Decentralized Regulation of a Queue

Refael Hassin
Department of Statistics and Operations Research, School of Mathematical Sciences,
Tel Aviv University, Tel Aviv 69978, Israel

bidding mechanism for determining priorities in a service system is analyzed. It is shown
that when all customers have the same exponential service demand, this mechanism induces
both the socially optimal arrival process and the service order, It is also shown that the profit-
maximizing service rate in this moedel is smaller than or equal to the soctally optimal one.
{ Priorities in Queues; Regulation of a Queue; Opiimal Rate of Service)

1. Introduction

In some queues an arriving customer observes the queue
length before deciding whether to join the queue or not.
We refer to such queues as guetes with balking. In other
cases, the queue length cannot be observed, and cus-
-tomers base their decision to join the queue on statistical
data possibly gathered from past experience, We refer

to such queues as quenes without balking. Naor (1969) -

observed that in queues with balking the individual’s
decision deviates from the socially preferred one. This
gap is caused by the existence of external effects asso-
ciated with the act of joining the queue, namely, future
customers may have to wait longer, The individual’s
objective does not take these externalities into consid-
eration, in contrast to the social objective, Edelson and
Hildebrand (1975) showed that a similar phenomenon
exists in queues without balking. There, if the demand
for service is large, the system may become too con-
gested if all this demand has to be served. In such a
case, the arrival rate reaches an equilibrium size such
that customers are indifferent between joining the queue
or not, Because of the negative external effects men-
tioned above, this equilibrium rate is larger than the
socialty desired one. (See Mills 1981 for a more general
discussion of this issue.)

As a consequence of the suboptimality of individual
decisions, there is much interest in finding methods for
regulating the arrival process. Naor's model and results
have been extended in several papers. Comprehensive
surveys are given by Stidham (1985) and Mendelson
and Whang (1990). A recent paper is Haviv (1991),
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Several methods have been suggested to regulate the
arrival rate to a queueing system. The most straight-
forward approach is to administratively forbid entrance
when this is socially desired. Alternatively, one may
impose admission fees to deter customers from joining
long queues. Naor showed, however, that in the balking
model, the profit-maximizing toll is too high relative to
the socially optimal one. Therefore, a correct toll must
be computed and administratively imposed. Other
mechanisms have been proposed to regulate the arrival
rate, and most of them invelve estimation by the system
administrator of certain parameters necessary to com-
pute fees imposed on customers, This is the case with
Edelson and Hildebrand’'s admission toll and two-part
tariff, and Mendelson and Whang's (1990) priority
price. An exception is Hassin’s (1985) first-come last-
served discipline in a queue with balking. This discipline
is self-regulating in the sense that the system adminis-
trator need not compute or install any fees. The system
is regulated by the equilibrium behavior of customers
who adjust their actions according to their experience,
In some cases, the queue administrator can choose (by
controlling information about the queue length) be-
tween the balk and no-balk regimes, The effect of such
an option on profits and social welfare is analyzed by
Hassin (1986).

When potential customers come from a heteroge-
neous pepulation and the priority they obtain depends
on their characteristics, there is a possibility that they
will increase their welfare by giving incorrect infor-
mation. The discipline suggested by Mendelsen and
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Whang is decentralized in the sense that each arrival is
free to choose his own priority level, The specific prices
they suggest are also incentive-compatible in the sense
that in equilibrium customers will buy priorities in the
socially desired way, Similar ideas were suggested by
Marchand (1974) and Dolan {1978) in less general
models where the arrival rate i{s independent of the
prices,

There is another source for possible suboptimality in
service systems, and this is the service rate, when it is
a decision variable chosen by a profit maximizing server.
Grassmann (1979) derived conditions for social opti-
mality of the service rate in a general queueing model.
However, Grassmann assurned that the service rate does
not affect the arrival rate to the system. Edelson and
Hildebrand proved that in their no-balking model the
server will select both the socially optimal toll and ser-
vice rate. However, they observed (see Footnote 1 in
their paper) that in a model with balking the rate chosen
by a profit maximizer will in general not be socially
optimal, Dewan and Mendelson (1990) derive (social )
optimality conditions when the service rate and admis-
sion fees are jeintly determined, ‘

The subject of this paper is the regulation of the arrival
process in a queue with exponential service and without
balking by a decentralized self-regulating mechanism:
An incoming custarner offers a payment for purchasing
priority, and then customers with higher payments re-
ceive higher priority, with the possibility of service
preemption. (Similar systems, with a different focus,
were previously analyzed by Kleinrock (1967), Lui
(1985), and Glazer and Hassin (1986). We first follow
Edelson and Hildebrand and analyze a model with
identical customers. We show that the socially optimal
arrival rate is attained. We then follow Mendelson and
Whang and analyze the model when customers differ
by their service valuation and waiting costs, We show
that, in this case, the (socially) optimal arrival rate with
the optimal composition of customers is attained, and
that customers will also be served in the optimal order,

Myrdal {1968), referring to gueueing systems in
which customers pay bribes to obtain priorities, sug-
gested the possibility that the server will be metivated
te slow down service in order to increase profits, Lui
{1985) argued that Myrdal’s hypothesis is not always
true. For example, if increasing the rate of service is
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costly to the server, then without bribe the server has
no incentive for supplying fast service. Indeed, since
the optimal rate is zero, bribes induce faster service.

In contrast to Lui’s point of view, we compare the
service rate chosen by a profit maximizer to the socially
optimal one, We show that from this point of view,
Myrdal’s hypothesis is correct: The service rate chosen
by a profit-maximizing server is either smaller than or
equal to the socially optimal one.

Samuelson (1985) considered allocation of a unit of
a good through auctioning in which applicants bear bid-
preparation costs, It is assumed that the potential ap-
plicants” valuations of the good are random variables
from a common distribution function, and each real-
ization is known to the specific potential applicant only.
When an individual decides to participate in the auction,
he ignores the fact that by doing so he may prevent
another customer from receiving the good, Because of
this external effect his decision to apply may differ from
the social optimal decision, Under the assumption that
applicants value the good differently, there exists an
equilibrium solution which is incentive-compatible in
the sense that those who value the good highly will
participate in the auction, and the higher is their val-
uation of the good the higher is their bid. Samuelson
showed that the equilibrium participation in the auction
is socially optimal. This result, that can be extended to
the case where several identical items are distributed,
adds to other results demonstrating that auctions can
be used to discriminate optimally among individuals
from a heterogeneous population,

Before presenting our main results, on the queueing
model we treat in §2 a variation of Samuelson’s model.
We assume that severa) (possibly nonidentical) items
are allocated to individuals from a homogeneous popu-
lation. Since we assume that potential applicants make
their decisicns independently, there is no way to guar-
antee that the optimal participation will be achieved.
This is in contrast to heterogeneous models like Sam-
uelson’s. However, in equilibrium the socially optimal
probability of participation is achieved. Properties
proved for this model are used in §3 to prove the op-
timality of the arrival rate in the queueing model with
identical customers, Questions regarding the rate of
service are analyzed in §4 and 5, The optimality cf the
proposed discipline in a queueing model with hetero-
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geneous population is demonstrated in §6. The final
section contains some concluding remarks.

2, Regulating the Number of
Applications

Individuals from a homogeneous population indepen-
dently decide whether tc apply, wishing to obtain a
single unit from a collection of (possibly nonidentical)
items, A positive preparation cost is incurred on each
applicant, To exclude trivial cases we assume that the
number of itemns of maximum value is smaller than the
number of potential applicants. We assume that social
welfare is the total value of items that are allocated
minus the sum of preparation costs of all individuals.
A probability of applying is said to be optimal if it max-
imizes social welfare, Since applicants are identical, the
way items are allocated among them is immaterial as
long as we take care that highly valued items are dis-
tributed first. The only variable to be controlled is
therefore the number of applications or, since individ-
uals make their decisions independently, the probability
that a randomly chosen individual will decide to apply.

We assume that each applicant must offer with his
application a nonnegative payment (“bid,” “bribe”),
and items are distributed giving priority to higher offers:
The most highly valued item is given to the applicant
who offered the highest amount, the second item to the
second highest offer, and sc an, Ties are broken in some
random way, The results below hold for two models:

Model I: Payments are made only by those applicants
who obtain a unit of the good.

Model II: Payments are made by all applicants and
are not returned, even to those whe do not obtain any
itemn,

In both cases the offer is irrevocable, and according
to our definition of social welfare, the payments are
considered as a transfer of income that does not affect
social welfare.

We assume that each individual knows the total
number of potential applicants. Moreover, no individual
knows how many apply and how much they offer, but
each knows the statistical distributions of these random
variables, Below we characterize these distributions in
equilibrium, that is, under the assumpticen fhat given
that these distributions hold, every individuai maximizes
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his owr welfare by sticking ta his policy of whether to
apply and how much to offer.

Since we assume that all customers are identical, in
equilibrium the expected welfare associated with each
of the possible payments must be identical. Otherwise,
payments with low expected welfare do not optimize
the individual’s objective. Hence, each potential appli-
cant must have identical expected welfare.

Let X be the random variable denoting the amount
offered by a randomly chosen applicant. Let B denote
an equilibrium cumulative probability distribution of
X, Then:

B is continuous, (2.1)
B is strictly increasing on an interval [0, 2],
where a>0 and B(a)=1, {2.2)
and
the equilibrium probability of application
is optimal. (2.3)

Equation (2.1} follows since a discontinuity in B at X
= y means that with a positive probability there is al-
ready an applicant who offered exactly x. Therefore an
applicant’s expected welfare will increase if he offers x
+ dx rather than x (and increases his chances to cbtain
an item or a better item with positive probability). This
contradicts the condition that in equilibrium all appli-
cants have the same expected benefit.

Equation {2.2) follows since if B(x) is constant for &
<y = d where ) < b < d, but increases for x > 4, then
an applicant who offers b instead of d reduces his ex-
penses without increasing the risk of getting a less valu-
able item or not getting an item at all. This again con-
tradicts the equilibriurn assumption. Positivity of a fol-
lows since we excluded the possibility that the number
of iterns of maximum value exceeds the number of po-
tential applicants.

To prove (2.3), note again that in equilibrium poten-
tial applicants all have equal expected welfare. From
(2.2), an individual applies if and only if he is ready to
apply with x = 0, From (2.1} there is no prebability
mass at x = 0 (or at any other amountj so that in this
case the applicant is certain to pay the lowest amount
and to obtain the lowest priority while allocation takes

165




HASSIN
Decentralized Regulation of a Queue

place. In that case he imposes no externalities on others.
In other words, he will get an item if and only if all
other applicants get better (or equal) items. Therefore,
his decision to apply results from considerations iden-
tical to those that maximize social welfare. We conclude
that an applicant applies if and only if it is socially de-
sired that he do so.

A numerical example may clarify the above discus-
sion. Consider Model 1I with two items of values
$10,000 and $1000. Assume that the application prep-
aration cost is $300 and that customers are risk neutral.
Suppose first that there are only two potential appli-
cants. In this case, both will apply with certainty.
Equating the expected value of the item associated with
x = (0 with that obtained for each possible offer we
obtain:

1000 — 300 = 10,000B(x) + 1000(1 — B(x))

—-x—300, O0=x=a.

Thus B is a uniform distribution on [0, 9000].

Suppose next that there are three potential applicants.
In equilibrium it cannot happen that all three will par-
ticipate with certainty, since then an offer of 0 clearly
entails a loss of the application cost. Thus there exists
a probability, say p, that a potential applicant will submit
an application. This means that the expected net value
is identical for an individual who applies and another
who does not, and its size must be (. The probability
that an individual applies with an offer greater than x
is p(1 — B(x)). The itemn of $10,000 will be obtained
by an applicant who offers x if the other two do not
offer more. The other item will be obtained if exactly
one of them offers more. Thus we have for all x in
[(0,a]:

0=[1—p(1-B(x)]*10,000
+2(1=p(1=B(x))]p(1 - B(x))1000 — x — 300.

Now, p = 0.9 is computed by letting B(0) = 0, and a
= 9700 is computed by letting B(a) = 1.

3. Queues with Payments: Identical

Customers
We consider a single server queueing model. This is
done to simplify the discussion in §5. We assume that:
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(i) The potential demand for service consists of a
stationary stream of identical risk neutral customers with
average arrival rate of A, per unit time.

(ii) The service requirements of individual customers
are exponentially, independently, and identically dis-
tributed with mean 1/ p.

(iii) The service value to a customer is R.

(iv) The customer’s time cost is ¢ per unit time. We
assume R = ¢/, otherwise no customer will be ready
to arrive. We do not explicitly consider a fixed cost as-
sociated with joining the queue because every arriving
customer is eventually served, so that if such a cost
exists it can be subtracted from the service value.

(v) At the time a customer’s need for service arises,
he does not know the queue size, but he is well informed
about its statistical distribution, on which he is basing
his decision whether to join the queue or not,

(vi) Social welfare consists of the average value of
service minus waiting costs per unit time.

For completeness, we review the first-come first-
served model. Consider a facility with an admission toll
8. Denote by () the expected time a customer spends
in the system when the arrival rate of customers joining
the queue is A. If every potential customer joins the
queue then each customer's net benefit is R — ¢
— c{Ao). If this value is negative then the equilibrium
arrival rate, A, must satisfy

6+ cw () =R. (319

If this value is positive then the arrival rate will be A
= Ag. '

Consider the profit maximizer’s problem first. The
profit-maximizing admission toll never yields a positive
customer surplus, since in such a case it can be increased
without reducing the arrival rate. Therefore, (3.1) holds
under the profit-maximizing toll. The server’s problem
is then to choose an admission toll  in order to maximize
¢l - A subject to

0<A<Xy, and R—6-ch(A)=0. (32)

The social objective is to maximize A(R — cw(}))
subject to 0 < A = Ag. By (3.1) this is exactly the profit
maximizer’s objective. We conclude, therefore, that the
profit maximizer’s objective is identical to the social one,
as was shown by Edelson and Hildebrand (1975).

We now add the following assumptions:
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(vil) When entering the queue the customer chooses
a nonnegative amount to pay the server, No customer
knows the actual amounts paid by others, but each
knows their statistical distribution,

(viii) A customer is placed in the queue ahead of al}
those who paid smaller amounts, This may mean that
the service of a customer is interrupted.

{ix) When a customer whose service has been inter-
rupted returns to service, the service is resumed from
the point where it has been stopped with no loss of
service. ‘

(x) Customers’ payments are considered transfer of
income that do not affect social welfare,

The equilibrium behavior of customers is charactet-
ized by a probability that a potential customer joins the
queue (cr eguivalently, an arrival rate of customers)
and a distribution of payments among those whe join,
Equilibrium requires that all customers have identical
expected welfare. This value is clearly zero for a cus-
tormer who decides not to arrive, It is equal to the service
value minus the payment minus the expected waiting
cost given the payment for a customer who joins. Let
B denote an equilibrium cumulative probability clistri-
bution of payments for arriving customers. Consider-
ations identical to those of §2 can be used to prove that
(2.1} and (2.2) are valid also in this case. We will now
prove (2.3). Let w,(N\) denote the expected time a cus-
tomer whe paid x spends in the system. We refer to
w,{A) as the waiting time of the customer, Note that it
includes both his wait in the queue and his service time.
Then (2.1) and (2.2} imply that for some constant a,

x+cw {\) isconstantforQ <=x=<a, (3.3)
In particular,
X4 cw(A) = cwe(A) forO=sx=a,  (3.4)

A customer who pays the maximum amount a is guar-
anteed to be served immediately without interruption,
so that his waiting time is w, (A) = 1 /. Substituting in
(3.4} we obtain

g = c{we(A) — 1/, (3.5)

By (ii), because of the memoryless characteristic of
the exponential distribution, the residual service of each
customer in the system has the same (exponential} dis-
tribution. Therefore, the order in which customers are
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servéd is unimportant from the social point of view,
This implies that the effect on social welfare caused by
a customer who arrives is independent of his payment.

In equilibrium an arriving customer is indifferent
among all possible payments in [0, #]. In particular,
customers join as long as it is worth deing so with no
payment at all (L.e., with x = 0), By (2.1) and (2.2), a
customer who offers no payment is certain to be placed
at the end of the queue and to stay there until his service
is completed, imposing no extra wait on the others. Since
the total wait in the system is independent of the order
of the service, we conclude that a customer joins if and
only if he finds it worthwhile deing so when he bears
all the additional waiting costs resulting from his arrival,
But this is exactly the social critericr! Thus the consid-
erations of the individual and the social planner are
identical, as claimed. :

We now provide an alternative explanation for this
result. As explained above, the social cost imposed by
a customer whe joins the queue is cwy (), independent
of his payment. A customer who pays x waits only
w,(A), and the costs he incurs contribute cw,(A) to the
social costs, Therefore, the difference clwg(A) — w.(A)]
expresses the externalities he imposes on others. How-
ever, by (3.4) this expression equals x, so that in equi-
librium the amount paid by a customer equals the exter-
nalities he causes, This again explains why the individ-
ual’'s behavior is socially optimal. (It is interesting to
compare this outcome with that of Dewan and Men-
delson (1990}, who show, in a general queueing model,
that a fixed price of size equai to the expected externality
can be imposed in order to optimally regulate the amival
rate.)

Suppose now that Assumptions (ii) and (ix) are
dropped, but we still assume that the service demands
are independently and identically distributed. The in-
dividual’s decision consists of two parts: Whether to
join the queue, and if so, also how much to pay. We
first note that although for a given state of the queue and
a given distribution of payments there may be social pref-
erence with regard to a payment of a joining customer
{in order to avoid preemptions or serve a customer with
a short residual service first), the unconditional distri-
bution of payments is irrelevant to social welfare, All
that matters is that payments are used to rank the joining
customers in a way that is independent of their arival
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times. Thus the only partin the customer’s decision that
matters is the probability that he joins.

As before, customers will join as long as it is worth
doing so without any payment, and this fact is inde-
pendent of the service distribution. Again, in this case
the customer imposes no externalities and, therefore,
the rate by which customers join will be socially optimal.
Note that although the rate of arrivals is optimally reg-
ulated, the discipline is not socially optimal due to the
losses caused by preemptions and the excess wait caused
by not serving customers according to their residual
service times. A possible correction is to exclude
preemptions, though the resulting discipline still will
not be socially optimal because a customer with zero
payment now imposes some externalities since his ser-
vice cannot be preempted.

4. Social Welfare and Server's

Revenue
Social welfare is

SW = A(R — ci@ (N)), (4.1)

where the expected waiting time, wW(A), is independent
of the order of service. This last observation follows
from the assumption of an exponential service with no
service loss as a result of preemption. Thus, wW(A) is
identical to the expected wait in a similar queue with
an average arrival rate of A and a first-come, first-served
discipline.

The server’s revenue consists of the payments ob-
tained from those customers who join the queue:

I = A f xdB(x), (4.2)

where a is defined in (3.5). Substituting x from (3.4)
we obtain

I = )\L“ cfwe(N) — we(A)]dB{x)

= A[wa(A) — B(A)]. (4.3)
Comparing (4.1) with {4.3) we find that
SW =11 + A[R — cwo(A)], (4.4)

where the term R — cwp(A) is the customer’s surplus
after deduction of payments. If not all of the potential
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demand is served, customers are indifferent between
joining the queue and not, so that this value is zero and
SW = II.

5. Optimal Rate of Service

In this section we assume that the service rate u is a
decision variable, and that the cost of operating a facility
with a service rate of u is g(u) per unit time. As shown
in Section 3, in a first-come, first-served system with
an admission toll the social and profit-maximizing ob-
jectives are identical. Consequently, the service rate
chosen by a profit-maximizing server is socially optimal.
When customer payments are introduced we showed
that for any given service rate the equilibrium arrival
rate is socially optimal and, therefore, the socially op-
timal service rate is as in the first-come, first-served case.
We now compare this rate to the one chosen by a profit-
maximizing server.

If the server chooses a slow rate, then in equilibrium
a portion of the potential demand will choose not to
join the queue. If, on the other hand, the server supplies
very fast service then all the potential demand (with
rate Ap) will be served. Therefore, there exists a cut-off
value, ug, such that A = A, if and only if the service
rate is at least u,.

We consider first the case where u < pp. An increase
in  has two contradicting effects on the average wait:
each customer’s service is made shorter, but more cus-
tomers are attracted to join the queue. However, since
customer behavior is socially optimal, social welfare in-
creases when the service is made faster (it would in-
crease even if A remains unchanged, all the more so
when it changes to its new optimal value). In this range
I1 = SW, since customers are indifferent between joining
the queue and balking, and all social welfare goes to
the server. Therefore,

— =250, for p< . (5.1)

We now consider the case where u > ug. An increase
in . will not affect the arrival rate, which already consists
of the whole potential demand. Thus, the average wait
must decrease, increasing social welfare, By (4.3) the
server’'s revenue decreases, because when the service is
made faster the difference between the expected wait
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of a low-priority customer ard the expected wait of an
arbitrary customer is made smaller. Thus the same
number of customers is served, but customers pay less,
We conclude therefore that

d1l dSW

—— <0, ——>0, for

du du
When u increases to infinity then the expected waiting
time, even of the customer with the lowest priority, as
well as the expected service time, decrease to zero.

Therefore,

> po (5.2

lim SW = X\oR, lim II =0,

pw [T

(5.3)

Figure 1 illustrates the conclusions obtained above,
We see that if the service rate can be controlled without
cost then ug is the rate chosen by the profit maximizer;
all the potential demand arrives to the queue, and cus-
tomer's welfare is zero. Clearly the socially optimal rate
is infinite,

Recall that operating a facility with a service rate of
w involves a cost of g(u) per unit time. The following
two cases are possible: ‘

(ii) The socially optimal rate is larger than pq, as for
£ in Figure 1, where the optimal rate is 4. In this case
the server will choose a slower service speed (frequently
this will be exactly p, as in Figure 1),

(ii) The socially optimal rate is smaller than or equal
t0 uo, This possibility is shown for the cost function g,

Figure 1

A -

pa e B
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in Figure 1, In this case the server will voluntarily choose
this optimal rate {u, in Figure 1), because it also max-
imizes his profits.

6. Heterogeneous Population of

Potential Customers
In this section we consider customers with different ser-
vice valuations, waiting costs, and service requirements.

6.1, Different Service Valuations

Suppose that potential customers value the good dif-
ferently. It is (socially) desired that service be rendered
to customers whose service valuation is higher. We first
show that this property is attained in equilibrium, Let
w(x) be the equilibrium expected waiting time for a
customer whose payment is x. Clearly, w(x) is mono-
tone decreasing. A potential customer who values the
service at R faces the following problem:

max {0, maxymp {R —x —ew(x)}}. (6.1}

If the maximum of the inside expression is positive he
will arrive with the maximizing x-value, if it is negative
he will not arrive, and if it is zero he is indifferent be-
tween these options. It is easily seen that individuals
who decide to arrive have valuations not smaller than
those who do not apply. Note, however, that once a
customer decides to arrive, his next decision with regard
to the size of his payment is independent of his service
valuation, The equilibrium payment distribution for the
arriving customers is computed in exactly the same way
as if they come from a homogeneous population, and
in particular (2.1) and {2.2) hold.

Denote by R* the lowest valuation of an individual
who arrives in equilibriurn. Such a customer offers zerc
payment. Consider an individual who does not arrive,
thus having R =< R*. If he is persuaded to arrive then
his contribution to social welfare is R — cw(0), no matter
what payment he chooses. But this individual, while
deciding not to arrive, already considered the possibility
of arriving with no payment and rejected it. Hence K
— cw(0) < 0 and R — cw(0) = 0, and the change does
not increase social welfare, Similarly, we argue that it
cannot happen that social welfare increases by per-
suading customers not to arrive. If we do so, then the
best choice is a customer with valuation R*, But such a
customer is ready to arrive with no payment, in which
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case he imposes no externalities. Thus, the change in
social welfare entailed by persuading him not to arrive
is nonpositive. We conclude that the optimal arrival rate
is attained.

6.2, Different Service Requirements

Suppose that in addition to different service valuations,
customers differ by their service requirements as ex-
pressed by different service rates u. A customer with
parameters R and u faces the following problem:

max {0, max,=¢ {R — x —c(w,(x) + 1/u)}}, (6.2)

where w,(x) is the expected waiting time in the queue
while others are served. Let R" = R — ¢ /g, then (6.2)
is similar to (6.1) and again, the payments of those who
decide to arrive are independent of their parameters. In
particular, the order in which they are served will be
independent of their service requirements. This is not
compatible with social optimality, which requires serv-
ing customers in increasing order of their service rates.
A similar problem exists with Mendelson and Whang's
(1990) priority prices, and to overcome it they suggested
computing prices that are based on the actual service
requirements. Similar ideas can be used in our model
to induce higher payments by customers with higher
service rates, but the resulting mechanism will not be
self-regulating any longer.

6.3. Different Waiting Costs

Suppose now that customers have identical service rates,
but they differ by their service valuations and waiting
costs. We claim that also in this case the socially optimal
behavior is induced. We first observe that once a cus-
tomer decides to arrive, his payment is independent of
his service valuation. Moreover, it is clear that the in-
dividual optimization results in higher payments and
priorities for customers with higher waiting costs, among
those who decide to arrive. It is less obvious that the
division between arrivals and non-arrivals conforms
with social optimality. To demonstrate this property let
us assume for simplicity that there is just a finite set
€ < 6 < - < ¢, of possible waiting costs. A cus-
tomer with waiting cost of ¢; per unit time is called an
i-custormer. All the /-customers who decide to arrive
will have in equilibrium the same expected waiting times
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(though not the same expected welfare since they may
differ by their service valuation). From considerations
similar to those in §2, the cumulative probability dis-
tribution of i-customers will be continuous and strictly
increasing on an interval [a,_;, a; ] with a,_, < 4; and ag
= (. The l-customers impose externalities on other
1-customers only. As in §2, such a customer’s payment
is equal to the additional wait he imposes on others,
and a 1-customer arrives if and only if it is socially de-
sirable that he arrive,

Suppose inductively that this property holds for
(i — 1)-customers. An i-customer who pays a,-, causes
the same external effects as an (i — 1)-customer who
offers this amount. (This is where we use the assumption
that the service rates are identical.} If he chooses to in-
crease his payment (within the interval {a; ;, a;]), he
will reduce his expected waiting costs but not his ex-
pected welfare (since the latter is the same for all i-
customers). Thus, the extra payment is equal to the
expected saving in waiting costs, which in turn is equal
to the expected additional waiting costs to other i-
customers. Thus, we conclude that if he pays a;., 1 g,
ther by the inductive assumption, a;, is the part of the
externalities imposed on k-customers, k < 1, and g is
equal to the part imposed on i-customers. Altogether,
the payment is again equal to the externalities, and a
customer arrives only if the sum of his waiting cost and
the externalities he imposes is less than his service val-
uation. Thus the individual optimization in equilibrium
is again identical to social optimization.

6.4. The Optimal Rate of Service

We will show now that the qualitative result of §5,
namely that the profit-maximizing rate of service is
smaller than or equal to the socially optimal rate, is not
restricted to the case of homogeneous customers. To
simplify the presentation we will assume two customer
types. Furthermore, we assume that the arrival process
is Poisson and use explicit formulas that are available
for this model.

We first claim that it is sufficient to prove that the
total expected rate of customer surplus, that is SW —1II,
is a nondecreasing function of p. Recall that SW and II
denote social welfare and profits from customer pay-
ments, respectively. To prove this claim, let p; be the
welfare-maximizing rate. Let g(u) be the cost per time
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unit involved in providing service rate of . Then for u
> j,, by definition of g,

SW (i) — 8(us) = SW () — g(p),

and since SW — I is nondecreasing
SW(ns) — I(ps) = SW(u) — I(n).
Hence,
() = 8 (us) = (SW (1) — 8(1s)) = (SW (i) — IT(kss))
= (SW () — g(m)) — (SW (n) — II(n))
= II{u) — 8 (u).

Thus, the profit maximizer prefers u, to any u > pu,.

Assume that there are two classes of customers, with
potential demand rates A, g and A, o, service evaluations
R, and R,, and unit time costs ¢; and c,, respectively.
Assume, without loss of generality, that ¢, < ¢;. If the
equilibrium arrival rates A, and A, are both positive,
then for some constants 0 < 2 < b, type 1 customers
will offer payments in [0, 2] and type 2 customers will
offer paymentsin [a, b]. Let i (A) be the expected wait-
ing time of a customer who sees an arrival rate A of
higher priority customers. Then,

1

w1 =2/t

[This equation can be found in Kleinrock (1967), or
it can be derived from the fact that w(A) is equal to (L
+ 1)B, where L = A /(u — A) is the expected number
of customers in the system at the time of arrival, and B
=1/(p — XN) is the expected length of a busy period in
an M /M/ 1 queue with parameters A and pu.]

Let S, denote the equilibrium expected surplus of cus-
tomers of type i. Let S = A\ 5, + X, 5; denote the total
rate of customers surplus. Then, 5 = SW — 11, and we
want to prove that S is nondecreasing in u. Since Sis a
continuous function of u it is sufficient to prove the
moanotonicity claim in each of the cases listed below.

H(\) =

If Ay > 0 then

S1= Ry —cth(M + A) =Ry — (a+ ciid()y)), (6.3)
and if A, > 0 then
Sy =Ry - (a2 i), (6.4)

MANAGEMENT SCIENCE/Vol. 41, No. 1, January 1995

For small values of i, we will have in equilibriurn X,
< Apgand A; < Ayp. In this case both types of customers
have zero surplus and § = SW — I = 0.

For higher values of 4 we obtain one of the following
cases:

(i1) Ay = Apand A, = 0or A, = 0and A; = Ayy. This
case is similar to that of a homogenecous population,
and monotonicity of § is proved as in §5.

(ii) 0 < A < Ajpand Ay = Ayo. In this case we can
substitute 5, = 0 in (6.3) and with (6.4) obtain

S = (R —Ry) — (2 — 51)7«5('\2.0)-
Thus,

AW (Az0)
dp

Z_P\Q‘U(CZ—C-I) >O

(i) A = Ajpgand 0 < X; < Ayy. In this case we can
substitute S; = 0 in (6.4) and with the second equality
in (6.3) obtain

Ciu‘:'(}\],o + )\2) - R2 = (Cl'“ C{)H}()\;)

Differentiating with respect to u we obtain

dx
PR 2

du (1 _ Ao + )\z)
'(i

(2 — 1)
pURT

(1-3)
I

Mo + A A
c1(1+—-‘L_7) (czuc,)(1+i)
z o

= +
" [

Since A, > 0, it follows that

3+

2&<1+—~—-——}‘"0+)\7.
du W

On the other hand, by (6.3)

Cy

( )\m+)\2)2'
i e =
w

Differentiating with respect to u we obtain that dS, /du
is proportional to 1 4 (X0 + A;) /o — 24dX; /du. By the
previous inequality this derivative is positive.

(iv) A, = Agand Ay = Ayp. S increases with u since
the expected waiting time decreases while the same ser-

Slle_

vice is given,
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7. Concluding Remarks

Section 2 discussed in general the effects of payments
offered by identical applicants on the application pro-
cess, We have shown that a mechanism which clearly
may be useful to discriminate among individuals of dif-
ferent characteristics can also be used to motivate iden-
tical individuals to behave in a socially desired manner.
A more detailed anaiysis was possible for the queueing
mode, We demonstrated that the price mechanisms
suggested by Edelson and Hildebrand (1975} (or a he-
mogeneous population and by Mendelson and Whang
(1990) for a heterogeneous population can be replaced
by a self-regulating mechanism. Specifically, customers
are free to choose any nonnegative payment, instead
of selecting a payment from a finite set specified by the
systern organizer. Note that there are also intermediate
possibilities where the payments are restricted to certain
domains instead of to a discrete set or to the nonnegative
values. Mendelson and Whang's (1990) priority prices
were carefully computed so that the equilibrium pay-
ment will exactly split the population by their charac-
teristics, so that in each probability mass the customers
are identical, However, these prices are not unique. For
example, in the case of identical customers, if the pay-
ments are restricted to be in [0,-a], for a value of 2
smaller than that of equation (3.5), then the optimal
arrival rate will still be obtained. The payment distri-
bution will be continuous on [0, a} and will have a
probability mass at 4, However, since the customers are
identical, the order in which those who pay 7 will be
served is unimportant, All that is needed is that the
allowed domain shoeuld include an interval [0, 4] for
some 4 > (.

A related problem is the optimal design of a contest
(see Glazer and Hassin 1987). In a contest participants,
possibly with different abilities, independently decide
on the amount of effort to invest in preparing for the
contest. The organizer of the contest has a budget to be
allocated as prizes that will be awarded according to
the participants’ outcomes, the higher prizes given to
the participants with the higher outcome. Contests are
similar to the model analyzed here but with some im-
portant differences: The “'bids” are actual costs and not
transfer payments, and the prizes are decision variables
designed to. maximize total output.

Another conclusion of this paper is that when the
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speed of service is a decision variable, a profit maximizer
may choose too slow a rate relative to the socially op-
timal one. The service rate can be controlled in several
ways,land each case may require different analysis, The
simplest way, which is the one implicitly assumed here,
is controlling the work process thereby affecting the
service time of each individual customer, Another pos-
sibility is controlling the number of servers. In this case
u is restricted to integral multiples of the service rate of
a single server, The analysis is only slightly changed in
this case, and similar results with obvious modifications
are abtained.

Another interesting case is cne in which the facility
is not continuously open but rather accepts customers
during specific time intervals, In this case, the definition
of the service rate which is relevant for our discussion
differs from the common one, For example, suppose
that demand is generated with rate A, that  customers

" can be served per unit time, and that the facility is open

only half of the day, The effective rate of demand is
then 2, or equivalently the effective service rate is u/
2. The server can conirol the service “speed” by con-
trolling the size cf the interval during which the facility
is open. The analysis of this case is significantly different
since customers who wish to be served must decide not
only on the payment they offer but also on their arrival
time. Some will even arrive before the cpening time of
the facility to assure themselves a faverable position in
the queue, The equilibrium arrival pattern in this case
typically will be time-dependent, as derived for the first-
come, first-served discipline by Glazer and Hassin
(1983).

A paper by Holt and Sherman (1982} considers the
allocation of a finite number of prizes at a specified time
on a first-come, first-served basis to individuals who
independently choose their arrival times, We note that
such systems are inefficient from the social point of view,
A simple alternative eliminates the social costs asso-

""The trapsttion equations in the paper by Glager and Hassin (1983)
are valid enly under the assumption that the total number of arrivals
during a day is Poisson. This is in conirast to the more general as-
sumption made there. However, this assumption is a natusal one,
obtained when each person in a large population independently do-
cides whether to arsive, Without this assumption, a more involved
set of transition equations is necessary, taking into account the de-
pendence of future rate on the current state.
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ciated with the first-come, first-served rule, namely al-
location of the prizes on a random basis to those present
at the time of distribution, This makes early arrivals
worthless. However, if it is cosily to shew up at the
distribution point, it may be socially desired that some
of the potential demanders should not show up at alt.
In this case again, individual optimization will create
excess congestion, Bidding, as suggested in the present
paper, eliminates the unnecessary wait and induces the
right rate of show ups.
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