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Abstract

We consider the well-known minimum quadratic assignment problem. In this problem we are
given two n × n nonnegative symmetric matrices A = (aij) and B = (bij). The objective is to
compute a permutation π of V = {1, . . . , n} so that

∑

i,j∈V

i6=j

aπ(i),π(j)bi,j is minimized.
We assume that A is a 0/1 incidence matrix of a graph, and that B satisfies the triangle inequal-

ity. We analyze the approximability of this class of problems by providing polynomial bounded
approximation for some special cases, and inapproximability results for other cases.

1 Introduction

In the MINIMUM QUADRATIC ASSIGNMENT PROBLEM two n × n nonnegative symmetric matrices
A = (aij) and B = (bij) are given and the objective is to compute a permutation π of V = {1, . . . , n}
so that

∑

i,j∈V

i6=j

aπ(i),π(j)bi,j is minimized. The problem is one of the most important problem of com-
binatorial optimization. It generalizes many fundamental theoretical problems such as the TRAVELING
SALESMAN PROBLEM, GRAPH BISECTION, MINIMUM WEIGHT PERFECT MATCHING, MINIMUM k-
CLIQUE, LINEAR ARRANGEMENT, and many others. It also generalizes many practical problems that
arise in various areas such as modeling of backboard wiring [20], campus and hospital layout [6, 8],
scheduling [12] and many others [7, 17].

The MINIMUM QUADRATIC ASSIGNMENT PROBLEM (MQA) is a notoriously difficult problem
both from practical and theoretical viewpoints. Practically, only instances with n ≈ 30 are computa-
tionally tractable [2]. Theoretically, Sahni and Gonzalez [19] show that no constant factor approxima-
tion exists for the problem unless P = NP . In fact, Queyranne [18] showed that approximating the
MQA within a polynomial factor in polynomial time implies P=NP even for the case when aij = 1
for every i 6= j, aii = 0 for every i ∈ V , and the weights in GB correspond to a line metric.

In this paper we consider a special case, the MINIMUM METRIC QUADRATIC ASSIGNMENT PROB-
LEM ( METRIC MQA), in which the weights in B satisfy the triangle inequality, bi,j ≤ bi,k + bk,j, for
all i, j, k ∈ V and A is a 0/1 incidence matrix of a graph. We use GA to denote the graph correspond-
ing to A and GB to denote the complete weighted graph corresponding to the metric B. Thus, the
problem is to compute in GB a subgraph isomorphic to GA of minimum total weight. We will denote
by OPT the cost of an optimal solution to the MQA problem. An algorithm for a minimization prob-
lem is called a ρ-approximation algorithm if it always delivers in polynomial time a feasible solution
whose cost is at most ρ times OPT.

Several interesting special cases of METRIC MQA can be solved in polynomial time, others are
known to have polynomial algorithms that guarantee a solution withing a constant or a logarithmic
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factor from optimal. The approximability of other interesting cases is still open. In this paper we
obtain new results on the approximability of METRIC MQA, thus narrowing the gap between the
known cases that can and cannot be approximated.

Known results for the special cases. The METRIC k-TRAVELING SALESMAN PROBLEM is a
special case of MQA, for which there is a known 2-approximation [11], and a 1.5-approximation
when k = n [5]. Similarly, the HAMILTONIAN PATH PROBLEM is a special case of MQA, for which
a similar bound is known [16].

The case when GB corresponds to a metric on n integer points {1, . . . , n} and GA is a complete
graph on n vertices is known as the LINEAR ARRANGEMENT PROBLEM and admits a O(

√
log n log log n)-

approximation [9].
When GA consists of p vertex disjoint paths, (cycles, cliques) there are constant factor approxi-

mations under restrictions: For p fixed see [14, 15], and for equal-sized sets see [13].
The case when GA is a matching corresponds to the MINIMUM MATCHING PROBLEM which is

polynomially solvable.
The MAXIMUM METRIC QUADRATIC ASSIGNMENT PROBLEM seems to be a much easier prob-

lem since it admits a 1
4 -approximation algorithm [3]. Another case that admits good approximation is

so-called DENSE QUADRATIC ASSIGNMENT PROBLEM. This subclass of problems has a polynomial
time approximation scheme [4].

Our Results. First we consider the case when GA is a spanning tree. Note that in this case
the topology of the tree GA is pre-specified and therefore the MQA on trees is different from the
MINIMUM SPANNING TREE PROBLEM. We prove that there is no O(nα)-approximation algorithm
for any α < 1 for this special case, unless P = NP . On the positive side we show that if GA

is a spider, i.e. a tree with at most one vertex of degree ≥ 3, then there exists a constant factor
approximation algorithm. For the case in which the maximum degree ∆ of a vertex in the tree GA is
bounded, we present a (∆ log n)-approximation algorithm.

Finally, we consider the problem in the case when GA is a special case of 3-regular Hamiltonian
graph and the case when GA is a double tour (see Section 4 for the exact definitions). We obtain a
3-approximation for the first problem and 2.25-approximation for the second one.

Techniques and ideas. The most nontrivial result of this paper is a constant factor approximation
algorithm for the special case when GA is a spider. Although this case looks quite specialized, it
contains the Minimum Metric Hamiltonian Path Problem as a special case when the spider is just a
path. We prove that by guessing the root and partitioning the vertex set into classes by their distance to
the root, we could find a collection of spanning trees connecting each of the vertex sets to the root so
that their total weight is at most constant factor of optimal value of the problem. This theorem provides
us an auxiliary optimization problem that is easy to solve, and its output has cost approximating the
cost of the optimal spider. The proof looks at each leg of the optimal solution (mapping of GA into
GB) and uses a non-trivial charging technique to prove that within one leg we could find subtrees that
span vertices of one class only and have bounded total cost. Given the collection of spanning trees
we transform it into a tour and after that into a spider by a well known spanning tree doubling and
short-cutting techniques.

The algorithm for the general bounded degree graphs consists of recursively finding the approxi-
mate Hamiltonian path and ordering vertices of the current subtree according to that path. After that
we map subtrees in GA into the path such that the subtree with more vertices is mapped closer to the
beginning of the Hamiltonian path. Finally, we connect each child of the current root vertex by direct
edges and repeat the algorithm with each subtree rooted at a child node.
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2 Non-approximability of the MQA on trees

It is trivial to compute an O(n)-approximation for the MQA when GA is a tree. If the tree is a
spanning tree then by the triangle inequality, any feasible solution is an n-approximation. Otherwise,
compute a 2-approximated k-MST where k is the number of vertices as the required tree (using Garg’s
[11] 2-approximation algorithm), and compute any feasible solution using these vertices. Again the
bound follows from the triangle inequality. We now prove that this is essentially the best possible
bound.

Theorem 1 Unless P = NP , there is no a polynomial time nα-approximation algorithm for the
MQA when GA is a tree, for any α < 1.

Proof: Similar to [18], we use a reduction from 3-PARTITION: Given 3k integers s(1), . . . , s(3k)
such that

∑

a s(a) = kR, the goal is to decide whether {1, . . . , 3k} can be partitioned into k disjoint
subsets S1, . . . , Sk with |Sh| = 3 and

∑

a∈Sh
s(a) = R for h = 1 . . . , k. The 3-PARTITION problem

is known to be NP-complete in the strong sense (see problem [SP15] in [10]).
Consider a positive constant α < 1, and suppose that there exists an algorithm A that guarantees

a nα-approximation to the MQA on trees. Let P = 2
(

3k2R
)l, where l

l+1 > α.
Suppose that an instance I of 3-PARTITION is given. We define an instance of the MQA where

GA corresponds to the tree T with 1 + 3k2RP vertices: a root vertex r, connected to 3k subtrees
where the a-th subtree is a star with 3ks(a)P vertices. The graph GB consists of k disjoint cliques,
each with 3kRP vertices and with zero weight edges, plus one additional vertex vr which does not
belong to any of these cliques. The other edges of GB have unit weight. Note that since 3-PARTITION
is NP-hard in the strong sense, the resulting instance of the MQA has a polynomial size.

Suppose that I has a 3-partition S1, . . . , Sk. We can map the stars of T according to this partition
to the cliques of GB . The only unit length edges used by this solution are those connecting vr to the
centers of the stars. Therefore the value of this solution is 3k.

Suppose now that I has no 3-partition. We claim that in this case the optimal solution to our MQA
instance has value strictly greater than 3kP . Consider feasible solution for such MQA instance. This
solution defines an assignment of star centers into cliques and vr in the graph GB . Consider the
clique with maximum number of centers assigned to it. Let N be the total size of the stars with
centers assigned to that clique and vr. Since there is no 3-partition, it follows that N > (R + 1)3kP .
Therefore, the MQA solution uses at least 3kP unit weight edges that connect star centers to their
leaves, and its cost is strictly greater than 3kP .

Note that in the graph we constructed, the number of vertices is N = 1+3k2RP = 1+
(

P
2

)1+ 1
l <

P
l+1

l , and therefore P > N
l

l+1 > Nα. Thus, a guaranteed error ratio less than N α means that if a
3-partition exists in I then it must be found by the algorithm A.

3 Approximating MQA on spiders

Definition 2 A spider graph consists of a root vertex and a collection of subtrees that are paths. If
the paths have equal lengths then the spider is uniform. These paths are called legs, and the size of a
leg is the number of vertices in the leg excluding the root.

We note that the proof of Theorem 1 does not apply to spiders. The MQA on spiders is obviously
NP-hard even with just two subtrees since this is exactly the Hamiltonian Path Problem.
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Theorem 3 There is a polynomial 3-approximation algorithm for MQA on uniform spiders.

Proof: Suppose that the spider T consists of a root r and l path subtrees of k vertices each. Then the
algorithm by Altinkemer and Gavish [1] for the CAPACITATED MINIMUM SPANNING TREE PROBLEM
with capacity k has performance guarantee 3 for our problem since every subtree returned by their
algorithm is just a path.

We now consider the MQA on general non-uniform spiders. We assume that the weights in the
matrix B are positive integers (except zeros on the diagonal). Let q ≥ 1 be a constant to be chosen
later. We assume that we know the root vertex r of the tree whose degree is at least three in a fixed
optimal solution OPT whose cost is also denoted by OPT. This assumption can be justified by testing
all possibilities for choosing r and applying the following algorithm for each possibility.

We partition the vertices in V \ {r} according to their distances from r in the following way. Let
Vi be the set of vertices whose distance from r belongs to the interval [q i−1, qi), that is Vi = {j ∈
V \ {r} : qi−1 ≤ brj < qi}. For a vertex j, we say that j is a class i vertex if j ∈ Vi. Let l be the
maximum index for which Vi 6= ∅.

For each i, we compute an approximate minimum tour Ci on the set of vertices Vi ∪ {r} by first
computing the minimum spanning tree Ti over Vi ∪{r} in GB , doubling Ti, converting the new graph
into a Eulerian tour and finally short-cutting the Eulerian tour to get the Hamiltonian tour on V i ∪{r}.
We next create a Hamiltonian path P over V in which the indices of classes of the vertices along the
path are monotone non-decreasing sequence. We do so by first placing r, then V1, and so on until
we place Vl at the end of the path. For each i, the order of Vi along this tour is exactly the order in
Ci, starting at arbitrary chosen vertex in Ci. Let v1 = r, v2, . . . , vn be the permutation of the vertices
along the Hamiltonian path P .

Assume that the input spider GA has legs of size n1 ≤ n2 ≤ · · · ≤ nt. We return the spider whose
root vertex is r, and its edge set is E1 ∪E2 where E1 = {(r, vk) : k = 1 +

∑i−1
j=1 nj, i = 1, 2, . . . , t}

and E2 = {(vi, vi+1) : i = 2, 3, . . . , n − 1} \ {(vk−1, vk) : k = 1 +
∑i

j=1 nj, i = 1, 2, . . . , t}. I.e.,
we start to allocate the vertices along the order of P to different legs starting from the shortest leg that
is allocated the vertices from the classes with smallest index.

Before we start to estimate the weight of the approximate solution we prove the following techni-
cal lemma.

Lemma 4 We are given a set of positive numbers a1 ≤ a2 ≤ · · · ≤ an. Let Q1, . . . , Qt be a
partition of the set {1, . . . , n} such that |Qi| = ni, n1 ≤ n2 ≤ · · · ≤ nt, and Qi = {j : j =
1 +

∑i−1
s=1 ns, . . . ,

∑i
s=1 ns}. Let P1, . . . , Pt be arbitrary partition of the set {1, . . . , n} such that

|Pi| = ni. Then
t

∑

i=1

max
j∈Qi

aj ≤
t

∑

i=1

max
j∈Pi

aj .

Proof: The proof is a straightforward application of induction on the number t of the sets in the
partition.

It is clear that the algorithm returns a feasible solution in polynomial time. It remains to analyze
its performance guarantee. We bound separately the cost of E1 and the cost of E2. We first bound the
cost of E1.

Lemma 5
∑

(r,i)∈E1
bri ≤ q · OPT.

Proof: Consider the i-th leg in a fixed optimal solution. Assume that it consists of the vertices
r, ui

1, u
i
2, . . . , u

i
ni

in this order. Then, the total cost of this leg is brui
1
+

∑ni−1
j=1 bui

jui
j+1

≥ max1≤j≤ni
brui

j
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by triangle inequality. We sum this inequality for all the legs, and conclude that

OPT =

t
∑

i=1



brui
1
+

ni−1
∑

j=1

bui
j ,ui

j+1



 ≥
t

∑

i=1

max
1≤j≤ni

brui
j
≥

t
∑

i=1

max
1≤j≤ni

b′
rui

j

where for a vertex v ∈ Vi we define b′rv = qi−1.
On the other hand, we note that along the Hamiltonian path P the vertices are ordered according

to the value of b′rv . Let j(1) < j(2) < · · · < j(t) be the indices such that (r, vj(i)) ∈ E1 for
i = 1, 2, . . . , t. By the definition of the path P we have j(s) = 1 +

∑s−1
i=1 ni. Therefore, b′rvj(i)

≤
mink=0,...,ni−1 b′rvj(i)+k

≤ maxk=0,...,ni−1 b′rvj(i)+k
. Applying Lemma 4 we obtain

∑

(r,i)∈E1

bri ≤ q ·
t

∑

i=1

b′rv(j(i)) ≤ q ·
t

∑

i=1

max
k=0,...,ni−1

b′rvj(i)+k
≤ q ·

t
∑

i=1

max
1≤j≤ni

b′
rui

j
≤ q · OPT.

Next we bound the cost of E2 by bounding the cost of path P . We do it by proving the existence
of the collections of trees defined on Vi ∪ {r} with bounded total cost.

Lemma 6 There exists a collection of trees Ti defined on the sets Vi ∪ {r} with total cost bounded
above by 3q

q−1 OPT.

Proof: Given an optimal solution OPT and the set of vertices Vi∪{r}, we construct tree Ti as follows.
Consider a leg LU = (r = u1, . . . , uk) of OPT with vertex set U such that U ∩ Vi 6= ∅. We scan LU

from u1 to uk and consider each vertex u ∈ LU ∩ Vi. For each such vertex we act as follows:

• Suppose that either all vertices between u and the previous vertex v ∈ Vi ∪ {r} belong to Vi−1

or they all belong to Vi+1. In such a case we add the edge e = (v, u) into the tree Ti and define
charge(e) to be the length of the v − u path in LU .

• Suppose that there is a vertex w ∈ LU such that all vertices between w and u belong to Vi−1 and
w 6∈ Vi ∪ Vi−1. In this case we connect u directly to the root r, i.e. we add the edge e = (r, u)
to the tree Ti, and define charge(e) to be the length of the w − u path in LU . The first edge
(w,w′) of this path will be called the witness of the edge e = (r, u). Since w 6∈ Vi ∪ Vi−1 and
u ∈ Vi we have by triangle inequality that

charge(e) ≥ bwu ≥ bru − brw ≥ bru(1 − 1/q)

if w ∈ Vs for s ≤ i − 2 and

charge(e) ≥ bwu ≥ bww′ ≥ brw − brw′ ≥ brw(1 − 1/q) ≥ bru(1 − 1/q)

if w ∈ Vs for s ≥ i + 1.

• Analogously, suppose that there is a vertex w ∈ LU such that all vertices between w and u
belong to Vi+1 and w 6∈ Vi ∪ Vi+1. We connect u directly to the root r and define charge(e) to
be the length of the w − u path in LU . The first edge (w,w′) of this path is the witness of the
edge e = (r, u). The lower bound for charge(e) is computed similarly:

charge(e) ≥ bwu ≥ brw − bru ≥ brw(1 − 1/q) ≥ bru(1 − 1/q)
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if w ∈ Vs for s ≥ i + 2 and

charge(e) ≥ bwu ≥ bww′ ≥ brw′ − brw ≥ brw′(1 − 1/q) ≥ bru(1 − 1/q)

if w ∈ Vs for s ≤ i − 1.

The above inequalities imply that the total length of all edges in trees Ti is upper bounded by
q

q−1

∑

i

∑

e∈Ti
charge(e).

To complete the proof we prove that
∑

i

∑

e∈Ti
charge(e) ≤ 3OPT. Indeed, if (us, us+1) ∈ LU

and both vertices belong to the same set Vi then the edge (us, us+1) may contribute only to charge(e)
for e ∈ Ti−1 ∪ Ti ∪ Ti+1. If us and us+1 belong to different sets Vi then the edge (us, us+1) could be
a witness for at most one edge (r, u). Also if us ∈ Vi and us+1 ∈ Vj and |i − j| = 1 then the edge
(us, us+1) contributes once to the charge(e) for some edge in Ti and once for some in Tj .

It follows that by finding a minimum spanning trees on each set Vi ∪ {r}, and then doubling and
short-cutting these trees, we get the path P with total cost bounded above by 6q

q−1 OPT. By Lemma 5
we conclude the following theorem:

Theorem 7 w(E1) + w(E2) ≤
(

6q
q−1 + q

)

OPT.

Choosing q = 1 +
√

6 we obtain a (7 + 2
√

6)-approximation algorithm (note 7 + 2
√

6 ≈ 11.9)
for the MQA on non-uniform spiders.

4 Other types of graphs GA

4.1 Bounded degree trees

Suppose that the tree GA has a maximum degree of at most ∆, where ∆ is some fixed constant. For
this case we present an O(∆ log n)-approximation algorithm. Note that when ∆ is a constant (e.g.,
∆ = 3 if GA is a binary tree), this result gives a logarithmic approximation factor.

The algorithm first approximates a Hamiltonian path in GB , and denotes the order of the vertices
along this path as v1, v2, . . . , vn. The cost of this Hamiltonian path is at most twice the cost of a
minimum cost spanning tree, and hence at most 2OPT. We root GA in an arbitrary vertex root, and
map root to v1, i.e., one of the endpoints of the Hamiltonian path.

Next, we recursively map the vertices of the tree GA (starting from root). We assume that the
current vertex is v that is mapped to vr, and the subtree rooted at v contains nv vertices, is mapped to
a consecutive set of nv vertices along the Hamiltonian path starting at vr. I.e., the subtree rooted at v
is mapped to the sub-path vr, vr+1, . . . , vr+nv−1. We start this recursive procedure by mapping root
to v1 and the subtree rooted at root to the entire Hamiltonian path v1, v2, . . . , vn. Assume that in the
current recursion call we process vertex v that is mapped to vr. Consider the number of vertices in
the subtrees hanged at each of the children of v. Assume that v has δ ≤ ∆ children, where the i-th
child denoted as ci has ni vertices in its subtree (so

∑δ
i=1 ni = nv − 1). W.l.o.g. we assume that

n1 ≤ n2 ≤ · · · ≤ nδ. We map ci to vj(i) where j(i) = r +1+
∑i−1

k=1 nk. We will allocate recursively
the vertices of the subtree rooted at ci to the vertex set {vj(i), vj(i)+1, . . . , vj(i+1)−1}. This completes
the definition of the solution.

The edges connecting v and its children in GA are associated with v. The cost of the edges
associated with v is at most δ times the cost of the subpath vr, vr+1, . . . , vj(l), and we call this subpath
the evidence subpath of v. We charge the edges of the evidence subpath of v for the edges connecting
v and its children. Therefore, we conclude that if we can prove a bound B on the number of times
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each edge is charged, then the total cost of the resulting solution is at most ∆B times the cost of the
Hamiltonian path.

First, note that each time an edge e = (vi, vi+1) is charged e belongs to an evidence subpath of
some vertex ve

i , and the vertices ve
i and ve

j (for i 6= j) belong to a common path in GA from root
to a leaf. Next, we consider the number of vertices in the subtree rooted at ve

i , and denote it by ne
i .

We argue that ne
i+1 ≤

(

1 − 1
∆

)

· ne
i . Since nl ≥ ni for all i, the number of edges of the evidence

subpath of ve
i is at most

(

1 − 1
∆

)

· ne
i . Note that ve

i+1 is a descendant of one of the children of ve
i

that is an inner vertex of the evidence subpath of ve
i because otherwise the edges associated with ve

i+1

do not belong to the evidence subpath of ve
i . Therefore, we conclude that ne

i+1 ≤
(

1 − 1
∆

)

· ne
i .

Since, for all i 1 ≤ ne
i ≤ n, we conclude that the number of times that an edge is charged is at most

B ≤ O(log∆−1
∆

n). Therefore, we conclude the following theorem (for constant values of ∆):

Theorem 8 There is an O(log n)-approximation algorithm for the BOUNDED-DEGREE TREE MQA.

4.2 Hamiltonian 3-regular graphs

The approximability of GENERAL HAMILTONIAN 3-REGULAR-MQA is currently open. We describe
in the sequel an approximable special case.

Given a graph with an even number of vertices, a wheel is a Hamiltonian tour say {(vi, vi+1) : i =
1, . . . , n} (indices are modulo n) and the edges {(vi, vi+ n

2
) : i = 1, . . . , n

2 }.
We note that a shortest (or approximate) tour does not guarantee any bound for WHEEL-MQA.

To see this, consider points p1, . . . p2n ordered by their indices and uniformly scattered along a unit
cycle. Of course, the cycle is a shortest tour. Its weight in the WHEEL-MQA is its length plus n
times its diameter, i.e, 2π + n. However, there is a much better solution that visits consecutively
p1, p3, . . . , p2n−1 and then p2, p4, . . . , p2n. Its weight is approximately three times the length of the
cycle, i.e., 6π.

Theorem 9 There is a polynomial 3-approximation algorithm for WHEEL-MQA.

Proof: Compute a minimum weight perfect matching M = {(a1, b1), . . . , (an
2
, bn

2
)} on GB . Con-

struct a 1.5 approximation tour T for the TSP on the graph with vertices {a1, . . . , an
2
}. By the triangle

inequality, w(T ) ≤ 1.5w(T ∗), where w(T ∗) is the length of an optimal tour over V . W.l.o.g., assume
that T = {a1, . . . , an

2
}. Let TA be the tour (a1, a2, . . . , an

2
, b1, . . . , bn

2
, a1). (See Figure 1.) Return

the union of TA and M .
By the triangle inequality w(bi, bi+1) ≤ w(ai, ai+1) + w(ai, bi) + w(ai+1, bi+1) for all i =

1, . . . , n/2 − 1, w(an
2
, b1) ≤ w(an

2
, a1) + w(a1, b1) and w(a1, bn

2
) ≤ w(an

2
, a1) + w(an

2
, bn

2
).

Therefore,

w(TA) =

n
2
−1

∑

i=1

[w(ai, ai+1) + w(bi, bi+1)] + w(an
2
, b1) + w(a1, bn

2
)

≤
n
2
−1

∑

i=1

[2w(ai, ai+1) + w(ai, bi) + w(ai+1, bi+1)] + 2w(an
2
, a1) + w(a1, b1) + w(an

2
, bn

2
)

≤ 2w(T ) + 2w(M).

Therefore, apx = w(TA) + w(M) ≤ 3[w(M) + w(T ∗)], whereas, opt = w(Topt) + w(Mopt) ≥
w(T ∗) + w(M), where the last inequality holds because of the triangle inequality.
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a1
an

2a2a3

b3 b2 b1
bn

2

Figure 1: The tour TA

4.3 Double tours

A double tour consists of the edges of a tour, say {(vi, vi+1) : i = 1, . . . , n} (indices are modulo n)
and their shortcuts {(vi, vi+2) : i = 1, . . . , n}.

Theorem 10 A 1.5-approximation for METRIC TSP is a 2.25-approximation for the corresponding
DOUBLE TOUR-MQA instance.

Proof: By triangle inequality, the total length of the shortcuts is at most twice the length of the
approximated tour. Therefore, the total length of the solution is at most 4.5 times that of a shortest
tour. The result follows since any feasible solution has length of at least twice the shortest tour. This
last claim holds because the optimal solution consists of a disjoint union of two Hamiltonian cycles.
This is so for odd values of n as the set of shortcut edges is the edge set of a Hamiltonian cycle
(1, 3, 5, . . . , n = 0, 2, . . . , n − 1, 1), and for even values of n this is so because the following are the
two cycles: 1, 3, 5, . . . , n − 1, n, n − 2, n − 4, . . . , 4, 2, 1 and 2, 3, 4, . . . , n − 2, n − 1, 1, n, 2.
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