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Abstract. A subgame perfection refinement of Nash equilibrium is suggested for games of the following
type: each of an infinite number of identical players selects an action using his private information on the
system’s state; any symmetric strategy results in a discrete Markov chain over such states; the player’s
payoff is a function of the state, the selected action, and the common strategy selected by the other players.
The distinction between equilibria which are subgame perfect and those which are not, is made apparent due
to the possibility that some states are transient. We illustrate the concept by considering several queueing
models in which the number of customers in the system constitutes the state of the system.

1. Introduction

The solution concept of Nash equilibrium is commonly used in models of queueing
systems (see [8] for many examples), and in many cases multiple equilibria exist. This
is a common phenomenon in observable queues, that is, systems in which an arriving
customer observes the queue before making a decision. A possible refinement of the
equilibrium concept is that of subgame perfection. It prescribes optimal responses for
every state including those which are out of the equilibrium path, i.e., states that will not
be visited while the strategy under consideration is used.

We consider models with infinitely many identical decision makers (players), each
facing a state from a state-space S. Each state s ∈ S is associated with a set of actions
A(s). A pure strategy δ, specifies an action, δ(s) ∈ A(s), for every s ∈ S. Randomized
(mixed) strategies are also allowed, and such strategies define a set of lotteries on action
sets, a lottery per state. The probability of selecting action a ∈ A(s) by strategy δ
when observing state s ∈ S is denoted by δ(a|s). The set of all (pure and randomized)
strategies is denoted by 	. The use of a symmetric strategy in which all players adopt
the same strategy, results in a time homogeneous Markov process over S. We denote this
process by {Xt}, t � 0. A symmetric strategy coupled with an initial state determines
the process statistically.

Example 1 (FCFS queues with balking). This example is based on the model of
Naor [9]. Consider a first-come first-served (FCFS) single server memoryless queue,
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with an arrival rate λ and a service rate µ. Let Xt , t � 1, be the number of customers
in the system at the time of arrival of the t th customer. Thus, S = {0, 1, 2, . . .}. The
initial state may be any state in S. A customer observes upon his arrival the queue length
s ∈ S, and selects one action out of two: leave for good (“action 0”, usually referred to
as balk) or join (“action 1”). The set of joining probabilities δ(1|s), s ∈ S, completely
describes the strategy.

To every triple (s, a, δ) of s ∈ S, a ∈ A(s) and δ ∈ 	, corresponds a real value
denoted by Rs(a, δ). This value is the (expected) payoff for a player who observes state
s ∈ S and selects action a ∈ A(s), when all others use strategy δ.

Example 1 (continued). Suppose that the value of service to a customer is R, and that
each unit of time in the system costs him C, where R > C/µ. Then, Rs(0, δ) = 0 and
Rs(1, δ) = R − (s + 1)/µC.

This payoff reflects the assumption that a customer may balk at no cost, whereas
if he joins, he receives R after staying in the system during a time interval of expected
length (s + 1)/µ. In this example, the value of Rs(a, δ) is not a function of δ.

Definition 1. For a strategy δ and a state s ∈ S, action a ∈ A(s) is an optimal response,
if

a ∈ arg max
a′∈A(s)

Rs
(
a′, δ

)
.

A pure strategy γ is a dominant strategy if for any s ∈ S and any δ ∈ 	,

γ (s) ∈ arg max
a′∈A(s)

Rs(a, δ).

Dominance requires that one strategy is the best option for a player regardless of
the strategy selected by others. Dominant strategies usually exist only in trivial cases.
Therefore, there is a need for a less restrictive solution concept.

Let πs(δ) be the limit probability (when t → ∞) of Xt = s, given that X0 = s

and that strategy δ is used by all. This probability is assumed to exist, and in fact all
that is required is to assume aperiodicity in the underlying Markov process. Since the
existence of a single ergodic class is not guaranteed, this limit probability is a function
of the initial state.1

For a given strategy δ, a state s is recurrent if πs(δ) > 0.2 A recurrent state s with
πs(δ) = 1 is absorbing. A non-recurrent state s, i.e., a state s with πs(δ) = 0, is called
transient.3

1 Using the same initial and target states while defining such limit probabilities is standard. It is possible,
however, to define the limit differently, for example, when the initial state is fixed to some focal state, like
s = 0 in example 1. This may lead to different results but we do not discuss them.

2 This terminology is not standard, usually such states are called positive recurrent.
3 Again, this is not a standard terminology. A state s with πs(δ) = 0 but with a probability 1 of ever

returning to it, is usually called null recurrent.
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Example 1 (continued). For a strategy δ, let n(δ) = inf{s | δ(1|s) = 0}. When n(δ)
is finite, the only recurrent states under δ are s = 0, 1, . . . , n(δ), and they compose a
single recurrent class. In other words, πs(δ) > 0 for s = 0, . . . , n(δ) and πs(δ) = 0 for
s > n(δ). When δ is the strategy of never balking, n(δ) = ∞. In this case, πs(δ) > 0
for all s � 0 if and only if

∑∞
n=1 ρ

n
∏n−1
i=1 δ(1|s) < ∞, where ρ = λ/µ. Otherwise,

πs(δ) = 0 for all s � 0.

Definition 2. A strategy δ is an equilibrium strategy if it maximizes the player’s ex-
pected payoff

∑
s∈S πs(δ)Rs(a, δ), given that the other players adopt it. Equivalently,

δ(a|s) > 0 only if a ∈ arg maxa′∈A(s) Rs(a′, δ) for all s ∈ S with πs(δ) > 0.

The definition assumes that steady-state conditions have been reached, and in par-
ticular, the state in which the process initiates belongs to the ergodic class that contains
the observed state. Thus, δ is an equilibrium strategy if it prescribes optimal response
actions for all states which are recurrent under it.

Remark 1. The condition for equilibrium does not impose restrictions on the actions
prescribed for transient states. However, this does not mean that prescribing arbitrary
actions to these states necessarily leads to another equilibrium. This, in part, is due to
the fact that under a new action the transient state may become recurrent.

Example 1 (continued). When λ � µ, “always join” is an equilibrium strategy, since
all states are transient under this strategy.

Let

ne = max

{
s: R − s + 1

µ
C � 0

}
.

Any pure strategy δ with n(δ) = ne is an equilibrium. These strategies have the same set
of recurrent states and they only differ in the actions they prescribe to transient states.
This includes strategies such as δ(1|s) = 1 for all s �= ne and δ(1|ne) = 0. Note that
this strategy prescribes joining long queues. Yet, states s with s > ne are transient under
it. Assuming R − (ne + 1)/µC > 0, the conditions δ(1|s) = 1 for 0 � s � ne − 1 and
δ(1|ne) = 0 are necessary and sufficient for any strategy to be an equilibrium.4

Example 1 is typical in the sense that it possesses multiple equilibria. A possible
refinement of the equilibrium concept is given next.

4 If R − (ne + 1)/µC = 0, the conditions are that for some p, 0 � p � 1

δ(1|s) =



1, 0 � s � ne − 2,
p, s = ne − 1,
0, s = ne.

If p = 0, the requirement δ(1|ne) = 0 can be removed.
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Definition 3. A strategy δ is a subgame-perfect equilibrium strategy (SPE) if a ∈
arg maxa′∈A(s) Rs(a′, δ) for every s ∈ S and a ∈ A(s) such that δ(a|s) > 0.

A SPE strategy is an equilibrium strategy, but the converse is not necessarily true.
The additional requirement from a strategy to be a SPE, once it is established that it is
an equilibrium, is that it prescribes optimal response actions also at states that will not
be encountered by a player when all follow the equilibrium strategy.

Example 1 (continued). Assume that R − (ne + 1)/µC > 0, then the unique SPE
strategy is δ(1|s) = 1 for 0 � s � ne − 1 and δ(1|s) = 0 for s � ne.5

2. Examples

In this section we discuss four other examples. Examples 2, and 3 are similar to ex-
ample 1 except for the service disciplines. In example 4, customers decide whether to
purchase the right to belong to a priority class of customers. In example 5 customers
decide whether to use a shuttle that departs as soon as it is full or a bus that departs at
random times. In all these situations, arrivals are aware of the state of the system, i.e.,
we deal with observable queues.

2.1. Example 2: Processor sharing

This model is similar to the one of example 1 except for that the service discipline is
egalitarian processor sharing (EPS). This means that the server’s capacity is evenly
shared by those present in the system. In particular, when n � 1 customers are present,
each of them is equally likely, with probability (µ/n)	t + o(	t), to complete service
during the next 	t unit of times. Reneging after joining is not allowed.6

The states, actions, strategies, transition probabilities and Rs(0, δ) = 0 are as in
example 1. The difference is in Rs(1, δ), which is defined here as

Rs(1, δ) = R − CE(s, δ), s � 0, (1)

5 For R − (ne + 1)/µC = 0, the uniqueness property is lost and the SPE strategies have the form

δ(1|s) =



1, 0 � s � ne − 2,
p, s = ne − 1,
0, s � ne.

6 In example 1, the lack of reneging in equilibrium can be derived from the model as one’s fate is indepen-
dent of later arrivals. This is not the case in the EPS. See [3] for details. In the current example, reneging
is prohibited as an assumption of the model.
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where E(s, δ) is the expected time in the system for a customer when there s � 0 other
customers in the system and strategy δ is used by all.7

This model was considered by Altman and Shimkin [2]. They showed that there
exists a unique SPE strategy (they refer to it as an equilibrium). This strategy is based on
a threshold. A strategy with threshold x = n + r where n = �x
 and r � 0, prescribes
joining whenever the number of customers in the system is in {0, . . . , n − 1}, balking
whenever it is in {n + 1, n + 2, . . .}, and joining with probability r when it is n. An
algorithm which determines the unique SPE strategy is given in [2].

If the unique SPE strategy is pure (r = 0), then any strategy which prescribes
joining at {0, . . . , n− 1} and balking at n (regardless of what it prescribes elsewhere), is
an equilibrium. When the unique SPE strategy is mixed with threshold x = n + r, then
any strategy which prescribes joining at {0, . . . , n − 1}, joining with probability r at n,
and balking at n+ 1 is an equilibrium.

2.2. Example 3: LCFS-PR without reneging

This example is similar to example 1 except for that the service discipline is last-come
first-served with preemption-resume (LCFS-PR). Specifically, a customer commences
service as soon as he arrives, possibly preempting the service of another customer. Cus-
tomers return to service in a reversed order of their arrival times. Resumed service takes
place from the point of its interruption. Reneging is not allowed.8 The model was in-
troduced by Tilt and Balachandran [10] who also observed that the equilibrium is not
unique. However, the solutions obtained there are not SPE.9

The states, actions, strategies, transition probabilities and Rs(0, δ) = 0 are as in
example 1. The difference is in Rs(1, δ) which is defined here to be

Rs(1, δ) = R − CE(s, δ), s � 0, (2)

where E(s, δ) is the expected time in the system for one who is in service when an
additional number of s � 0 customers are present and strategy δ is used by all (including
future arrivals).

Theorem 1. Suppose that λ < µ and R < C/(µ − λ). Let pi , i � 0, be the proba-
bility that a customer who observes i customers in the system joins. Denote by p the
corresponding vector. LetWi(p) be the expected waiting time for a customer who joins
after observing i customers when all others behave according to p. Then, there exists a

7 This value coincides with the expected time in random queues where the customer to whom service is
granted is selected randomly among all those in the system at the time of service completion. The analysis
here also suits this model.

8 Footnote 6 applies here too, and reneging is forbidden here as part of the models’ assumptions. For the
case where reneging is allowed see [6].

9 The model in [10] is more general. In particular, it assumes a GI/M/s LCFS system without preemption.
In the single server model that we assume, there is no qualitative difference between systems with and
without preemption.
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unique equilibrium in which 0 < pi < 1 for every i � 0. In this equilibrium, pi = pe

for every i � 0, where

pe = 1

λ

(
µ− C

R

)
. (3)

Proof. Since pi > 0 for every i � 0, the states compose a single communicating class
and hence either they are all recurrent or they are all transient. The theorem’s condition
implies that Wi(p), i � 0, are finite. Therefore all states are recurrent. For 0 < pi < 1
in equilibrium, customers must be indifferent between joining and balking in all states.
Therefore, R − CWi(p) = 0 for every i � 0.

Consider a customer who joins after observing state i − 1. If the next event is an
arrival then this arrival will preempt his service. He will then have to wait an expected
time ofWi(p) until his service is resumed. Therefore,

Wi−1(p) = 1

piλ+ µ + piλ

piλ+ µ
(
Wi(p)+Wi−1(p)

)
.

Substituting Wi(p) = Wi−1(p) = R/C we get that for every i = 0, 1, . . .

R

C
= 1

µ− piλ,

and therefore pi = pe where pe satisfies (3). �

Note that since under the assumption of theorem 1 a single communicating class is
formed, the resulting equilibrium is also a SPE.

We now investigate pure SPE’s. If λ < µ and all arriving customers join, the
expected waiting time (including the time in service) of a customer is 1/(µ − λ). If
also R � C/(µ − λ), then joining is a best response in any state and against any strat-
egy. In other words, the strategy of always joining is a dominant strategy and no other
equilibrium exists.

Assume now that either λ � µ or λ < µ and R < C/(µ−λ). Form � 1, let B(m)
be the expected waiting time for a customer who arrives to an empty LCFS-PR queue
when all use the strategy of joining if and only if the number of customers in the system
is at most m− 1 (and balk otherwise). It is clear that B(m) is monotone increasing with
m.10 This value is also equal to the expected waiting time of a customer who joins when
there are k customers in the system and the strategy used by all prescribes joining at
states k+ 1, . . . , k+m− 1 and balking at state k+m (it is immaterial what the strategy
prescribes for other states). Let m∗ = maxm�1{m | R � CB(m)}. Note that m∗ exists
by our assumption that either λ � µ or λ < µ and R < C/(µ− λ). A pure strategy can
be written as a string of 0’s and 1’s, where 0 denotes balking and 1 denoted joining.

10 In fact, B(m) coincides with the expected length of a busy period in anM/M/1/m model. This value is∑m−1
i=0 ρ

i/µ (see, for example, [7]).
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The following two conditions are necessary for a pure strategy to be a SPE:

• Each 1 is followed by at most m∗ − 1 1’s; otherwise, this 1 is suboptimal.

• Each 0 is followed by at least m∗ 1’s; otherwise, this 0 should be replaced by 1 for a
better action.

Combining these conditions, each 0 has to be followed by exactly m∗ 1’s which
are followed by a 0. This condition is also sufficient for a SPE. Thus, there are exactly
m∗ + 1 pure SPE solutions. All of them are based on repeating indefinitely identical
“blocks” of length (m∗ + 1), each having a 0 followed by m∗ 1’s. They differ by where
the number of 1’s before the first 0. In order to obey the first of the two conditions, the 0
initiating the first block, should appear in any of the first m∗ + 1 entries.

If ρ is sufficiently large, m∗ = 1 and hence two pure SPE solutions exists. The
first is (0, 1, 0, 1, . . .), prescribing to join even queue sizes and balk at odd queue sizes.
Under this strategy the server is always idle! The other pure SPE is (1, 0, 1, 0, . . .).

We describe now some illustrative pure equilibria that are not subgame perfect.
Suppose the arrival rate is large. Then, “join unless s = 0” is an equilibrium, but of
course not a SPE. In fact, under this strategy nobody joins (assuming the process initiates
with an empty system) and s = 0 is the only recurrent state. Likewise, the strategy “join
unless s = 1” is an equilibrium but not a SPE. Note that under this strategy at most
one customer is present in the system at any given time, and no preemption takes place.
Indeed, the only recurrent class here is {0, 1}. Lastly, the strategy “join unless s = 2”
is not an equilibrium because when this strategy is adopted by all, joining when s = 0
(which is a recurrent state) is not an optimal response due to the high arrival rate. If the
arrival rate λ is reduced to a moderate value,11 this strategy becomes an equilibrium.

Finite buffer
Assume that for some number, N � 1, a customer who observes upon arrival N cus-
tomers in the system (including the one in service) must balk. This is equivalent to
assuming that the waiting room (including the service position) cannot accommodate
more than N customers, and new arrivals are rejected. A more general version of this
model was treated in [10] and a single equilibrium, which turns out to be an SPE, was
computed. We give here a more complete analysis of the pure SPE’s in this case.

Here, S = {0, 1, . . . , N − 1} and Rs(0, δ) = 0 for s ∈ S. Let δ be a pure strategy.
For a state s, let state i(s, δ) be the smallest state larger than or equal to s for which δ
prescribes balking. If such a state does not exist, set i(s, δ) = N . The expected waiting
time of a customer who joins after observing state s is B(i(s+ 1, δ)− s+ 1). Therefore,

Rs(1, δ) = R − CB(
i(s + 1, δ)− s + 1

)
, 0 � s � N − 1.

If m∗ � N , then “always join” is the unique equilibrium. Moreover, under this
strategy all states are recurrent and therefore this is also a SPE.

11 For the exact condition see [10, p. 492].
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Suppose now that m∗ < N . For a pure strategy δ, denote by n(δ) the first entry
where 0 appears. The following two conditions are necessary and sufficient for δ to be
an equilibrium:

• n(δ) � m∗.

• 1 appears in positions n(δ)+ 1, . . . ,min{N, n(δ)+m∗}.
Under a strategy which obeys the two conditions, states {0, . . . , n(δ)} are the only recur-
rent states and indeed an optimal action is prescribed for them. Which among them are
SPE? The answer is simple: Insert 1’s at the m∗ positions starting from N − 1 and going
down, then insert a 0, then an additional m∗ of 1’s, etc.

2.3. Example 4: Two priority classes

The following model was considered by Adiri and Yechiali [1] and Hassin and Haviv [7].
It is similar to the model in example 1 but balking is not allowed and customers have the
option of purchasing priority at the cost of θ . They make their decisions after observing
the state (i, j) where i and j denote the number of ordinary and priority customers, re-
spectively, in the system. A priority customer who observes upon his arrival an ordinary
customer in service, commences service immediately while preempting the customer in
service. A preempted service is resumed at the point where it was interrupted. Cus-
tomers belonging to the same priority class are served in a FCFS order. For stability we
assume that λ < µ.12

Denote the action of not purchasing priority by 0 and that of purchasing priority
by 1. Then, for any i, j � 0,R(i,j)(1, δ) = C(j+1)/µ andR(i,j)(0, δ) = CW(i+1, j, δ)
where W(i, j, δ) is the expected time in the system for an ordinary customer who is in
position i in his class and when additional j priority customers are present, given that
all use strategy δ. The expected waiting time for an ordinary customer depends on the
strategies selected by future arrivals, and hence it is not a trivial function of δ.

In [7] it is proved that there exist integers n1 � n2 such that for any integer n,
n1 � n � n2, the following is a pure equilibrium strategy: δ(0|(i, j)) = 1 if i < n,
otherwise, δ(1|(i, j)) = 1. Under δ the recurrent states are (i, 0) for 0 � i � n, and
(n, j) for j � 0. Assuming (0, 0) to be the initial state, then priority is not purchased
under δ as long as the total (and hence, low priority) number of customers in the system
does not reach the threshold n. Priority is purchased when this number is grater than
n− 1.

We observe that other pure equilibria exist. For example, for a strategy δ′ which
is similar to δ except for that δ′(1|i, j) = 0 for i � n + 1, is an equilibrium. The sets
of recurrent states under δ and under δ′ coincide, and the two strategies disagree only in
transient states (see remark 1).

12 Since balking is not allowed the value of service plays no role. For this reason, in this example and
the next one, we minimize the system’s costs rather than maximizing welfare, as we have done in the
previous examples.
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The next question is whether δ is a SPE. It is true that δ prescribes optimal re-
sponses for all transient states (i, j) with i > n but this is not necessarily so with respect
to the transient states (i, j) where i < n. Consider the transient state under δ, (n− 1, j)
with a large value of j . For this state, δ prescribes not to purchase priority. Yet, since any
priority customer present adds (under δ) a busy period of waiting time to each ordinary
customer, for a large j , the only optimal response is to purchase priority.

A SPE strategy is based on an integer n as described above, coupled with additional
n thresholds denoted by j (n, n− 1) < j (n, n− 2) < · · · < j(n, 0) such that for states
(i, j) with i � n − 1 and j � j (n, i) it prescribes purchasing priority. Otherwise, the
strategy will be as δ above.

We next show how to compute j (n, n − 1). Finding j (n, n − 2), j (n, n − 3),
. . . , j (n, 0) is more complicated and not accomplished here. We learn from [7] that a
strategy δ with a threshold n as defined above is an equilibrium if and only if

C

µ
+ θ − CB � CW(n) � C

µ
+ θ,

whereW(n) is the expected waiting time of an ordinary customer who is the last among n
(including himself) ordinary customers when no priority customer is present, and where
B = 1/(µ−λ) is the expected length of a busy period (given that all customers follow δ).
Consider now a customer who observes a transient state (n − 1, j). If he purchases
priority his expected cost is θ + C(j + 1)/µ. Otherwise, it is jCB +W(n). Thus, for
j � j (n, n− 1) where

j (n, n− 1) = min
j�1

{
θ + Cj + 1

µ
� jCB + CW(n)

}
,

a SPE prescribes purchasing priority.

2.4. Example 5: Choosing between batch servers

Suppose there are two means of transportation. The first is a bus of infinite capacity for
which the mean waiting time is five minutes. The second is a seven-seater shuttle which
departs as soon as the seventh commuter joins. There is no shortage of shuttles and as
soon as a shuttle departs another one arrives. The commuters’ arrival process is Poisson
with a rate of λ per minute. Each commuter, after observing the occupancy level of the
shuttle, selects one of the means of transportation.

S = {0, 1, . . . , 6} is the occupancy level of the shuttle. Action 0 is to select the
bus and action 1 is to join the shuttle. For simplicity, we deal only with pure strategies.
Let n(δ) be the largest state for which δ prescribes taking the bus: n(δ) = maxs∈S{(.0|s)
= 1}. If δ always prescribes choosing the shuttle, set n(δ) = −1. Then Rs(0, δ) = 5 for
all s ∈ S and all δ ∈ 	, and

Rs(1, δ) =
{ ∞, 0 � s < n(δ),

6 − s
λ
, 6 � s � n(δ).
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If n(δ) � 0 then the only recurrent states are those with δ(0|s) = 1. These are
absorbing states and thus each of them constitutes a recurrent class of its own. When
n(δ) = −1, i.e., δ(1|s) = 1 for all s ∈ S, S constitutes a single recurrent class.

Consider the strategy under which all use the shuttle. The expected waiting time
for one who observes an empty shuttle is 6/λ. Thus, this strategy is an equilibrium if
and only if λ > 6/5. Moreover, since all states are recurrent, it is a SPE as well. It is
the only equilibrium when λ > 6/5: indeed when all others use some other strategy δ,
selecting the bus at the recurrent state n(δ) is a suboptimal response.

As for other strategies, note that δ is not an equilibrium if n(δ) = 6 as it prescribes
taking the bus when facing the recurrent state 6 (and not the shuttle which will depart
immediately). If n(δ) � 5, check if [6 − n(δ)]/λ � 5. If this is the case then δ is an
equilibrium. Otherwise, it is not. Once δ is found to be an equilibrium, the next issue
is whether it is also a SPE. Two conditions are to be met here. First, it is required that
δ(0|s) = 1 for all s � n(δ) (so optimal responses are prescribed for all states s � n(δ)

which are recurrent), and second, that δ(1|s) = 1 for all states for which if all future
arrivals take the shuttle, the optimal response is also to take the shuttle. These states
which are with s > n(δ), are transient.

It is clear that only one pure SPE exists. Specifically, we already considered the
case λ > 6/5 and concluded that the unique pure SPE is that all use the shuttle. Oth-
erwise, a SPE requires taking the shuttle when, and only when, the number of waiting
commuters there is i with (6 − i)/λ < 5, i.e., i > 6 − 5λ. For example, when λ < 1/5
under the SPE one selects the shuttle if and only if it will depart immediately.

3. Concluding remarks

The concept of subgame perfection has been introduced by game theorists to refine the
solution concept of Nash equilibrium. The idea is to rule out some equilibria and end up
with the more “rational” ones.

For a given equilibrium, there are some (information) states that are out of the
equilibrium path and hence an irrational prescription of actions for such states does not
necessarily lead to a violation of the equilibrium requirements. These states may be
considered as reachable only due to an error in the execution of the equilibrium profile
(known as the “trembling hand effect”). For subgame perfection, it is required that
rational (i.e., optimal) actions are prescribed also for these states. This paper focused on
this aspect of subgame perfection and its applications to observable queues.

A second issue is that sometimes equilibrium paths are themselves irrational and,
in fact, are based on incredible threats. For example, in the Entry Game, one player
threatens to flood the market if a second player enters it. However, given that the second
player has chosen to enter (in spite of the threat), flooding the market is a sub-optimal
response for the first player and hence the threat strategy is not a SPE. There are inter-
esting queueing games where the concept of threats is meaningful. Investigating such
models is an interesting problem that this paper leaves for future research. We conclude
however with some examples.
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Consider the processor sharing model of section 2.1 with homogeneous customers,
exponential service requirements, and given time values and benefits from service. An
arriving customer decides whether to join or balk, after observing the queue. If the queue
is sufficiently long, then joining of the new arrival may be associated with a negative
expected net benefit to him, as well as to those already in the queue. Upon his arrival,
the customer has the option of balking. But, by the memoryless property, once he joins
he cannot be distinguished from the others. This model was analyzed by Altman and
Shimkin [2] who computed an equilibrium threshold strategy. Some details were given
above in section 2.1.

We now add the option of reneging: at any time, a customer in the queue is allowed
to leave at no additional cost or benefit. This assumption puts the new arrival in the same
position as any other customer who is already in the queue. This model was investigated
by Assaf and Haviv [3] under the assumption that the only information customers pos-
sess while they are in the system is the queue size. In [3] it is proved that no SPE exists
(although the concept of SPE was not discussed there) in this model, and, consequently,
a weaker concept of equilibrium was defined and solved.

We will now show that the model has an equilibrium. Consider the threshold, n,
of Altman and Shimkin. The following is an equilibrium strategy: join if and only if
the number of customers you observe upon arrival is less then n; otherwise balk; never
renege.

The fact that a customer can renege works against him, since it encourages new
arrivals to enter while hoping that he will renege. Once a customer announces that he
will never renege, others may not join and he will be better off. Of course this isn’t a SPE
since if they join, staying in the system is suboptimal. Thus, when we forbid equilibrium
strategies that are not SPE we actually move from the model of Altman and Shimkin to
the model of Assaf and Haviv.

In another example, suppose that customers arrive to a processor sharing system,
observe the queue and decide whether to join. A customer who joins also selects his
service requirement. A pricing scheme that induces the socially optimal behavior in
equilibrium in this model is given by Ha in [5]. Assume that a longer service gives
the customer an increased value, but the value function is concave. When the number of
customers in the queue increases, the rate of service each of them receives decreases, and
this may induce those who entered earlier to renege. Suppose that an arriving customer
has full information on the time already spent in service by the customers in the system.13

Based on this information, the new arrival can compute the consequences that his joining
has on the others, in particular their expected times of leaving the queue. Using this
information he may join or balk. The customers in the system are interested in deterring
the new arrival from joining. One way of doing so is by threatening that if he joins they
will stay for long time (possibly as long as he is in the queue). Such a strategy may
define an equilibrium but it isn’t a SPE.

13 The model is of equal interest if this information is not available.
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