containing outliers
were introduced, among others, in [4, 6, 7, 10, 16, 27, 28]. In hierarchical
methods clusters that “grow” slowly are considered as outliers, whereas in
the k-means method points that are far from all means are considered as
outliers.

All algorithms presented in these articles are not suitable for CIM. The
clusters found by the algorithms are not bounded in diameter, and/or have
no lower bound on their density. Since the nature of clusters found is dif-
ferent from the one defined in CIM, the outliers definition is also different.
A clustering method called CLARANS which is based on random search
on a graph is presented in [16, 7]. Their objective is to find the k best
mean points. They also propose a method for determining the value of k.
CLARANS detects outliers as in the classical k-means method mentioned
above. A clustering method called BRITCH is presented in [28]. It uses the
hierarchical clustering algorithm from [18]. BRITCH works well for compact
well separated clusters, it does not work well when clusters have different
sizes or are connected, even by outliers.

For clustering of arbitrarily shaped collections of points, a density based
algorithm called DBSCAN is proposed in [6]. The clustering is done by a
definition of density. DBSCAN requires the user to specify two parameters
that are used to define the minimum density for clustering- the radius Esp
of a neighborhood of a point and the minimum number of points MinPts
in the neighborhood. The algorithm begins with an arbitrary point and if
its neighborhood satisfies the density requirements it is inserted into the
cluster with its neighborhood. DBSCAN defines the points in non-dense
neighborhoods of the data set as outliers. The intuition of outliers is similar
to that of the CIM, but since there is no diameter restriction the clustering
outcome is different. DBSCAN is very sensitive to the parameters Esp
and MinPts, which in tern are difficult to determine. It also tends to join
clusters that are not well separated.

A two phase clustering process for outliers detection is presented in [13].
It is a modification of the k-means algorithm that builds a minimum span-
ning tree between the clusters centers. The algorithm then removes the
longest edges of this spanning tree, and the clusters whose centers are dis-
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connected from the tree, are considered as outliers.
A clustering method that combines k-means and hierarchical method is

presented in [10]. The algorithm uses an input parameter α which deter-
mines “how much” hierarchical or k-means the algorithm is. This parameter,
in turn, is hard to define and has great effect on the outcome of the clus-
tering procedure. The algorithm is shown to work well when clusters are of
different shapes and close to one another. It prunes outliers by removing
the clusters which grow slowly in the aggregative part of the algorithm.

Probabilistic clustering of data containing outliers is presented in [26].
Assuming the data follows a given distribution while the noise follows a
different distribution, this approach applies the Bayes rule of classification
to extract the clusters one after the other. It computes the first cluster,
then removes the points of the cluster from the set and computes the next
cluster. When clusters are no longer found, the remaining of the data is
considered as noise. This approach does not perform well when data from
several distributions overlap in space (creating close clusters). In that case
the removal of points from the set that were generated by one distribution
creates errors in estimating the parameters of distributions close to it.

1.3 Our Contribution

We present two models for CIM, one as a parameter estimation via

likelihood maximization and the other as MPCP. We introduce a poly-
nomial time approximation scheme (PTAS) to MPCP in Euclidean space
using the shifting strategy [12, 9]. We present two practical heuristics for
MPCP, one greedy and the other random, which introduce good results in
numerical studies of CIM. We also study the problem of MPCP when the
number of clusters is bounded using dynamic programming and the shifting
strategy [12, 9].

This paper is organized as follows: In Section 2 we introduce CIM and
model it as parameter estimation via likelihood maximization. In
Section 3 we model the problem as MPCP. In Section 4 we introduce a
random heuristic and a greedy heuristic for MPCP, and in Section 5 we
introduce numerical results. In Section 6 we give some theoretical results,
We also analyze a greedy algorithm. In Section 7 we introduce the variant
of MPCP in which the number of balls is bounded.
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2 Cluster identification of molecules

Finding a drug to an illness is a problem of a lock and a key. The lock
is a protein (or, more precise, its active site), that should be inhibited or
exhibited in the body. The key is a small molecule that binds to the protein
and inhibits or exhibits its action in the body. There is no doubt that the
key should have a structure that fits the lock, but the biochemical system
in which this lock and key function is dynamic, and hence the Structure
Activity Relation (SAR), of the small molecule and the given protein, was
not yet unfolded.

One of the approaches to this problem is to investigate the relation be-
tween a secondary structure of the small molecule to the biochemical activity,
rather than the regular structure model of atoms and bonds. The secondary
structure views the small molecule as a set of chemical attributes such as
base, acid, hydrophobic, hydrophilic, hydrogen bonds etc. Given a set of
small molecules that bind to the same protein, we wish to check whether
there is a similarity in their secondary structure. Since the protein bind-
ing site is big, different small molecules may bind in different parts of it,
and several secondary structures may explain the binding. Still it is natural
to assume that a secondary structure that appeared in many of the small
molecules that bind to the protein, characterizes the protein, and hence ex-
plains the binding. The cluster identification of molecules is the
problem of identifying recurring secondary structures (clusters of secondary
structures) in a set of small molecules that bind to the same protein.

Formally, we consider the secondary structure as a set of colored points,
called nodes, in IR3. The coordinates represent the location of a chemical
functionality and the color represents the nature of the functionality. We will
use this representation throughout this section and refer to it as a molecule
structure.

Denote by Vt the set of nodes of a molecule structure t, and let n = |Vt|.
The 3−D structure of t can be expressed as a vector of (n

2 ) distances dt(i, j)
between the pairs vi, vj ∈ Vt. The distance measuring process has a normally
distributed error with a constant variance.

Thus, t can be viewed as a (n
2 )-dimensional multi-normal random vari-

able. The variance of the distances is constant, and caused due to measure-
ment errors.

The distance between two molecule structures with the same number of
nodes and the same multi-set of colors of the nodes, is defined as follows.
Let P denote the set of mappings p : Vt → Vs such that the color of the
source and the objective is the same. The distance between the molecule
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structures t and s is

D(s, t) = minp∈P

√

∑

i,j∈Vt

[dt(i, j) − ds(p(i), p(j))]2.

If the number of nodes is different or the multi-set of node colors is different,
then the distance is infinity.
The set of all molecule structures with a given number of nodes, a given
multi-set of node colors and a distance function D is a metric space (see
a proof in Appendix A). In the remaining of this paper we denote such a
metric space by M . An efficient method for finding the distance between
two given molecule structures is given in Appendix B.

Given a set of molecule structures, the cluster identification of

molecules can be viewed as the problem of estimating the parameters of a
mixture of distributions, since each molecule is represented by the vector of
its distances, which is a multi-normal random variable. We will now build
the likelihood function L of this probabilistic clustering.

Let t denote a molecule structure in M . t has a positive probability to be
generated by any of k multi-normal distributions considered by the mixture
model. Consider the possibility that molecule structure t has originated
from the j-th distribution. Let Vj denote the set of nodes of the molecule
structure which is the mean of the j-th distribution. Let L(j,p)(t) denote
the likelihood that t has originated from the j-th distribution under the
mapping p of their nodes.

L(j,p)(t) =
1

√

2π|Σj |
exp− 1

2
([x(p)−mj ])T Σ−1

j [x(p)−mj ],

where (mj ,Σj) are the mean vector and covariance matrix of the j-th dis-
tribution, and x(p) is x when adapted to mj under the permutation p. The
normality is a result of the error in the measure of the distance, as men-
tioned above. Denote by β(j,t)(p) the probability that p was the mapping by
which t originated from the j-th distribution. Clearly,

∑

p∈P β(j,t)(p) = 1.
The likelihood of the molecule structure t given that it is obtained from the
j-th distribution is:

Lj(t) =
∑

p∈P

β(j,t)(p)L(j,p)(t).

No information exists on the distribution β(j,t), but it could be estimated
by solving maxp∈P L(j,p)(t). Even if we assume β(j,t)(p) is known, since
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|P | = O(|Vt|!) this step is exponential in the dimension of M , this likelihood
function is expensive to calculate for one point, let alone to maximize.

3 Cluster identification of molecules as a maxi-

mum profit coverage problem

Solving the likelihood maximization associated with the cluster identification
of molecules in a general metric space is computationally difficult even for
small sized instances, as demonstrated in Section 2. We now show how
the problem can be approximated via the maximum profit coverage

problem.
A general finite metric space can be described by a graph G = (V,E),

and a distance function D on its edges. In such a case a ball can be defined
only as centered at a vertex. In the CIM the balls are defined by the subset
of molecule structures which they cover, i.e for each subset that can be
covered by a ball of radius r we define one ball in the input set of balls
B. We compute the set of balls exhaustively, by checking for each subset
whether it is coverable by a ball of radius r. This step is theoretically
exponential i the size of S, but in practice the number of balls is very small
due to the distribution of points as presented in Section 2. In simulations
the number of balls defined was O(n2), and the process of defining them was
efficient.

Consider a set S of molecule structures. The cluster identification

of molecules can be viewed as the search for such dense balls, using the
average of the points covered by each ball as estimate for the mean value
of the distribution that generated the points of S in the ball3. We use a
ball since the variance is constant and equal in all dimensions, i.e. for all
the distances in the molecule structure. The intuition behind this approach
relies on the fact that a point close to t is likely to be generated by t, in
terms of the value of the likelihood function.4

3This point is a molecule structure which is not in S, and can be reconstructed to a set

of nodes in IR
3 from the vector of its distances, with an error negligible in relation to the

variance of the measuring process.
4This view of density ignores some aspects of the normal behavior, such as greater

density in proximity to the expected value. A change in the objective function may better

integrate this characteristic of the problem into the model. If a value of a ball will include

not only the number of points it contains but also an indication on their variance in the

ball, another aspect of the normality of the data origin will be integrated into the solution,

but other difficulties will airs. We will show that even the simple definition of density used

in MPCP gives very good results.
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A ball B(t, r), covers the molecule structures which are contained in it.
There is a revenue of 1 from covering a molecule structure t ∈ S, and every
ball used by the solution costs c. The cost c represents a lower bound on
the number of molecule structures in the cluster, whereas 2r represents an
upper bound on the diameter of the cluster. Let SF denote the molecule
structures covered by a coverage F . The profit of a coverage F is |SF |−c|F |.
The maximum profit coverage of S can be used to estimate the large clusters
of S. Since many covers may have the same profit, the center of the cluster
will be defined by the average of the molecule structures it covers.

4 Heuristics

4.1 Heuristics for MPCP

In this section we describe two heuristics for computing a coverage with
high profit in a general metric space. The first is a greedy heuristics, and
the second is based on a random selection of subsets. We denote the set of
possible balls defined in Section 3 by B. The number of such balls is O(|S|d),
where d =

(

n
2

)

, where n is the number of nodes in a molecule structure of S.
Consider the following “greedy” algorithm denoted as GR:

Let Bj ⊂ B be the set of balls already chosen before the j-th iteration,

S′
j ⊆ S the set of points that are not covered by Bj , and nj

B the number of
points of S ′

j covered by B ∈ B. Recall that c denotes the cost of a ball. Let

Rj
B = nj

B − c denote the profit from a ball B. A profitable ball is a ball that

covers at least c + 1 points of S ′
j, i.e. Rj

B > 0. Let B∗
j = arg maxB∈B{Rj

B}
(break ties arbitrarily). GR is performed as follow:
Let B1 = ∅. As long as there is a profitable ball, let Bj+1 = Bj ∪ {B∗

j }.
The greedy algorithm is performed in O(|S|d+1) time. The number of

iterations is bounded by |S|
c+1 , since at least c + 1 new points are covered

at each iteration since, and the number of operations at each iteration is
|B| =O(|S|d).

The randomized heuristic RA repeatedly generates random solutions to
the problem, and eventually chooses the one with the maximal profit. A
solution is generated by randomly choosing a profitable ball from the list
of profitable balls, then updating the list and choosing again, until there is
no profitable ball and the list is empty. The generated solution is compared
with the previous best solution and saved if it gives a higher profit. The
randomized algorithm is performed in O(|S|d) iterations, since the number
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of balls dominates the number of iterations5.

4.2 A heuristic for CIM in the Euclidean space

If each molecule in S has nodes of distinct colors, then the metric space M
is Euclidean. The distribution β(k,t) becomes deterministic and the prob-
lem becomes the known parameter estimation for Gaussian mixture

(PEGM) [17]. It requires to estimate the parameters of a set of multi-normal
distributions {(mk,

∑

k)}k=1,...,K , and their mixture proportions αj ≥ 0,
∑K

k=1 αk = 1, when a set of points generated from these distributions is
given. Note that the number of distributions is assumed to be predeter-
mined. There are methods for estimating the number of distributions. The
parameter estimation is usually done by likelihood maximization. In this
case the likelihood function can be maximized numerically. We will elabo-
rate on this case since we will use this model for comparison to the results
obtained by modeling CIM as MPCP and using GR and RA. We use algo-
rithm MEM presented in Figure 3 below. MEM is based on the common
method of likelihood maximization via Expectation Maximization, i.e. the
EM algorithm [17, 21, 25]. See a description of the algorithm in Appendix
D. The input to the EM algorithm includes the number of distributions
k and will return a maximum likelihood estimator of the parameters of k
distributions that best explain S. In order to find the optimal k we use
the rule given by [22] to estimate the number of generating distributions,
i.e k that maximizes max log like(k) + k log(N), where N is the number of
samples, and max log like(k) is the maximal value of the likelihood function
for k distributions. The evaluation of the models’ size k in [22] is based on
studying the asymptotic behavior of Bayes estimators under a special class
of priors. These priors are not absolutely continuous, since they put positive
probability on the subspace that corresponds to the competing model. Since
we are only interested in the distributions which generated a large number
of points, i.e. the dense sets of S, we define a dense subset of S as one
generated from a distribution with a mixture parameter α greater then c

|S| .

5In practice the execution time of both the greedy and the random heuristics is much

lower since B is smaller.
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MEM

input

1. A set x = {x(1), . . . , x(N)} of molecule structures in [0, 10]3

presented by the vector of distances between their nodes.
2. An integer c. [A lower bound on the size of a cluster]
3. num iterations.
output

The means of the clusters, and their size.
begin

for i = 1 : N
max log like = −∞
best log like = −∞
for j = 1 : num iterations

rand := random initial solutiona Θ = {α1, . . . , αK ,m1, . . . ,mK ,Σ1, . . . ,ΣK}
created from i molecule structures randomly chosen in [0, 10]3

(log like,Θ) := EM(x, i, rand)
if log like > max log like

then

max log like = log like, Θ max = Θ
end if

end for

if best log like < max log like + i log(N)
then

best log like := max log like,
best Θ := Θ max, num distributions := i.

end if

end for

for j = 1 : num distributions
if αjN > c

then

insert the pair (αjN,mj) to the output set.
end if

end for

return (output set)
end MEM

aSeveral methods for generating initial solutions were used. One is random, another

is choosing independently k points of x, and another is choosing without replacements

points of x, such that the distance between the chosen points is at most 2r.

Figure 3: Algorithm MEM
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5 Numerical comparison of the heuristics

We described algorithms GR and RA for MPCP in a general metric space.
However, in the Euclidean space CIM becomes the well-known PEGM where
the number of distributions is unknown. Since PEGM has a well-known
method of solution, presented in MEM, we conduct our numerical analysis
in the Euclidean space, where we can compare GR and RA to MEM.
Our numerical analysis is hence a comparison of the three algorithms on
simulated input for the problem in the Euclidean space.

The algorithms were applied with the following parameters:

1. MEM was applied with num iterations = 10000 and c = 3, 5, . . . , 23.

2. GR was applied with c = 3, 5, . . . , 23. The algorithm returns the mean
of the molecule structures covered by each ball in the solution as the
estimate of the expectation, and the number of molecule structures
covered by the ball. We choose the mean since it is a natural estimate
of the expectation.

3. RA was applied with c = 3, 5, 7, . . . , 23. For each value of c RA was
run 10000 times and the best solution was chosen. The algorithm
returns the mean of the molecule structures covered by each ball in
the solution as the estimate of the expectation, and the number of
molecule structures covered by the ball.

Remark 5.1 1. Although c is part of the input, we ran the algorithms on
all possible values of c in order to check the sensitivity of the algorithms
to the value of c.

2. The running time of all algorithms was a couple of minutes.

The data was simulated in the following way:

1. Randomly choose |V | = 4 points in the cube [0, 10]3 ⊂ IR3. The points
represent the nodes of a molecule structure.6

2. Compute the vector m = (m1, . . . ,m6) of
(|V |

2

)

=
(

4
2

)

= 6 distances
between the |V | = 4 points.

6We applied this simulation to molecule structures of all sizes between |V | = 4 and

|V | = 10 nodes, and the results were similar. We therefore present the results of molecule

structures of size 4 as representative results.
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3. For every i = 1, . . . , 6, choose a distance from a normal distribution
with mean mi and a known constant variance.

Steps 1 − 2 create a molecule structure and represent it as a vector of the
distances between its nodes. Step 3 generates a sample from a distribution
with mean value created by Steps 1 − 2.

We present the results of the following cases:

• In a simulation of type a we simulate a CIM instance by generating
20 samples from each of 5 mean molecule structures. A total of 100
molecule structures. The set A of simulations includes 100 CIM in-
stances of type a. In simulations of type a there is no noise, there are
5 clusters that we wish to identify.

• In a simulation of type b we simulate a CIM instance by generating
20 samples from each of 5 mean molecule structures. In addition we
generated noise by generating 27 molecule structures from which we
generated one sample, 20 molecule structures from which we generated
two samples, and 6 molecule structures from which we generated three
samples. Type b simulations include 5 clusters that we wish to identify
and another 85 points that are considered as noise. The set B of
simulations includes 100 cases of type b.

For each of the three algorithms, in each set A,B we calculated the following
measures:
ABN := the average number of balls (distributions) used in the solution.
MSE := the average distance between a center of a cluster defined by the
algorithm and the closest mean value. The closest mean value, is the closest
vector m used in Step 2 of the data simulation process.
GMSE := the average distance between a mean value (only of the 5 clusters
we wish to identify, i.e. with number of samples > c) and the closest center
of a cluster defined by the algorithm.

MSE associates for each cluster representative, the nearest mean value,
so some mean values may not be associated with any cluster, while GMSE
associates each mean value with the nearest cluster representative, so if a
representative is not the closest representative to any mean value, it would
not be considered.

The results are presented in Table (1). In general RA and MEM give
accurate estimations of the mean values, while GR has slightly less accurate
results.
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The types of errors in estimation presented by the algorithms are the
following:

1. Joining close clusters, i.e. returning only one expectation instead of
two close expectations. This error is common with MEM [21] and
is expected from GR. It was less common with RA. Such an error
is reflected by the number of clusters estimated, and by the value of
GMSE in Table 1 set A.

2. Cutting a cluster in two. This error is mainly characteristic to RA. If
c is small enough then one cluster may be split into several profitable
balls, so that one cluster is estimated by several close expectations.

3. Omitting a cluster. If c is large then it may happen that there is no
ball of radius r containing c+1 points, although there is a mean value
which generated more then c + 1 points. For example for c > 15 in
GR and RA, the GMSE is much greater than the MSE because the
clusters found are fairly accurate, but there are clusters omitted from
the solution. This is less common with MEM.

4. MEM is sensitive to outliers, since the likelihood maximization in-
cludes the explaining of all data points, and the size of the model
is not known. This explains the large MSE in Table 1 set B, that
diminishes as c grows since less small clusters are included.

5. Since MEM is sensitive to outliers it clusters many of these points for
small values of c, while GR and RA hardly cluster outliers.

6 Theoretical analysis of the maximum profit cov-

erage problem

In this section we present a PTAS for MPCP in the Euclidean space and
analyze algorithms GR and RA.

6.1 PTAS using the shifting method

We adapt the shifting method of Hochbaum and Maass [12] for MPCP. We
introduce the method in the plane, which could be generalized to a fixed
dimension d as in [12].

Let the set S of n given points in the plane be enclosed in a region I.
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Set A Set B

c ABN MSE GMSE ABN MSE GMSE

MEM MEM

3 5.313 0.981 1.193 10.029 3.534 1.736
5 5.059 0.983 1.195 8.926 3.400 1.736
7 4.876 0.950 1.164 7.925 3.192 1.721
9 4.692 0.964 1.189 7.000 2.837 1.704
11 4.673 0.966 1.227 6.000 2.461 1.708
13 4.681 0.960 1.216 5.442 2.086 1.729
15 4.562 0.986 1.365 5.271 1.987 1.746
17 4.428 1.011 1.507 5.087 1.823 1.717
19 3.000 1.534 1.598 4.938 1.725 1.708
21 1.114 6.322 30.736 3.454 2.492 12.724
23 1.107 6.514 34.363 2.614 2.722 19.243

GR GR

3 5.360 1.453 1.405 5.680 1.441 1.382
5 5.223 1.448 1.426 5.286 1.416 1.398
7 5.1322 1.446 1.428 5.202 1.411 1.402
9 5.031 1.442 1.478 5.052 1.400 1.486
11 4.950 1.434 2.088 4.940 1.392 2.349
13 4.859 1.431 2.502 4.829 1.388 3.117
15 4.708 1.425 3.775 4.748 1.376 3.790
17 4.507 1.407 5.577 4.627 1.370 5.068
19 3.755 1.411 10.918 4.938 1.725 1.708
21 2.251 1.176 37.567 1.622 1.523 48.630
23 1.750 1.097 46.450 2.622 2.255 106.512

RA RA

3 6.070 0.857 0.813 6.540 0.852 0.794
5 5.340 0.855 0.844 5.465 0.836 0.818
7 5.153 0.850 0.846 5.224 0.832 0.822
9 5.041 0.847 0.879 5.072 0.817 0.896
11 4.950 0.831 1.483 4.950 0.810 1.775
13 4.864 0.833 1.958 4.837 0.798 2.527
15 4.708 0.822 3.187 4.748 0.791 3.195
17 4.507 0.801 4.956 4.627 0.785 4.474
19 3.755 0.788 10.332 3.736 0.752 10.959
21 2.251 1.064 38.414 1.622 0.872 46.169
23 1.750 1.132 47.785 2.622 1.259 101.040

Table 1: results for the set A and B
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The goal is to cover a subset of S with disks of diameter D such that
the profit is maximized. Let the shifting parameter be l. In the first phase
the area I is subdivided into vertical strips of width D, where each strip
is left closed and right open. Groups of l consecutive strips, resulting in
strips of width lD each, are considered. For any fixed subdivision of I into
strips of width D, there are l different ways of partitioning I into strips of
width lD. These partitions can be ordered such that each can be derived
from the previous one by shifting it to the right over distance D. Repeating
the shift l times we return to the initial partition. We denote the l distinct
shift partitions by P1, P2, . . . , Pl. Let A be any algorithm that delivers a
solution of width lD in any strip of width lD (or less). For a given partition
Pi let A(Pi) be the algorithm that applies algorithm A to each strip in the
partition Pi and outputs the union of all disks used. This process is repeated
for each partition Pi, i = 1, 2, . . . , l. The shifting algorithm AP , defined for a
given local algorithm A, delivers the set of disks of maximum profit among
the l sets delivered by A(P1), A(P2), . . . , A(Pl). We begin by introducing
two properties of the problem.

Property 1: Denote by opt(S) the value of the optimal solution for the
set S. If S ′ ⊂ S, opt(S ′) ≤ opt(S).
Property 2: Let OPT be the set of unit balls in the optimal solution for the
set S, and OPT ′ = OPT \ {B} where B ∈ OPT . Let S \ S ′ be the subset
of points which B covers uniquely then OPT ′ is optimal for S ′.
Proof: Assume there exists a solution for S ′, that is better than OPT ′.
Denote it by BET . Then the solution BET ∪ {B} is better than OPT for
S, contradicting the optimality of OPT .

Let the performance ratio of an algorithm A be denoted by rA.

Lemma 6.1 rSA
≤ rA(1 − 1

l
), where A is a local algorithm and l is the

shifting parameter.

Proof: Denote by a(Pi) the value of the output of algorithm A(Pi). By the
definition of rA we have:

a(Pi) ≥ rA

∑

j

opt(Pij), (1)

where j runs over all strips in Pi and opt(Pij) is the value of the maximum
profit coverage of the points in strip j of partition Pi. This follows since if
a unit ball is considered twice in adjacent strips j and j + 1, we pay for it
twice, once in opt(Pij) and once in opt(Pi,j+1). Since a(Pi) is the union, we
only pay for it once in a(Pi).
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Let opt(S) be the value of the optimal solution for S and OPT (S) be
the set of unit balls used in it. Let DIS i be the set of unit balls in the
optimal solution covering points in two adjacent strips in Pi and disi is the
profit (revenue minus cost) from it. (If a point is covered by two balls we
arbitrarily assign it to one of the balls, and consider it in its profit.)

Let OPT i denote the set of unit balls in the optimal solution for the
subset Si of S that is not covered by DISi, and opti the profit from it.
Clearly:

opti = opt(S) − disi. (2)

By Property 2:
opt(Si) = opti, (3)

and by Property 1, for S,
∑

j∈Pi

opt(Pij) ≥ opt(S′) = opti. (4)

By (2) and (4)
∑

j∈Pi

opt(Pij) ≥ opt(S) − disi. (5)

Since DIS1, . . . , DISl are disjoint and add up to OPT (S), summing (5)
over i = 1, . . . , l gives:

l
∑

i=1

∑

j∈Pi

opt(Pij) ≥
l

∑

i=1

[

opt(S) − disi
]

≥ (l − 1)opt (6)

and we get:

max
i





∑

j∈Pi

opt(Pij)



 ≥ 1

l

l
∑

i=1

∑

j∈Pi

opt(Pij) ≥
(

1 − 1

l

)

opt(S). (7)

Finally from (1) and (7),

max
i

(a(Pi)) ≥ rA(1 − 1

l
)opt(S).

Given a coverage of S, an equivalent coverage using unit balls could be
defined by shifting the unit balls such that a maximum number of the points
they cover will be on their sphere, and the set of points covered by each unit
ball will not change. Denote the set of balls with a maximum number of the
points they cover will be on their sphere by BS. In the following we consider
BS as the set of possible unit balls in any coverage of S.
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Remark 6.2 If the set of balls B is a given set, as in the general definition
of MPCP , then it can be shown using the bound on the volume of the cube,
that the following local algorithm still holds.

the maximum profit coverage problem could be solved in a small
cube in Rd. Let A denote a cube of volume (2l)d and S′ ⊆ S denote the
set of points in it. The set of unit balls BS′ that could be defined by S ′ is
bounded by 2(|S ′|d) as demonstrated in Section 3. Since A could be covered
by

√
2ld balls, checking all subsets of at most

√
2ld balls yields the optimal

solution. The complexity is O(|S ′|d
√

2l
d

) time.

6.2 The greedy algorithm GR

Consider Algorithm GR presented in Section 4.1. Let OPT denote the set
of balls in an optimal solution and opt denote its value, and let G denote the
set of balls returned by GR, sorted in the order by which they were chosen,
and g denotes its value. Let α denote the minimum number of unit balls
that cover a ball of radius 3.

Theorem 6.3 g ≤ 1
α
opt

Proof: Define the primary profit from a ball B is pB =
∑

q∈B wq − c, while
the effective profit from a ball considers only the points that are covered
uniquely by that ball. Points that are covered by more then one ball are
assigned to an arbitrary ball. The proof is by induction on |G|. Assume
|G| = 1, and let B1 = B(s, 1) ∈ G denote the first and only greedy choice.
Denote the set of unit balls contained in B(s, 3) by H, clearly B1 ∈ H.
Since |G| = 1, there were no balls with positive primary profit outside of
H, and after the choice of B1 all effective profit of the balls in H \ {B1}
is non-negative. The choice of B1 cost us the loss of the effective profit of
at most α balls with effective profit pB1 , this is because there is no ball in
H that has a primary profit greater then pB1 . Hence the claim holds for
|G| = 1.

Assume g
opt

≤ 1
α

if |G| = n− 1. Let Hi denote the set H of the i-th ball
in G. The proof for |G| = n is straightforward if Hn is disjoint of all Hi,
1 ≤ i ≤ n− 1. If this is not the case, then clearly the bound is only tighter.

We are left with bounding α. This problem remains open. We present
an example in the plane, we believe to be tight. Consider the case where
wi = w ∀i and c = 8w. (c is the cost of a cycle and w is the revenue from
covering a point). We now introduce the location of the set S on the plane,
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see figure 4. Consider a unit cycle C centered at the origin. There are 9
points uniformly located on the boundary of C. For every one of the 9 points,
there is a cycle tangential to C at that point. On each tangential cycle there
are 8 points located on its boundary, on the other end of the diameter from
the tangential point. The points are dense around that point. It is optimal
to choose the set of tangential balls getting a profit of 9w. The greedy might
choose C, getting a profit of w. The approximation ratio is 1/9.

Figure 4: The profitable balls covering set S in the plane

7 Maximum profit with L balls

Consider a set S of points in a metric space with a distance function d. A
ball with center c and radius r is the subset B(c, r) = {x ∈ S|d(c, x) ≤ r}.
The ball covers the points that it contains. An L-coverage P = {S ′

1, . . . , S
′
L}

19



is a set of clusters such that each of them consists of points covered by a
single ball with radius r. Let S ′

P = ∪L
i=1S

′
i, and define the profit of P as

∑

q∈S′

P
wq − cL, where c is the cost per each ball used by P , and wq is a

revenue obtained when covering q ∈ S. The maximum profit L-coverage

problem (MPLCP) is the problem of finding an L-coverage with maximum
profit using at most L balls.

This problem is NP-hard, since by solving it in polynomial time for each
L = 1, 2, . . . , |S|, we obtain a polynomial time algorithm for the maximum

profit coverage problem. The solution we offer is based on the shifting
strategy as defined in Section 6.

Let gi
j(a) be the optimal solution to this problem for the j-th strip in

partition Pi, using at most a unit balls. Let f i
j(L) denote the value of the

cover of the first j strips of partition Pi. We use dynamic programming:

f i
j(b) = max

a
{gi

j(a) + f i
j−1(b − a)}, a ≤ L. (8)

The value of the approximation algorithm would be f(L) = maxi{f i
l (L)}.

Lemma 7.1 rSA
≤ rA(1 − 1

l
), where A is a local algorithm and l is the

shifting parameter.

Proof: By the definition of rA (Section 6 and f i
l (L) we have f i

l (L) ≥
rA

∑

j∈Pi
gi
j(aj), where j runs over all strips in Pi, and aj is the number

of unit balls used to cover strip j in f i
l (L). This follows since the same unit

ball may be chosen in two adjacent strips.
Let opt(S) be the value of the optimal solution of MPLCP on S. Let

DISi, i = 1, 2, . . . , l, be the set of disks in this solution covering points in
two adjacent strips in Pi, and disi is the profit from it. Let OPT i denote
the set of unit balls in the optimal solution for the subset S i of S that is not
covered by DISi and opti the profit from it. Clearly,

opti = opt(S) − disi, (9)

and
opt(Si) ≥ opti. (10)

Since on the right L unit balls cover the points of S ′ with an optimal
partition of the unit balls to the strips, and on the left at most L unit balls
are used to cover Si, and their partition to the strips may not be optimal
for S′.
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Since the partition of the L unit balls is optimal when applying the
dynamic program (8), then if it is applied on S ′,

∑

j∈Pi

gi,S′

j (aj) = opt(S′), (11)

where
∑

j∈Pi
gi,S′

j (aj) is the value of the profit when applying the dynamic

program on Si.
Since Si ⊂ S and L unit balls are used in both cases,

∑

j∈Pi

gi
j(aj) ≥

∑

j∈Pi

gi,Si

j (aj). (12)

From (9), (11) and (12) we get:

∑

j∈Pi

gi
j(aj) ≥ opt − disi.

Since DIS1, DIS2, . . . , DISl are disjoint, their union adds at most up to
OPT , and,

l
∑

i=1

∑

j∈Pi

gi
j(aj) ≥

l
∑

i=1

[opt − disi] ≥ (l − 1)opt,

We get,

max
i

{f i
l (L)} ≥ 1

l

l
∑

i=1

∑

j∈Pi

gi
j(aj) ≥

(

1 − 1

l

)

opt,

and we conclude, f(L) ≥ rA(1 − 1
l
)opt.

The local algorithm in this case is straightforward. The finite space is
partitioned to strips until small cubes are created. For each cube the number
of unit balls L′ used for its cover is determined by exhaustive search. Finding
the optimal solution using at most L′ unit balls can be done in O(ndL′) time.
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Appendix A

Let δ denote the Euclidean distance function. Define the distance function
between two n node structures as follows:

D(s, t) = minp∈P

√

∑

(i,j)∈V

[dt(i, j) − ds(p(i), p(j))]2 .

Lemma 7.2 D is a metric

Proof: Let p12 and p23 be the permutations that give the minimum dis-
tance in the computation of D(s1, s2) and D(s2, s3) respectively. Then,
D(s1, s2) = δ(s1, p12(s2)) and, D(s2, s3) = δ(s2, p23(s3)) = δ(p12(s2), p12p23(s3)),
and hence D(s1, s2) + D(s2, s3) = δ(s1, p12(s2)) + δ(p12(s2), p12p23(s3)) ≥
δ(s1, p12p23(s3)) ≥ D(s1, s3).

Appendix B

Let P denote the set of mappings p : Tt → Ts such that the color of the source
and the target is the same. The distance between the molecule structures

t and s is D(s, t) = minp∈P

√

∑

(i,j)∈V [dt(i, j) − ds(p(i), p(j))]2 . In order

to find the mapping p ∈ P that minimizes the distance, one need not go
over all members of P . Since a molecule structure is embedded in IR3 we
can check only mappings that are likely to minimize the sum. We find such
mappings by mapping three nodes of Vt to three nodes of Vs, such that the
colors of the nodes agree. This mapping will determine a coordinates to
which both t and s are then transformed. It is left to map the remaining
nodes of t and s. Such a mapping will be done according to the position
of the nodes in IR3 and their colors. Basically each node of t should be
mapped to the closest node of its color in s. If several options exist, the one

minimizing the sum should be chosen. There are at most 6
(

(|V |
3

)

)2
possible

transformations between t and s. In the worst case, for each coordinates
system one would have to consider then (n− 3)! mappings of the remaining
nodes of t and s. That may be the case if all nodes of V are of the same
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color and very close to each other. But in such cases the distance function
is very well approximated by choosing any one of the mappings. Since the
distance between two nodes in a molecule structure is between 2 and 12,
such events do not occur with real life data.

Appendix C

Let Θ = {α1, . . . , αK ,m1, . . . ,mK ,Σ1, . . . ,ΣK}, where αj ≥ 0,
∑K

j=1 αj = 1.
Let

P (x|Θ) =
K

∑

j=1

αjP (x|mj ,Σj),

where

P (x|mj ,Σj) =
1

√

2π|Σj |
exp− 1

2
(x−mj)

T Σ−1
j (x−mj),

Given k and given N = |S| independent, identically distributed samples
{x(t)}N

t=1, we obtain the following log likelihood:

l(Θ) = log
(

ΠN
t=1P (x(t)|Θ)

)

=
N

∑

t=1

log P (x(t)|Θ).

The Θ values that maximize l(Θ) are the maximum likelihood estimates
of the distributions parameters.

Algorithm EM is described in Figure 5.
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EM

input

1. A set x = {x(1), . . . , x(N)} of points in a d dimensional metric space.
2. An integer K [the number of distributions].

3. Θ(0) = {α(0)
1 , . . . , α

(0)
K ,m

(0)
1 , . . . ,m

(0)
K ,Σ

(0)
1 , . . . ,Σ

(0)
K } [the initial solution].

output

Θ = (α1, . . . , αK ,m1, . . . ,mK ,Σ1, . . . ,ΣK).

l(Θ(i)).
begin

z := 0.

P (x(t)|Θ(0)) = 1
q

2π|Σ(0)
j |

exp− 1
2
(x−m

(0)
j )T (Σ

(0)
j )−1(x−m

(0)
j ).

l(Θ(0)) =
∑N

t=1 log P (x|Θ(0)).
while z := 0

for j = 1, . . . ,K
for t = 1, . . . , N

h
(i)
j (t) :=

α
(i)
j P

“

x(t)|m(i)
j ,Σ

(i)
j

”

PK
i=1 α

(i)
i

P
“

x(t)|m(i)
i

,Σ
(i)
i

”

end for

αi+1
j := 1

N

∑N
t=1 h

(i)
j (t)

m
(i+1)
j :=

PN
t=1 h

(i)
j (t)x(t)

PN
t=1 h

(i)
j (t)

Σ
(i+1)
j :=

PN
t=1 h

(i)
j (t)[x(t)−m

(i)
j ][x(t)−m

(i)
j ]T

PN
t=1 h

(i)
j (t)x(t)

end for

Θ(i+1) := (α
(i+1)
1 , . . . , α

(i+1)
K ,m

(i+1)
1 , . . . ,m

(i+1)
K ,Σ

(i+1)
1 , . . . ,Σ

(i+1)
K ).

P (x|Θ(i+1)) = 1
q

2π|Σ(i+1)
j |

exp− 1
2
(x−m

(i+1)
j )T (Σ

(i+1)
j )−1(x−m

(i+1)
j ).

l(Θ(i+1)) =
∑N

t=1 log P (x(t)|Θ(i+1))

if l(Θ(i+1)) ≤ l(Θ(i)).
then

z = 1.
end if

end while

return Θ(i), l(Θ(i)).
end EM

Figure 5: Algorithm EM
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