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Each day a facility commences service at time zero. All
customers arriving prior to time 7 are served during that day.
The queuing discipline is First-Come First-Served. Each day,
each person in the population chooses whether or not to visit
the facility that day. If he decides to visit, he arrives at an
instant of time such that his expected waiting time in the queue
is minimal. We investigate the arrival rate of customers in
equilibrium, where each customer is fully aware of the char-
acteristics of the system. We show that the arrival rate is
constant before opening time, but that in general it is not
constant between opening and closing time. For the case of
exponential distribution of service time, we develop a set of
equations from which the equilibrium queue size distribution
and expected waiting time can be numerically computed as
functions of time. ‘

1. Introduction

Customers must wait; this is an essential fea-
ture of any interesting queuing system. But aware
of this problem, each customer will behave in a
manner so as to shorten the length of time he must
spend waiting in queue. In particular, we shall
consider a customer’s decision concerning when he
should visit a facility that opens at time 0, closes at
time T, and uses a First-Come First-Served queu-
ing discipline.
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This type of problem has been almost totally
neglected in the literature; the arrival rate of
customers is simply taken to be exogenously given.
Such neglect is surprising because several authors
have studied a related topic: how a customer’s
decision of whether or not to join some queue
depends on the length of the queue at the time he
must make his decision (see Crabill [2], Edelson
[3], Knudsen [6], Naor [7], Stidham [8], and
Yechiali [9]). In addition, Kleinrock [5] and Bal-
achandran [1] studied the possibility that con-
sumers may pay bribes to improve their position
in the queue after having joined it. Finally, Jans-
son (4], realizing that consumers may be able to
make appointments, determined the optimal ap-
pointment policy. That is, he found the instants at
which customers should arrive so as to minimize
the total length of time they must spend waiting.

Any customer, however, wishes to minimize
only his own waiting time, and is indifferent to the
effects of his acts on other customers. There is
little reason, therefore, to suppose that self-inter-
ested customers would make appointments, or
choose to visit the facility, at those optimal in-
stants. Nor is there any reason to believe that
customers’ behavior will satisfy the modeler’s as-
sumption that the arrival rate of customers is
constant over time; these problems are addressed
in the following sections.

A variety of assumptions can be made about a
queuing system, and presumably different models
yield different results. But to clarify the central
question, whether the arrival rate is constant, it is
best to analyze a simple queuing model; the as-
sumptions we use are presented in Section 2. The
problem is then divided into two parts — customer
arrivals prior to the facility’s opening time (studied
in Section 3) and arrivals from opening time to
closing time (studied in Section 4). In section 5 we
determine the conditions under which the arrival
rate will be constant over time, and in Section 6
we give a numerical example which shows that the
arrival rate need not be constant. Some conclu-
sions are presented in the final section.
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2. Assumptions

We investigate the following queuing situation.
Each day the facility commences service at time
zero. All customers arriving prior to time 7 are
served during that day. A customer may obtain a
favorable position in the queue by arriving before
time zero, but he cannot obtain service until after
that time.

The queuing discipline is strictly a First-Come
First-Served one. A customer who arrives at the
facility always joins the queue; balking and re-
neging are never worthwhile activities. The length
of time required to serve a customer is exponen-
tially distributed with mean x.

Each day, each person in the population choos-
es whether or not to visit the facility that day. If a
customer decides to visit, he also decides at what
time to arrive. The total number of customer
arrivals during any day is a random variable with
mean n. Each customer is fully aware of the char-
acteristics of the queuing system and of the distri-
butions of the variables mentioned above.

The arrival rate of customers is fully described
by the function F(¢), namely the probability that a
customer who visits the facility arrives prior to
time ¢. A customer knows, from past experience,
the expected length of the queue for any instant;
no customer knows, however, the actual length of
the queue until he arrives at the facility to join the
queue. A customer’s objective is to arrive at an
instant of time such that his expected waiting time
in the queue is at a minimum.

Now clearly, if all customers have this objective
in mind and if we observe that one customer
arrives at time ¢,, and that another arrives at time
t,, then it must be that, in equilibrium, the ex-
pected waiting time is identical at these two in-
stants. More generally, if customers arrive only
during some interval, say (—w, T'), then this con-
dition must hold for amy two instants in this
interval; in addition, the expected waiting time
must be greater for an arrival prior to time —w
than for an arrival during the interval (—w, T').
For conciseness, we shall say that the queuing
system is in equilibrium if all these conditions
hold. We shall refer to the interval (—w, T') as a
‘day’.

Note that the expected waiting time at time ¢,
depends on the pattern of customer arrivals prior
to time ¢#,, that is, on the values of F(¢) for t=<t¢,.

is a Poisson random variable.

Thus, the requirement that the queuing system be
in equilibrium imposes certain conditions on the
function F(t), which conditions we proceed to
determine.

3. Customer arrivals before opening time

We divide our problem into two parts: the
arrival of customers before time zero (at which
time service begins), and after time zero. In this
section we deal with the first problem, and find
that the equilibrium distribution of customer
arrivals is represented by the probability density
function

_ |0 fort< —w,
f(t)_{l/nf; for —w<1<0. (1)

In this expression, n is the expected number of
customer arrivals during the day and w is a
customer’s expected waiting time. The value of n is
exogenously given, but the value of w is endoge-
nous to the model and is determined in Section 4
below.

To verify the result given in (1), consider the
situation faced by a customer who arrives at time
t < 0. The expected number of customers ahead of
him in the queue is nF(¢), and the expected length
of time required to serve them is XnF(t). But
because service commences only at time zero,
rather than at time ¢, the customer’s total expected
waiting time is w=XxnF(z)—t (recall that t+<0,
which explains the subtraction). In equilibrium
this value must be constant for all values of ¢ in
the appropriate interval, so that a necessary condi-
tion for an equilibrium is that d[XxnF(t) — t]/dt=
0, or f(1)=1/nx.

Observe that service for the first customer who
arrives at the facility, say at time #,, starts precisely
at’ time zero. Thus, such a customer’s expected
waiting time is simply ¢;,. But in equilibrium a
customer’s waiting time is w; we conclude that no
customers will arrive prior to time —w. This com-
pletes our proof of (1).

For future reference, we must also determine
the probability that a customer who joins the
queue arrives before time zero. Integrating equa-
tion (1) we find this probability to be (2, f(#)dt=
w/nXx.

% The derivation in Section 4 only holds when the number of arrivals during a day
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4. Arrivals after opening time

We turn our attention to the equilibrium distri-
bution of customer arrivals in the interval (0, T').
Our approach is to first determine the constraints
imposed by the equilibrium conditions on the value
of f(¢) at each instant. We then specify the transi-
tion probabilities which characterize the queuing
system. These results, together with those obtained
in the previous section, identify the equilibrium
distribution of customer arrivals.

At this point it is useful to introduce some
added notation. Let P,(¢) be the probability that
exactly k persons are in the system (either waiting
or being served) at time ¢, so that 1 — Py(t)=
272 P (1) is the probability that the system is not
empty at time ¢. Let N(¢) be the expected number
of customers in the system at time ¢, and let
= 1/X be the mean service rate.

We shall show that in equilibrium the following
condition must be satisfied:

f(1)=(1—=Py(1))/nx for0<:<T. 2)

Recall that in equilibrium a customer’s ex-
pected waiting time must be the same regardless of
whether he arrives at time ¢ or at time ¢+ d¢. But
because service time is exponentially distributed, a
customer’s expected waiting time is simply a func-
tion of the number of persons in the queue at the
time he arrives. This implies that in equilibrium
N(t), the expected number of customers in the
system at time ¢, must be constant for all 7, where
O0<:!<T.

Now, for small d¢, N(¢ +d¢) is equal to N(t),
plus the expected number of arrivals in the inter-
val (t,¢t+ dt), minus the probability that a

customer is being served at time ¢ and that he will.

leave by time ¢+ dt. Thus N(t+di)=N(t)+
nf(t)dt — pu(1 — Py(2))ds; the requirement that N(t
+ d¢) = N(¢) implies that nf(t) = u(1 — Py(2))=(1
— Py(t))/X, which is the condition expressed in
).

We have found the equilibrium values of f(¢) as
a function of the values of Py(t). These latter
values are endogenous to the system, and can be
found by means of the transition probabilities
given below:

Po(t+dt)=P(t) pdr
+Py(t)(1 —nf(2)dt) 0<:<T, (3)

P(t+dt)y=P_\(¢t) nf(t)de+ P, (1) pdr
+P(1)[1 = nf(1)dt — pdi]
k=1,2...,0=<:<T. (4)

To complete our system of equations, we must
determine the equilibrium values of P,(0) and of
w. In Section 3 we found that the probability that
a customer arrives prior to time zero is w/nXx.
Letting =, be the probability that exactly i
customers arrive during the day, we find that

ro=3-00%) -5 o
and
n=S i, (6)
i=0

Finally, the equilibrium value of w can be de-
termined from the condition that » is the expected
number of arrivals during the day. The expected
number of arrivals during the interval (0,7) is
J&nf(t)dt, where f(t) is defined in (2). The ex-
pected number of arrivals prior to time 0 is nw/nX
=w/X. Therefore, n=w /X + [Inf(t)dt, or

wzni—ffrnf(t)dt. (7)
0

The equilibrium distribution of f(¢) is thus
completely described by equations (1)-(7). For
convenience, we repeat these equations:

f(’):{(l)/nf ﬁgitjw;wt?o, (1)
f(t)=(1=Py(1))/nx for0=<:<T, @)
Py(t+de)=P/(1) pdt

+Py(1)(1 —nf(¢)dt) for0<:<T,

| 3
P (t+dt) =P, _,(¢t) nf(t)dt + Py, (1) pde

+ P ()[1 = nf(¢)dt — pdi]

fork=1,2...,0<t<T, 4)
Pi0)= 3 | oo/na)t (1= /o)™
fork=0,1,2..., (5)
n=S i, )
i=0
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wzn_?—)?frnf(t)dt, @)
0

and where the parameters of the system are: p=
1/%, the mean service rate; T, the closing time;
and =, the probability that i customers arrive
during the day.

A most important question is whether, as is
usually assumed, the arrival rate is constant over
time. We saw in Section 3 that during the interval
(—w, 0) the arrival rate is constant, but what about
arrivals after the facility opens?

5. The stationary state

Under what conditions is the arrival rate sta-
tionary, that is, under what conditions is f'(¢) =0
for 0<r<T? To answer this question, we shall
find the implications of assuming that nf(z) is a
constant, say c. Note from eq. (2) that xnf(1) =1
— Py(1), so that if nf(¢) is a constant, then so must
be Py(t); we shall henceforth write Py= Py(?).
Imposing the requirement that Py(z+ d¢) = Py(?)
in (3) implies that P,(¢) = Pyc/pn. We thus find
that P,(¢) must be a constant over time as well;
moreover, employing the rule of induction on (4),
we find that each variable P,(¢) must also be a
constant for all values of ¢; we can therefore write
P,=P,(¢) for all k. Making the successive sub-
stitutions that P,(¢t + d¢) = P,(¢) in (4), and recal-
ling that P, = P,c/u, we find that in a stationary
state

P, =Py(c/n)* fork=0,1.... (8)

But because the P,’s are simply probabilities,
we know that S P, =1, so that S, Py(c/m)*
=1, or P,/(1=c/p)=1, if ¢/n<1. Making this
substitution in (8) we find that

Po=(1—c/p)(c/p)". (9)

We still wish to find the value of ¢. We make
use of the fact that the expected waiting time, w, is
equal to the expected number of persons in the
system at time ¢, multiplied by the average service
time per customer, or

w=x §. kP, =(1/n) §] k(1= c/p)(e/m)"
k=0 k=0

_ /e
Cp(l—c/n)’ (1)

Note, incidentally, that this value of w is pre-
cisely the same as a customer’s waiting time in a
queuing system in which the facility is continu-
ously open and in which customer arrivals can be
described by a Poisson process.

Finally, by substituting (9) in (5) for the value
of k =0, we know that

o]
1= (e/m)= 2 m(1—w/nx)". (11)
i=0
If a stationary solution exists we can find it by
substituting (10) in (11) and solving for c¢; in the
next section we shall see, however, that such a
solution need not exist.

6. The non-stationarity of arrivals - An example

In this section we determine the arrival rate of
customers for the case in which the total number
of arrivals during the day has a Poisson distribu-
tion with mean n. This is approximately the case
when the population size is large and each person’s
decision, whether to visit the facility or not, is
independent of the decisions made by any other
person in the population. Recall from eq. (1) that
the probability that a customer who visits the
facility will do so prior to time zero is w/nX, so
that the number of arrivals prior to time zero has a
Poisson distribution with mean w/X; thus, using
(5), we get

ok -
Pk(())::(w/x) C])((I'D(—W/X)' (12)

For any given value of w, we can use (2)-(4),
and (12) to determine the equilibrium values of
nf(t) for t>0. The results of such a computation
are shown in Fig. 1. Finally, given these values of
nf(t), and given the value of w, we can always find
values of n and T for which egs. (1)-(7) are
consistent with each other. That is, Fig. 1 depicts
several equilibrium distributions of customer
arrivals; most importantly we see that the arrival
rate is not constant but rather declines over time.

This conclusion can be reached by another
method; we can show in particular that f(d¢)+*
f(0). Recall from (2) that if f(d¢)=/f(0) then it
must be that Py(dt) = Py(0); making such a sub-
stitution in (3), letting p = 1, and recalling from (2)
that in equilibrium nf(0) = 1 — Py(0), we find that
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Fig. 1.

Py(dt)=Py(0) if and only if P,(0)= Py0)(1—
P,(0)). This condition will be satisfied if the total
number of customer arrivals is geometrically dis-
tributed; indeed in this case f(z) will be constant
for all =0. It is clear, however, that if the number
of customer arrivals has a Poisson distribution and
if Py(0) >0, this condition is not satisfied and the
arrival rate of customers is not constant over time.

7. Conclusion

We have seen that in equilibrium the expected
number of customer arrivals is not constant over
time. This should be of some importance in the
construction of queuing models depicting facilities
which dre not continuously open.

But in addition, we found that individualistic
behavior, in which each customer decides for him-
self on the time of his arrival, leads to a socially
inefficient outcome. The problem is most clearly
seen with respect to the behavior of customers
prior to time 0. In equilibrium customers will
arrive as early as w minutes prior to the opening of
the facility, and an expected total of w/X customers
will be wasting time standing in a queue when no
one is even being served.

The problem is especially severe if n is large.
Observe that in equilibrium #f(z) = (1 — Py(?)) /X,
which is less than 1/X. The expected number of
arrivals during the interval (0, T') is therefore

a T1 T
fo nf(t)dt<fo Edr—;.

In other words, no more than 7'/X customers will
arrive after the facility opens, regardless of the
values of n or w. Clearly, for large n relative to T
and X, the vast majority of customers will join the
queue before the facility begins service.

This is in stark contrast to the socially optimal
solution. It is clear that if the sum of customer’s
waiting time is to be minimized, then exactly one
customer must be at the facility at time 0. But this
customer will spend no time waiting, whereas on
average customers must wait w minutes, so that
such a situation cannot be an equilibrium one.

A solution to the problem of the non-optimality
of individualistic behavior is the institution of an
appointment system (see Jansson [4]). Such a solu-
tion may, however, be too expensive to institute in
many situations. Another solution is service in
random order. This discipline takes away all in-
centive to arrive before time zero. Which queuing
disciplines lead to low levels of customers’ waiting
times? This line of research had best be left for
future papers.
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