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Abstract

Classical models of customer decision making in unobservable queues assume acquiring

queue-length information is too costly. However, due to recent advancements in communi-

cation technology, various services now make this kind of information accessible to customers at

a reasonable cost. In our model, which reflects this new opportunity, customers choose among

three options: join the queue, balk, or inspect the queue length before deciding whether to join.

Inspection is associated with a cost. We compute the equilibrium in this model and prove its ex-

istence and uniqueness. Based on two normalized parameters - congestion and service valuation

- we map all possible input parameter sets into three scenarios. Each scenario is characterized

by a different impact of inspection cost on both equilibrium and revenue-maximization queue-

disclosure policy: fully observable (when inspection cost is very low), fully unobservable (when

inspection cost is too high), or observable by demand (when inspection cost is at an intermedi-

ate level). We show that when maximizing social welfare, the optimal disclosure policy is zero

inspection cost. We show the structure remains the same when a fraction of the customers are

considered urgent, that is, they always join, whereas the others are non-urgent and therefore

join according to their equilibrium strategy.

Keywords: Queueing theory, Game theory, M/M/1 Markovian queue, Strategic customers.
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1 Introduction

The classical model of strategic customers’ decisions in an unobservable queue assumes acquiring

queue-length information is too costly. However, today’s communication technology makes online

information accessible at a reasonable cost, and customers can make use of this information when

deciding whether to join a queue. In many cases, this information is available at no charge, but

still it is not costless to the customers who spend time and effort to obtain it, whether they

pre-register, download relevant application, or even acquire relevant terminal interface equipment.

Several papers discuss another type of cost associated with obtaining information, especially online

through the service provider’s site. Customers are often required to reveal personal information

that they might not otherwise be willing to provide (Miyazaki and Fernandez 2001, Sheehan 2002,

Hann et al. 2002, and Huang and Van Mieghem 2014). In this sense, the inspection cost is real

and not a transfer payment from customer to service provider.

Online queue-length information is a relatively new option. Most of the services providing

such information are health-care services, and hospitals all over the United States and Canada

have recently started publishing their emergency rooms (ERs) expected waiting times on their web

sites. For example, more than 20 distinct hospitals and dozens of support facilities are under the

management of Florida Hospital, which provides current ER waiting times for every location on its

web site, at www.floridahospital.com. Patients are encouraged to check this information prior

to arrival, and decide whether to arrive to the ER or to turn to an alternative facility.

The Ontario government also provides such information to the public. Its web site

http://www.health.gov.on.ca/en/public/programs/waittimes/edrs/default.aspx

publishes current waiting times at 126 Ontario ERs and urgent care centers. According to the site,

the Ontario government considers this reporting ”an important part of our commitment to being

open and accountable about how well we are doing in achieving our two top health-care priorities:

reducing ER wait times and improving access to family health care.” Patients in Ontario can also ob-

serve queue lengths for specific medical procedures such as surgery, MRIs, or CT scans. For more ER

waiting-time examples, see JFK medical center at jfkmc.com/our-services/er-wait-time.dot

and Reston hospital center at www.restonhospital.com.
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A customer arrives to

an unobservable queue

Join Inspect Balk

Figure 1: The decision process

Other services also publish online queue information such as waiting times for voting locations

(see www.votepinellas.com), security check-in times at international airports (see Atlanta Inter-

national Airport www.atlanta-airport.com/passenger/waittimes), border-crossing times (see

the Canada Border Services www.cbsa.gc.ca/bwt-taf), and amusement-park waits (see Disney

touringplans.com/disney-world-app).

We consider customers arriving to a single-server queue. To the traditional question of join-or-

balk, we add a third option: customers may choose to acquire information about the queue length

prior to making their decision.

Our model’s solution consists of the probability of each action in equilibrium. If a customer

inspects the queue, the next step is similar to Naor’s observable-queue model.

When the inspection cost is very high, customers do not inspect the queue, and the decision is

as in the unobservable-queue model. On the other hand, when the inspection cost is negligible, all

customers inspect the queue and join according to the observable-queue model. The flowchart in

Figure 1 shows the customers’ decision problem.

We approach the model from two main directions: (a) we characterize the (Nash) equilibrium
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strategy and prove its existence and uniqueness; (b) we analyze the impact of inspection cost on

equilibrium, revenue, and social welfare.

1.1 Existence and uniqueness of the equilibrium

A major challenge of this research is to prove the existence and uniqueness of the equilibrium

strategy in our symmetric game of homogenous customers. In a typical model of congestion,

participants try to avoid others and hence respond inversely to their actions. For example, an

increase in the propensity of others to join a queue tends to discourage the individual from joining.

This behavior is called avoid-the-crowd (ATC). The opposite behavior of follow-the-crowd (FTC)

is also common. For example, the more customers buy priority in a queueing system, the more

an individual is inclined to follow and buy priority for himself. FTC behavior typically results in

multiple equilibria, whereas ATC provides a unique equilibrium (Hassin and Haviv 2003, pp. 6-7).

However, this discussion is limited to models in which the decision is one dimensional. Adding

another option to the set of actions, as we suggest here, increases the model’s complexity and

requires a new examination of the ATC and FTC concepts. This research is a pioneering step in

that direction.

We prove the existence and uniqueness of the equilibrium by analyzing geometric properties of

the customers’ expected utility set. We used this proof in another paper for a model of sequential

inspection of queueing systems (Hassin and Roet-Green, 2013).

1.2 The impact of inspection cost

Consider a profit-maximizing service provider wishing to maximize system revenue by maximizing

the throughput (effective joining rate). This assumption coincides with settings such as ERs, where

entrance fees are exogenously given. Can the provider use inspection cost to maximize throughput?

The answer depends on the system parameters. Unsurprisingly, the throughput associated with

an observable queue is higher in some cases, and in others, it is lower than that of an unobservable

queue (see Hassin 1986, and Chen and Frank 2004). For example, when the (potential) arrival rate

is small, the equilibrium throughput is larger in the unobservable case, where all join in, whereas
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in the observable case, some may still observe a long queue and balk. By contrast, when the arrival

rate is very high and the service valuation is not much larger than the waiting cost incurred during

service, providing the queue information increases the throughput.

Our contribution to the literature lies in mapping all possible input parameter sets into three

scenarios based on the changing of the equilibrium as a function of inspection cost. For each sce-

nario, we provide the revenue-maximizing solution, which points to a disclosure policy: observable

queue (low inspection cost), unobservable queue (high inspection cost), or inspect-by-demand queue

(at an intermediate-level inspection cost). Our analysis confirms that for many cases, the revenue-

maximization solution is achieved with an intermediate level of inspection cost. Controlling the

accessibility of the queue information can affect the inspection cost. For example,

• Publishing the queue length on the service provider’s web site. The inspection cost increases

as the search becomes harder: Does the information pop up on the web site’s home page, or

does it require an additional search? Does it involve a registration process? How intrusive is

the registration process?

• Smart-phone application: How easy is it to download?

• Offering the information by phone call or text messaging.

We also show that for all scenarios, as the cost of inspection increases, social welfare decreases.

Maximum welfare is achieved when the cost of inspection is zero, which is the observable model.

Therefore, the social planner should encourage service providers to reduce the inspection cost.

We discuss the provider’s decision process with respect to health-care applications: ERs in

private and public hospitals, walk-in clinics, and also hospital service of private rooms upon request.

Health-care analysis raises another interesting question: How would the analysis change when

considering both urgent and non-urgent customers arriving to the same facility? Research has

shown that at least 40 percent of patients attending ERs in the United States are non-urgent

patients (see, e.g., Gill 1994, Padgett and Brodsky 1992, Petersen et al. 1998). By assuming urgent

customers join the queue without inspection, we focus on the behavior of the non-urgent customers

at equilibrium. We show the general structure of the analysis is maintained, and the range of
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parameter values representing congestion and service valuation for which inspection at a positive

cost maximizes revenue increases with the fraction of non-urgent customers.

1.3 Related literature

Our model bridges two of the fundamental perceptions in strategic queueing theory: the observable

queue (Naor 1969), and the unobservable queue (Edelson and Hildebrand 1975). Several other

papers also bridge the two models. In the work of Marianov et al. (2005), customers also face a

two-phase decision problem. First, customers decide whether to travel to the unobservable queue

center. After arriving, the queue becomes observable and the customers’ next decision is whether

to join. Customers are heterogeneous in their travel and waiting costs. In equilibrium, a fraction

of the customers balk, whereas the rest arrive to the queue, observe its length, and join only if it

is under a certain threshold. Due to different waiting costs, each customer has his own threshold.

The main difference between this model and ours is that it introduces a one-dimensional decision

to customers at the first phase, whereas in our model, customers face a two-dimensional decision

in the first phase. Our idea of an inspection cost is different from a travel cost, because customers

in our model can avoid the inspection and costlessly join the unobservable queue, but they cannot

avoid travel costs.

Other papers assume some of the customers are informed but customer types are predetermined

and not a decision variable as in our model. Large and Norman (2010) assume a make-to-stock

producer selling to customers with heterogeneous product valuations. A fraction of the customers

see the queue length, whereas the others are uninformed and only those with valuations higher

than a critical value join.

Hu, Li, and Wang (2014) consider a single queue with two customer types, informed customers

who observe the queue length and uninformed customers. The fraction of informed customers is

exogenous. These authors characterize the equilibrium and, similar to our finding, conclude the

throughput function is unimodal in the fraction of informed customers.

Xu and Hajek (2013) present a multi-server model with unobservable queues. Inspection of the

queues prior to joining is possible, but has a cost. Customers decide prior to arrival on the number
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k of queues to inspect. After inspecting these queues, they join the shortest one. Also, this model

bridges the unobservable case with k = 0 and the observable case with k = N . The authors solve

the model asymptotically when the number of servers grows to infinity, and show the existence of a

symmetric equilibrium strategy in this game. For a comprehensive survey of queueing models with

strategic customers, see Hassin (2016).

Only a few other papers analyze customer decisions of whether to buy queue-length information.

Hassin and Haviv (1994) consider a system with two identical parallel servers. An arriving customer

can acquire information about which queue is shorter by paying a fixed amount, and then join

the shorter queue. A customer who does not purchase the information chooses one of the queues

randomly. After joining, customers jockey costlessly from one queue to another, when the difference

between them reaches a given threshold ofN . The authors compute the value of information and the

equilibrium threshold strategies. Intuitively, we expect the value of information to be a decreasing

function of the proportion of informed customers p, inducing an ATC type of behavior. However,

the authors show that under certain parameters, this value increases with p, inducing an FTC type

of behavior.

Hassin and Roet-Green (2013) assume customers arrive to a system of parallel queues where

inspection of the queue is required prior to joining. The queues vary in their service rates and

inspection costs. The customer chooses which queue to inspect first, and based on that information,

decides whether to continue inspecting another queue. After each inspection, the customer can

decide whether to join one of the inspected queues. In many cases, the equilibrium strategy contains

cascades: customers choose one action (join or inspect) when they observe i and i + 2 customers

in their first observed queue, and the other action when they observe i+ 1 customers in their first

observed queue.

Sundar and Ravikumar (2014) consider a model with two service providers that dynamically

set their prices in a market with two customer types. Some customers randomly select a server

and either join or balk, whereas the others first observe both queues and then decide to join one

or balk. The main difference from our model is that a customer’s type is predetermined and not a

decision variable.

Another aspect we consider in our paper is social welfare maximization. We show the best
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result is achieved when the inspection cost is zero. Although this result may look intuitive, it is not

that simple, because customers behave selfishly and do not always use the search information in a

socially desirable way. For example, when the proportion of informed customers is exogenous, for

some parameters, social welfare decreases as the fraction of informed customers increases (see Hu et

al.2014). By contrast, our result implies that when the provider controls only the inspection cost,

and customers maximize their own utility, the observable queue is optimal. Our different result is

driven by our model assumption that the proportion of informed customers is endogenous, that is,

determined in equilibrium.

The remainder of this paper is structured as follows: In section 2, we present the mathematical

model. In section 3, we prove the existence and uniqueness of a symmetric equilibrium. In section

4, we analyze the impact of inspection cost on equilibrium, revenue, and social welfare. In section

5, we provide managerial insights for service providers, given their service parameters. In section

6, we analyze the impact urgent customers have on the equilibrium. We conclude our main results

in section 7.

2 The Model

We consider an unobservable M/M/1 first-come first-served queue. Arriving customers face three

options: join the queue, balk, or inspect queue length first and then decide whether to join. We

use the following notation:

• CW is waiting cost per unit time. We assume CW > 0.

• CI is the cost of inspecting the queue. We assume CI ≥ 0.

• λ is the arrival rate.

• µ is the service rate.

• R is the service valuation.

• A customer inspects the queue with probability PI .
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• A customer joins the queue without inspecting it with probability PJ .

• A customer balks with probability PB .

Following Naor (1969), we denote

ν =
Rµ

CW
(1)

as the normalized value of service measured in units of expected waiting cost for a single service

completion. In the same sense, and as derived from the numerical analysis of this paper, we denote

the normalized cost parameter

κ =
CIµ

CW
(2)

and the normalized congested parameter (i.e., the system utilization factor)

ρ =
λ

µ
. (3)

As in Naor’s model, a customer observing a queue of length i, joins if i ≤ ne − 1, where

ne =

⌊
Rµ

CW

⌋
= ⌊ν⌋. (4)

Note that when ne is an integer, the customer is indifferent between joining and balking when

i = ne − 1. We adopt Naor’s tie-breaking rule and assume that in this case, the customer joins.

A consequence of this strategy is that the effective arrival rate is

λe =





(1− PB)λ i ≤ ne − 1,

PJλ i ≥ ne.

(5)

Denote by πi the stationary probability of queue length i. If ν < 1, then ne = 0 and PB = 1 is a

dominant strategy. To avoid trivialities, we assume ν ≥ 1. The balance equation for 0 ≤ i ≤ ne− 1

is

(1− PB)λπi = µπi+1,

and for i ≥ ne, the balance equation is

PJλπi = µπi+1.
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To simplify the presentation, we define

ξ = (1− PB)ρ,

η = 1− PJρ. (6)

Note that in equilibrium, PJρ < 1, and as a result, 0 < η < 1. The stationary distribution for

i > 0 is

πi =





ξiπ0 i ≤ ne − 1,

ξne(1− η)i−neπ0 i ≥ ne,

and for i = 0, if ξ 6= 1,

π0 =

[
ne−1∑

i=0

ξi + ξne

∞∑

i=ne

(1− η)i−ne

]−1

=

[
1− ξne

1− ξ
+

ξne

η

]
−1

,

and if ξ = 1,

π0 =
η

neη + 1
.

The expected utility from balking without inspecting is

UB = 0.

The expected utility from inspecting the queue when ξ 6= 1 is

UI =

ne−1∑

i=0

πi

(
R− CW

i+ 1

µ

)
− CI = π0

[
R ·

1− ξne

1− ξ
−

CW

µ
·
1− (ne + 1)ξne + neξ

ne+1

(1− ξ)2

]
− CI , (7)

and for ξ = 1, it is

UI =
neη[2µR− CW (ne + 1)]

2µ(neη + 1)
. (8)

The expected utility from joining the queue without inspecting it if ξ 6= 1 is

UJ =
∞∑

i=0

πi

(
R− CW

i+ 1

µ

)
= R−

CW

µ
π0

[
1− (ne + 1)ξne + neξ

ne+1

(1− ξ)2
+

ξne(neη + 1)

η2

]
, (9)

and if ξ = 1, it is

UJ = R−
CW

µ

[
ne(ne + 1)η

2(neη + 1)
+

1

η

]
. (10)
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We assume customers are strategic in the sense that they maximize their own expected utility

and therefore choose their best-response strategies. Because customers in this model are homoge-

neous, we are interested in a symmetric equilibrium. A strategy profile (PI , PB , PJ) is a symmetric

equilibrium profile if it is a best response against itself. The best-response strategies (PI , PB , PJ )

satisfy PI ≥ 0, PB ≥ 0, PJ ≥ 0, PI + PJ + PB = 1, and in addition,





UI > max{UJ , 0} ⇒ PI = 1

0 > max{UI , UJ} ⇒ PB = 1

UJ > max{UI , 0} ⇒ PJ = 1

UJ = 0 > UI ⇒ PI = 0

UJ = UI > 0 ⇒ PB = 0

UI = 0 > UJ ⇒ PJ = 0

UI = UJ = 0 ⇒ 0 ≤ PI , PJ , PB ≤ 1.

(11)

3 Existence and Uniqueness of the Equilibrium Strategy

As discussed in the introduction, when customers choose among three actions, the solution is two

dimensional. Therefore, the standard one-dimensional ATC property does not apply here and we

are required to prove the existence and uniqueness of the equilibrium by using two-dimensional

topological analysis. Our main result in this section is summarized in Theorem 1.

Theorem 1. For each set of normalized parameters ρ, ν, κ, a unique symmetric Nash equilibrium

strategy exists.

The full proof of Theorem 1 is given in Appendix A, and we only provide the outline of the proof

here. The proof is based on the topological and geometrical properties of the expected utility

set (EUS), which represents the expected utilities from every possible symmetric strategy. Given

the set of normalized parameters, ρ, ν, κ, we define the EUS as follows:

EUS = {(x, y)| there exists (PI , PB) such that UI = x,UJ = y}. (12)
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An example of the EUS for ρ = 0.5, ν = 1.43, κ = 0.14 is shown in Figure 2(a); the boundaries

and vertices of the EUS are marked with the corresponding strategy type.
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Figure 2: The EUS is defined on the expected utility space

The EUS is defined on the expected utility space. This space is divided into seven regions shown

in Figure 2(b):

1. UJ > max{UI , 0} (region 1).

2. UI > max{UJ , 0} (region 2).

3. max{UI , UJ} < 0 (region 3).

4. UI = UJ > 0 (region 4).

5. UI = 0 > UJ (region 5).

6. UJ = 0 > UI (region 6).

7. UI = UJ = 0 (region 7).

Recall that a symmetric equilibrium strategy satisfies the equilibrium conditions (11). There-

fore, the equilibrium is obtained at an intersection point between the EUS and the region that

represents the corresponding relation among the utilities. For example, if the EUS vertex that
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represents PI = 1 is in region 2, where UI > max{UJ , 0}, then PI = 1 is a best response against

itself and therefore defines a symmetric equilibrium strategy. The following is another example. If

the left boundary of the EUS, representing all the strategies that satisfy {PI > 0, PJ > 0, PB = 0},

intersects with region (line) 4, where UI = UJ > 0, the intersection point defines a symmetric

equilibrium.

In only one scenario does no such intersection exist, namely, when the origin is included in the

EUS. Any inner point of the EUS represents a mixed strategy where 0 < PI , PJ , PB < 1. At the

origin, UI = UJ = 0, and therefore if the origin appears as an inner point of the EUS it defines a

symmetric equilibrium strategy.

To show existence, we need to show such an intersection is always defined. To do so, we prove

two topological properties of the EUS, summarized in Lemma 1.

Lemma 1. The EUS is a non-empty compact set and its interior is a simply connected domain.

The non-emptiness property of the EUS ensures that given the set of parameters, the EUS

appears on the expected utility space. The compactness of the EUS ensures its boundaries are well

defined, and as a result, an equilibrium can be defined on the boundaries. By proving the EUS is

simply connected, we ensure that if the origin is included in the EUS, which implies the equilibrium

is defined as an inner point, this point is also included in the EUS.

To prove these properties, we rely on the definition of the EUS as the image of the mapping

f : (PI , PB) → (UI , UJ). The strategy set is a triangle, defined as follows:

T = {(PI , PB) : PI , PB ≥ 0, PI + PB ≤ 1}. (13)

This triangle is a non-empty compact set, and its interior is a simply connected domain. To prove

these properties are preserved in the EUS, we prove the mapping f is a homeomorphism : a

continuous one-to-one map of a topological space onto another topological space such that the

inverse mapping is also continuous. By proving the mapping is a homeomorphism, we prove the

topological properties of the strategy set are preserved in the EUS. An illustration of the mapping

is given in Figure 3.

The proof of homeomorphism includes two steps. First, we prove f is continuous. Second, we
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Figure 3: Homeomorphism between the probability set and the EUS

prove it has a continuous inverse by showing the Jacobian of f is non-zero. Then, by the inverse

function theorem, the mapping f is bijective and therefore a homeomorphism.

By proving Lemma 1, we prove the existence of a symmetric equilibrium strategy in this game.

Moreover, we distinguish between seven different types of equilibrium, which correspond to the

seven cases of condition (11). A symmetric equilibrium is defined when

(a) The projection of PB = 1 on the EUS appears in region 3, where 0 > max{UI , UJ}.

(b) The projection of PJ = 1 on the EUS appears in region 1, where UJ > max{UI , 0}.

(c) The projection of PI = 1 on the EUS appears in region 2, where UI > max{UJ , 0}.

(d) The left boundary of the EUS, which is the projection of {PI > 0, PJ > 0, PB = 0}, intersects

with line 4, where UI = UJ > 0.

(e) The lower boundary of the EUS, which is the projection of {PI = 0, PJ > 0, PB > 0}, intersects

with line 5, where UJ = 0 > UI .
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(f) The upper boundary of the EUS, which is the projection of {PI > 0, PJ = 0, PB > 0}, intersects

with line 6, where UI = 0 > UJ .

(g) The origin, which is the projection of PI + PB + PJ = 0, is included within the EUS, where

UI = UJ = 0.

Recall that by assuming ν ≥ 1 or equivalently R − CW

µ > 0, we exclude PB = 1 from our

analysis. All six other types of equilibrium are shown in Figure 4. What is left to prove is that no

matter where the EUS appears on the expected utility space, at least one intersection that defines

an equilibrium occurs. To prove that assertion, we locate the projection of PJ = 1 on the EUS in

every possible region and go through all possible appearances of the EUS on the expected utility

space given the position of that vertex. We prove that for every possibility, an equilibrium must

exist. We repeat the process with the projection of PI = 1.

Next, we prove the equilibrium is unique by showing that for every possible EUS no more than

one intersection exists with the space regions such that this intersection defines an equilibrium. To

do so, we prove Lemma 2.

Lemma 2. : The EUS boundaries are strictly increasing with a slope > 1.

We use the geometrical property of the EUS as described in Lemma 2 to show that for any

possible location of the EUS, only one intersection between the EUS and the different regions of the

expected utility space defines a symmetric equilibrium. To do so, we fix the vertex that projects

the strategy PJ = 1 in all possible regions, and check every possible intersection, eliminating those

intersections that cannot exist given the boundaries’ geometrical properties. We repeat the process

for the vertex that represents PI = 1. The detailed proof is given in Appendix A.

4 The impact of inspection cost

In this section, we analyze the impact of inspection cost on equilibrium strategy, revenue, and social

welfare.
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Figure 4: Defining pure and mixed equilibrium points via the EUS
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4.1 Equilibrium as a function of inspection cost

The equilibrium strategy is a function of inspection cost. When inspection cost is very low, all

customers inspect the queue. In this case, the queue becomes observable.

When inspection cost is very high, customers do not inspect the queue and it remains unob-

servable. The equilibrium strategy then would be the same as in the unobservable-queue model.

Given our assumption that R− CW

µ > 0, the probability of joining the unobservable queue is strictly

positive (0 < PJ ≥ 1). What would be the equilibrium when inspection cost is at an intermediate

level?

We now look into the evolution of the equilibrium strategy as the inspection cost κ increases

from 0 to infinity. We use the following parameters:

K1 = min{S1, S2},

where S1 =
(1− ρ)ρne

1− ρne+1
(ne + 1− ν),

and S2 = ν
1− ρne

1− ρne+1
−

1− (ne + 1)ρne + neρ
ne+1

(1− ρ)(1 − ρne+1)
,

K2 =
x(1− ρ)ρneh(ρ)

(1− ρne)x+ ρne(1− ρ)
,

where x solves x =
ne − ν +

√
(ne − ν)2 + 4h(ρ)

2h(ρ)

and h(ρ) =
1

ρne

[
ν
1− ρne

1− ρ
−

1− (ne + 1)ρne + neρ
ne+1

(1− ρ)2

]
,

K3 =
ξne(1− ξ)

1− ξne+1
(ne + 1− ν),

where ξ solves ν =
1 + ξ + ξ2 + . . .+ ξne − (ne + 1)ξne+1

1− ξne+1
,

K4 = ne

(
1−

1

ν

)ne

,

K5 = ρne

(
ne − ν +

1

1− ρ

)
. (14)

We can provide the following interpretation for the constants K1,K2,K3,K4, and K5. We

already argued PI = 1 for κ = 0. We define K1 as the maximum inspection-cost level for which the

equilibrium strategy is PI = 1. This level is achieved in one of two scenarios: either UI = UJ > 0
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or UI = 0 > UJ . Substituting into the definitions of UI and UJ and solving the corresponding

equalities, we get K1 = S1 for UI = UJ > 0, and K1 = S2 for UI = 0 > UJ . Moreover, for

ν >
∑

ne

i=0
ρi−(ne+1)ρne+1

1−ρne+1 , S1 > S2; otherwise, S1 ≤ S2.

Next we define the minimum cost for which the EUS contains the origin. Denote K2 for the

case where K1 = S1, and K3 for the case where K1 = S2.

We also define the minimum cost for which the equilibrium strategy implies all customers do

not inspect the queue length, that is, PI = 0. Denote K4 for the case where PJ < 1, and K5 for

the case where PJ = 1.

We distinguish among three scenarios:

Scenario 1 In equilibrium, {PI > 0, PJ > 0, PB = 0} for K1 < κ ≤ K5, and PJ = 1 for

κ > K5.

Scenario 2 In equilibrium, {PI > 0, PJ > 0, PB = 0} for K1 < κ ≤ K2, {PI > 0, PJ >

0, PB > 0} for K2 < κ ≤ K4, and {PI = 0, PJ > 0, PB > 0} for κ > K4.

Scenario 3 In equilibrium, {PI > 0, PJ = 0, PB > 0} for K1 < κ ≤ K3, {PI > 0, PJ >

0, PB > 0} for K3 < κ ≤ K4, and {PI = 0, PJ > 0, PB > 0} for κ > K4.

Proposition 3 shows for every set of parameters, if we increase the inspection cost from 0 to

∞, only one of those three scenarios exists. Later, we show that when maximizing revenue, each

scenario implies a different queue-disclosure policy.

Proposition 3. For κ ≤ K1, PI = 1 in equilibrium.

Suppose κ > K1. If ρ < 1, then

1. if ν > 1
1−ρ , Scenario 1 holds.

2. if 1 + ρ
1+ρ < ν ≤ 1

1−ρ , Scenario 2 holds.

3. if ν ≤ 1 + ρ
1+ρ , Scenario 3 holds.

Otherwise, if ρ ≥ 1, then for every ν and its corresponding ne,

1. if ν >
∑

ne

i=0
ρi−(ne+1)ρne+1

1−ρne+1 , Scenario 2 holds.
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2. if ν ≤
∑

ne

i=0
ρi−(ne+1)ρne+1

1−ρne+1 , Scenario 3 holds.

The proof of Proposition 3 is given in Appendix B. Figure 5 maps every pair (ρ, ν) to an

equilibrium scenario 1, 2, or 3. Note the discontinuity of equilibrium scenario 3 follows from the

discontinuity of the observable-queue threshold, ne.

ρ
0 0.5 1 1.5 2 2.5 3

ν

1

1.5

2

2.5

3

3.5

4

4.5

5

1
2

3

3

3

3

Figure 5: Mapping of equilibrium scenarios

Corollary 4. As κ increases, the probability PI of the equilibrium strategy decreases while PJ and

PB increase.

Corollary 4 follows immediately from Proposition 3. Figure 6 is an example of how inspection

cost transforms the queue from observable to unobservable, according to Scenario 2. The fixed

parameters are ρ = 0.8, ν = 2.33. The top graph shows PI ; the middle graph shows PB ; the bottom

graph shows PJ .

4.2 Revenue as a function of inspection cost

This section focuses on the optimization of inspection cost when the service provider can monitor

this cost. We define expected revenue as a monotone increasing function of PE , the expected

throughput in the system, that is, the probability that an arriving customer is served. Hence, the
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Figure 6: For ρ = 0.8 and ν = 2.33: As κ increases, the observable queue becomes unobservable

provider’s problem is to select the value of κ that maximizes PE, where

PE = P (Enter|Inspect) · P (Inspect) + P (Join)

=

ne−1∑

i=0

πi · PI + PJ =
1− ξne

1− ξ
· π0 · PI + PJ . (15)

Denote by P obs
E (and P unobs

E ) the probability of entering the queue when κ is small (large) such

that all customers (do not) inspect the queue. Then

P obs
E =

1− ρne

1− ρne+1
< 1,

P unobs
E = min

{
ν − 1

νρ
, 1

}
. (16)

Note that when ρ ≥ 1, P unobs
E = ν−1

νρ < 1.

To characterize the change in PE as κ increases, we use the following lemma and observation:

Lemma 5.

1. While UI = UJ > 0, PE increases with κ.

2. While UI = 0 > UJ , PE decreases with κ.

Observation 1. While UI = UJ = 0, PE decreases with κ.

Proposition 6. For any pair (ρ, ν),
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1. if Scenario 1 holds, PE increases with κ and reaches the maximum at every κ ≥ K5.

2. if Scenario 2 holds, PE is a unimodal function of κ and reaches the maximum at K2.

3. if Scenario 3 holds, PE decreases with κ and reaches the maximum at every κ ≤ K1.

The proofs of Lemma 5, Proposition 6, and the numerical analysis that implied Observation 1

are given in Appendix B. The following proposition determines the optimal inspection cost at each

scenario.

Figure 7 shows two examples of how, in different scenarios, the equilibrium strategy (PI , PB ,

and PJ are shown in the three top graphs) and PE (bottom graph) change as κ increases (on the

x-axis).
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(a) When ρ = 0.95 and ν = 2.5, Scenario 2 holds, and PE

is a unimodal function of κ. The maximum is obtained

when κ = 0.5595 = K2.
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(b) When ρ = 0.99 and ν = 1.1, Scenario 3 holds, and

PE is monotonically decreasing with κ.

Figure 7: PE as a function of κ under different scenarios

4.3 Social welfare as a function of inspection cost

We now examine the effect of the inspection cost on social welfare. Recall that inspection cost is not

considered a transfer payment to the service provider, but a real cost of the effort customers incur

to obtain queue-length information. Therefore, the inspection cost is included in social welfare,

which we define as

SW = λ(PJUJ + PIUI).
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Proposition 7. For any pair (ρ, ν), SW is monotonically decreasing with κ and obtains its maxi-

mum when κ = 0.

The proof of Proposition 7 is given in Appendix B.

5 Discussion

We discuss our results while referring to various health-care service settings, namely, private ERs,

public ERs, walk-in clinics, and private hospital rooms upon request. We represent these settings

by (illustrative) level of congestion (ρ) and customers’ service valuation (ν), as shown in Table 1.

Service ρ ν Corresponds to scenario no.

Private ER 0.3 (low) 5 (high) 1

Public ER 0.9 (high) 5 (high) 2

Walk-in clinic 0.6 (moderate) 3 (moderate) 2

Private hospital rooms upon request 0.5 (moderate) 1.3 (low) 3

Table 1: Three different service settings corresponding to three possible scenarios

Our analysis elicits managerial insights for each service setting. For private ERs, where con-

gestion is low, the equilibrium follows Scenario 1: customers join the unobservable queue with

probability 1. In this case, keeping the queue unobservable is in the best interests of the private

health-care provider. Revealing information might discourage potential customers from joining.

For public ERs where congestion is high, the case is different and equilibrium follows Scenario

2. Our results as described in Proposition 6 suggest that for revenue maximization, the provider

should control the cost of inspection, thereby raising throughput and revenue. But a public health-

care provider is more likely to prefer to maximize social welfare over revenue and therefore make

the queue observable, which would reduce congestion as compared to the revenue-maximization

solution. This policy also applies for many public services characterized by high congestion, such

as Department of Motor Vehicles (DMV) and Social Security administration offices.

However, for walk-in clinics, Proposition 6 implies that providers should make queue length

observable to some extent. Because walk-in clinics are managed by private health-care providers,
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one can assume revenue management is in their best interests. The inspection cost can be, for

example, a requirement for registration at the provider’s web site, or it can be an exposure to

advertisements for other commercial goods alongside the waiting-time publication. This solution

applies to many other private services such as banks, popular restaurants, and department stores.

Last, we consider the example of requesting a private room at admission to a hospital. The

valuation of the service is much lower when compared to the other cases, such that it follows

Scenario 3, where an observable queue maximizes both revenue and social welfare.

6 Heterogeneous service valuations

We consider two classes of customers. Class 1 customers value the service so highly that their

dominant strategy is to join the queue without inspection. Following the motivating example of

ERs, we refer to them as urgent customers. Class 2 customers have a smaller service valuation.

We refer to them as non-urgent customers. For simplicity, we assume all customers have the same

waiting cost.

Let q ∈ (0, 1) be the proportion of urgent customers in the population. Then

λi =





[q + (1− q)(1− PB)]λ i < ne,

[q + (1− q)PJ ]λ i ≥ ne.

(17)

Denote:

ξ̄ = [q + (1− q)(1− PB)]ρ,

η̄ = 1− [q + (1− q)PJ ]ρ. (18)

The analysis of sections 2 and 3 of this paper holds with ξ̄ instead of ξ and η̄ instead of η, including

Theorem 1. In the same way, the analysis of section 4 regarding the impact of inspection cost also

holds when substituting ξ̄ and η̄. Let K̄1, K̄2, K̄3, K̄4, and K̄5 be the corresponding thresholds to

K1,K2,K3,K4, and K5. We use the corresponding thresholds for defining Scenarios 1-3 for the

heterogeneous case, in corresponding to Proposition 3.

Proposition 8. For κ ≤ K̄1, the equilibrium strategy is PI = 1.
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Suppose κ > K̄1. If ρ > 1, then, using K̄2, K̄3, K̄4, and K̄5, respectively,

1. if ν > 1
1−ρ , Scenario 1 holds;

2. if 1 + 1
1−qρ − 1

1+(1−q)r < ν ≤ 1
1−ρ , Scenario 2 holds;

3. if ν ≤ 1 + 1
1−qρ − 1

1+(1−q)r , Scenario 3 holds.

Otherwise, if ρ ≥ 1, then for every ν and its corresponding ne,

1. if ν >
(
1−ρne

1−ρ + ρne

1−qρ

)
−1 [1−(ne+1)ρne+neρne+1

(1−ρ)2
+ ρne (ne(1−qρ)+1)

(1−qρ)2

]
, Scenario 2 holds;

2. if ν ≤
(
1−ρne

1−ρ + ρne

1−qρ

)
−1 [

1−(ne+1)ρne+neρne+1

(1−ρ)2 + ρne (ne(1−qρ)+1)
(1−qρ)2

]
, Scenario 3 holds.

Following Proposition 8, the region of Scenario 1 on the ρ − ν space does not change with

q. However, as q decreases, the region of Scenario 2 grows larger at the expense of the region of

Scenario 3. Corollary 9 summarizes this result.

Corollary 9. The region in the ρ − ν space for which inspection at a positive cost maximizes

revenue increases with the fraction of non-urgent customers.

7 Concluding remarks

Our contribution to the literature lies in two aspects. From the analytical point of view, we provided

a proof of the existence and uniqueness of the equilibrium using the topological properties of the

expected utility set.

From the operations point of view, our main result is that enabling inspection of queue length at

a cost may increase throughput. This result may appear counter-intuitive because more customers

join the queue when the information has a cost as opposed to when it is free.

By adding this third action to the join-or-balk classical discussion, we expand the provider’s

ability to control the customers’ behavior, allowing the provider to maximize revenue by increasing

throughput. We provide a concrete characterization of the model parameters for which adding

inspection at a cost leads to the desirable result.
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In relation to social welfare, we show the social planner should aspire to decrease the inspection

cost to the minimum because maximum welfare is achieved when the queue is observable. We

argue the provider can influence the inspection cost in several ways. Future research could analyze

the extent to which a provider should invest in reducing the inspection cost. Assuming such an

investment is monotonically decreasing with CI , and given that social welfare is also decreasing

with CI , a socially optimal cost investment exists for the provider to reduce inspection cost, and

the corresponding inspection cost is greater than zero.

We focus on analyzing the classical M/M/1 queue model. The results remain very similar under

the general arrival assumption. Yechiali (1971) showed that in the case of a G/M/1 observable-

queue model, an equilibrium threshold strategy exists. Because the calculation of the threshold in

the G/M/1 model is different than in the M/M/1 model, it would require changes in the equations,

and the numerical results would be different. Yet we expect the nature of the results to stay the

same as in the M/M/1 model.

The general service-rate case, however, is different. Kerner (2011) showed that customer strategy

in the M/G/1 model is not always characterized by a threshold. In addition, the equilibrium in

the M/G/1 model is not always unique. Therefore, whether our results would hold for that model

is unclear, and pursuing such a different model is left for future research.

We focused on analyzing a single-queue model as a primary and necessary step in understanding

the influence of inspection costs on the unobservable-queue model. However, expanding this model

into the case of queueing systems with many servers is a natural extension. The authors conducted

such research in another paper as we described in the introduction (see Hassin and Roet-Green,

2013).

Most of the paper dealt with homogenous customers. In section 6, we discussed the case of

heterogenous customers when we considered urgent versus non-urgent customers. The results imply

that for more parameter sets, as the proportion of urgent customers in the population increases,

the revenue is maximized when the queue is observable.

Considering similar models with customer heterogeneity with respect to delay cost or inspection

cost could be interesting. These threads are open for future research.
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Appendices

A Proof of Theorem 1

To prove Theorem 1, we prove Lemma 1 by proving the mapping f : (PI , PB) → (UI , UJ) is a

homeomorphism:

Definition 1. Homeomorphism is a continuous one-to-one map of a topological space X onto a

topological space Y such that f−1 is also continuous (Kelley 1955, p.87).

From equations (7) and (9), it follows that UI and UJ are continuous for any fixed set of

parameters, and therefore the mapping (PI , PB) → (UI , UJ) is continuous.

We use the following lemma (from Ma 2002, p. 39):

Lemma 10. Let f : X → Y be a continuous bijection. If X is compact, f is a homeomorphism.

To prove f is bijective, we first show (PB , PI) → (ξ, η) is bijective. Then we show (ξ, η) →

(UI , UJ ) is bijective. Therefore, (PB , PI) → (UI , UJ) is bijective.

Because ξ = (1 − PB)ρ and η = 1 − (1 − PB − PI)ρ, the Jacobian of the transformation

(PB , PI) → (ξ, η) is

J(ξ, η) =

∣∣∣∣∣∣
ξ′PB

ξ′PI

η′PB
η′PI

∣∣∣∣∣∣
= ξ′PB

· η′PI
− η′PB

· ξ′PI
= −ρ2, (19)

and because ρ > 0, the Jacobian is non-zero, and by the inverse function theorem, the mapping

is bijective. We now use the same argument to prove (ξ, η) → (UI , UJ) is bijective. We use the

presentation of UI , UJ in (7) and (9), divide each equation by CW

µ , and use the definition: ν = Rµ
CW

:

UI = R ·

[
(1− ξne)η

(1− ξne)η + ξne(1− ξ)
−

1

ν
·

(1− (ne + 1)ξne + neξ
ne+1)η

(1− ξ)((1 − ξne)η + ξne(1− ξ))

]
− CI ,

UJ = R ·

[
1−

1

ν

(
(1− (ne + 1)ξne + neξ

ne+1)η

(1− ξ)((1− ξne)η + ξne(1− ξ))
+

ξne(neη + 1)(1 − ξ)

η((1− ξne)η + ξne(1− ξ))

)]
.
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We look at the Jacobian of this transformation:

J(UI , UJ ) =

∣∣∣∣∣∣
UI

′

ξ UI
′

η

UJ
′

ξ UJ
′

η

∣∣∣∣∣∣
= UI

′

ξ · UJ
′

η − UI
′

η · UJ
′

ξ

=
R2ξne−1

ην2(1− ξ)(η − ξne(ξ − 1 + η))3
·

(
ne

3(1− ξ)2ξneη2 − ne
2(1− ξ)2ξneη(ην − 2)

+ ne

(
−ξη2 + ξ2ne+1[(1 − ξ)2 − η2] + ξne [(1− ξ)2 + 2ξη2 − (1− ξ)3ν]

)

+ ξ(1− ξne)[ξne(ξ − 1 + η)[2 + (ξ − 1− η)ν] + η(ην − 2)]

)

Lemma 11. For all R ≥ 0, ν > 1, ξ > 0, and 0 < η < 1, J(UI , UJ ) < 0.

Proof. For simplicity, we use n in the proof instead of ne. We start by proving the denominator of

the Jacobian is always positive. The denominator is a product of ην2 > 0 and the terms (1 − ξ)

and (η − ξn(ξ − 1 + η))3 = (η(1 − ξn) + (1 − ξ)ξn)3. For ξ < 1, the last two terms are positive,

and for ξ > 1, both terms are negative. Therefore, the product is positive and the denominator is

positive. For ξ = 1, the denominator is zero, but calculating the limit of the Jacobian is possible,

as we show later.

We now wish to determine the sign of the numerator. Denote the numerator as M :

M = R2ξn−1 ·

(
n3(1− ξ)2ξnη2 − n2(1− ξ)2ξnη(ην − 2)

+ n[−ξη2 + ξ2n+1[(1− ξ)2 − η2] + ξn((1− ξ)2 + 2ξη2 − (1− ξ)3ν)]

+ ξ(1− ξn)[ξn(ξ − 1 + η)[2 + (ξ − 1− η)ν] + η(ην − 2)]

)
. (20)

Because R2ξn−1 > 0, it is enough to find the sign of the rest of the numerator. For fixed n, note

M is a linear function of ν where n ≤ ν < n+ 1. Therefore, it is enough to prove M has the same

sign when ν = n and when ν → n+ 1. First we consider the case where ν = n:

M̃ = n3(1− ξ)2ξnη2 − n2(1− ξ)2ξnη(ηn − 2)

+ n[−ξη2 + ξ2n+1[(1 − ξ)2 − η2] + ξn((1− ξ)2 + 2ξη2 − (1− ξ)3n)]

+ ξ(1− ξn)[ξn(ξ − 1 + η)(2 + (ξ − 1− η)n) + η(ηn − 2)]

= 2n2(1− ξ)2ξnη − 2ξ(1 − ξn)2η + nξn(1− ξ)2(1− n(1− ξ) + ξ)− 2ξn+1(1− ξn)(1 − ξ).

For n = 1, M̃ = 0. We now show M̃ < 0 for all n ≥ 2. We first prove

2n2(1− ξ)2ξnη − 2ξ(1 − ξn)2η = 2ξ(1 − ξ)2η · [n2ξn−1 − (1 + ξ + ξ2 + . . .+ ξn−1)2] < 0. (21)
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Because 2ξ(1− ξ)2η > 0, it is enough to show n2ξn−1 < (1 + ξ + ξ2 + · · ·+ ξn−1)2. Both terms are

positive and therefore we can look at the square root: nξ
n−1

2 < 1 + ξ + ξ2 + · · · + ξn−1. For all ξ

and n > 1, the function: f(n) = ξn−1 is positive, monotonic decreasing, and convex. If n is even,

then from convexity a system of n
2 inequalities exists:

1

2
(1 + ξn−1) > ξ

n−1

2

1

2
(ξ + ξn−2) > ξ

n−1

2

...

1

2
(ξn/2−1 + ξn/2) > ξ

n−1

2

If n is odd, a system of n−1
2 inequalities and one equality exists:

1

2
(1 + ξn−1) > ξ

n−1

2

1

2
(ξ + ξn−2) > ξ

n−1

2

...

1

2
(ξ

n−3

2 + ξ
n+1

2 ) > ξ
n−1

2

ξ
n−1

2 = ξ
n−1

2

In both cases, when summing all the inequalities in each system, we get

nξ
n−1

2 < 1 + ξ + ξ2 + · · ·+ ξn−1.

Next, we prove the remaining elements are negative as well:

nξn(1− ξ)2(1− n(1− ξ) + ξ)− 2ξn+1(1− ξn)(1 − ξ)

= ξn(1− ξ)2[n(1− n(1− ξ) + ξ)− 2ξ(1 + ξ + ξ2 + · · ·+ ξn−1)].

Because ξn(1− ξ)2 > 0, it is enough to show n[1− n(1− ξ) + ξ]− 2ξ(1 + ξ + ξ2 + · · ·+ ξn−1) < 0.

We prove this by induction. For n = 2, we get

2[1− 2(1− ξ) + ξ]− 2ξ(1 + ξ) = 2(−1 + 2ξ − ξ2) = −2(1− ξ)2 < 0.
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Next, we assume the statement is true for n and use it to prove it is also true for n+ 1:

(n + 1)(1 − (n+ 1)(1 − ξ) + ξ)− 2ξ(1 + ξ + ξ2 + · · ·+ ξn)

= n[1− n(1− ξ) + ξ]− 2ξ(1 + ξ + ξ2 + · · ·+ ξn−1)− n(1− ξ) + 1− (ξ + 1)(1− ξ) + ξ − 2ξn+1

< −n(1− ξ) + 1− (n+ 1)(1− ξ) + ξ − 2ξn+1 = −2n(1− ξ) + 2ξ(1− ξn)

= −2(1 − ξ)[n− ξ(1 + ξ + ξ2 + · · ·+ ξn−1)] < −2(1− ξ)(n − ξn) = −2n(1− ξ)2 < 0,

which completes the proof of equation (21).

We now show M (Equation (20)) is strictly negative when ν → n+ 1:

lim
ν→n+1

M = R2ξn−1 ·

(
n3(1− ξ)2ξnη2 − n2(1− ξ)2ξnη(η(n + 1)− 2)

+ n
[
−ξη2 + ξ2n+1

(
(1− ξ)2 − η2

)
+ ξn

(
(1− ξ)2 + 2ξη2 − (1− ξ)3(n+ 1)

)]

+ ξ(1− ξn) (ξn(ξ − 1 + η) [2 + (ξ − 1− η)(n + 1)] + η(η(n + 1)− 2))

)
.

Following the same process, we reduce the problem into determining the sign of M̂ , where

M̂ = M̃ − n2(1− ξ)2ξnη2 − nξn(1− ξ)3 + ξn+1(1− ξn)[(1− ξ)2 − η2] + ξ(1− ξn)η2 (22)

= M̃ − η2[n2(1− ξ)2ξn − ξ(1− ξn)2]− nξn(1− ξ)3 + ξn+1(1− ξn)(1− ξ)2.

We already proved n2(1−ξ)2ξn−ξ(1−ξn)2 < 0. By adding it to the first two terms of M̃ (Equation

(21)), we get

(2η − η2)[n2(1− ξ)2ξn − ξ(1− ξn)2] = η(2 − η)[n2(1− ξ)2ξn − ξ(1− ξn)2] < 0.

Lastly, we show −nξn(1− ξ)3 + ξn+1(1− ξn)(1− ξ)2 < 0:

−nξn(1− ξ)3 + ξn+1(1− ξn)(1 − ξ)2

= ξn(1− ξ)3[−n+ ξ(1 + ξ + ξ2 + · · ·+ ξn−1)] < ξn(1− ξ)3[−n+ nξ]

= −nξn(1− ξ)4 < 0.

To complete the proof, we need to show M < 0 for all 1 < ν < 2. Note that when ν = 1, M̃ = 0,

but when ν = 1, R = CW

µ , and the expected utility from inspecting the queue becomes negative,

regardless of the strategies of other customers. Therefore, inspecting the queue becomes dominated
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by the other two actions and can be omitted. As a result, the game becomes a two-action game

that has a unique solution due to ATC. Furthermore, because M̂ = −ξ(1− ξ)4 < 0 for ν → 2, we

can deduce that M < 0 for all 1 < ν < 2.

When ξ = 1,

lim
ξ→1

J(UI , UJ) = −
n(n+ 1)(−4 + 6ν − 2n+ n(n− 1)t(2 + nt− tν))

12t(1 + nt)3ν2
.

The denominator is a product of strictly positive terms and therefore is strictly positive. In the

numerator, n(n + 1) > 0. We want to show the other term in the product is strictly positive.

Because ν > n ≥ 1, −4+4ν > 0 and 2ν−2n > 0. 2+nt− tν = 2− t(ν−n) > 1, because both t < 1

and ν − n < 1. By combining all these terms, we deduce that the numerator is strictly positive, as

is the entire fraction. From the minus sign, we conclude the limit exists and is strictly negative.

By proving M̃ and M̂ are strictly negative for all ν > 1 , we conclude the Jacobian of the

mapping is non-zero and therefore the continuous mapping is a homeomorphism. Homeomorphism

preserves topological properties (Reid and Szendrői 2005, pp.113-118), and thus the topological

properties of the triangle T - non-empty simply connected compact set - are preserved in the EUS.

Proof of existence. The following analysis is based on the EUS topological properties. We

show an equilibrium exists for all possible scenarios. If the point where PJ = 1 is in region 1,

PJ = 1 is a pure equilibrium. Otherwise, PJ = 1 has to be in region 2 or 3. First, assume PJ = 1 is

in region 2. If PI = 1 is also in region 2, PI = 1 is a pure equilibrium. Otherwise, based on Lemma

2, PI = 1 must be in region 1. In that case, the boundary {PI > 0, PJ > 0, PB = 0} must intersect

with line (region) 4, and {PI > 0, PJ > 0, PB = 0} is a mixed equilibrium.

Assume the point where PJ = 1 is in region 3. If PI = 1 is in region 2, PI = 1 is a pure

equilibrium. Otherwise, PI = 1 must be in region 1 or 3. If PI = 1 is in region 1, one of the

following three cases must occur:

(1) {PI > 0, PJ > 0, PB = 0} intersects with line 4, and then {PI > 0, PJ > 0, PB = 0} is a mixed

equilibrium (e.g., see Figure 4(c)).

(2) {PI = 0, PJ > 0, PB > 0} intersects with line 5, and then {PI = 0, PJ > 0, PB > 0} is a mixed

equilibrium (e.g., see Figure 4(d)).
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(3) The origin is contained in the EUS, and then {PI > 0, PJ > 0, PB > 0} is a mixed equilibrium

(e.g., see Figure 4(f)).

Otherwise, PI = 1 must be in region 3 and then one of the following three cases must occur:

(1) {PI > 0, PJ = 0, PB > 0} intersects with line 6, and then {PI > 0, PJ = 0, PB > 0} is a mixed

equilibrium (e.g., see Figure 4(e)).

(2) {PI = 0, PJ > 0, PB > 0} intersects with line 5, and then {PI = 0, PJ > 0, PB > 0} is a mixed

equilibrium.

(3) The origin is contained in the EUS, and then {PI > 0, PJ > 0, PB > 0} is a mixed equilibrium.

Proof of Lemma 2. From (7) and (9),

UJ(UI) = UI +CI − V (UI), (23)

where

V (UI) =

∞∑

i=ne

πi

(
CW

i+ 1

µ
−R

)
> 0. (24)

V (UI) is the value of the information, that is, the expected gain from the balking option when queue

length turns out to be ne or longer. Note that V (UI) is positive as a sum of positive components.

The outline of the proof is as follows. We show the change in the strategy vector along the

boundaries increases the probability of shorter queue lengths. As a result, UI increases but V (UI)

decreases. Then V ′(UI) < 0 and U ′

J(UI) > 1. We verify each boundary is increasing with a slope

> 1:

• When {PI > 0, PJ = 0, PB > 0}, then PJ = 0 and η = 1. Along this boundary, PI decreases

from 1 to 0 while PB increases from 0 to 1, and therefore ξ decreases. In this case, queue

length cannot exceed ne. Therefore, V (UI) = πne

(
CW

i+1
µ −R

)
. We show the derivative of

πne
= ξne

∑
ne

i=0
ξi

with respect to ξ is positive:

dπne

dξ
=

ξne−1[
∑ne−1

i=0 (ne − 1)ξi]

(
∑ne

i=0 ξ
i)2

> 0, (25)

and therefore as ξ decreases, V (UI) decreases while UI increases, and we conclude this bound-

ary is strictly increasing with a slope > 1.
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• When {PI > 0, PJ > 0, PB = 0}, then PB = 0 and ξ is fixed and equals ρ. Along this

boundary, PI increases from 0 to 1, while PJ decreases from 1 to 0. As a result, η increases,

as well as π0. Because for 0 ≤ i ≤ ne−1, πi = ρiπ0, the probability of shorter queues increases

and, as a result, UI increases. We prove that in this case, V (UI) decreases with η (see Lemma

12 in Appendix A). As a result, UJ increases even more. Therefore, this boundary is strictly

increasing with a slope > 1.

• When {PI = 0, PJ > 0, PB > 0}, PI = 0 and η = 1 − ξ. Along this boundary, PB increases

from 0 to 1, while PJ decreases from 1 to 0. As a result, ξ decreases, η increases, π0 = 1− ξ

increases, and so does the probability that the queue length is shorter than ne, which is
∑ne−1

i=0 ξi(1 − ξ) = 1 − ξne . As a result, UI increases. We prove that in this case, V (UI)

decreases along the border (see Lemma 13 in Appendix A). Therefore, we conclude that UJ

increases even more and this boundary is strictly increasing with a slope > 1.

Proof of uniqueness. Using both Lemmas 1 and 2, we show that no more than one of the

six scenarios introduced in the existence proof can occur under the assumption R > CW

µ .

Assume the point where PJ = 1 is in region 1; then PJ = 1 is a pure equilibrium. From Lemma

2, one can conclude the entire EUS is in region 1, and therefore the equilibrium is unique. See

Figure 4(a) for an example. Otherwise, PJ = 1 must be in region 2 or 3. First, assume PJ = 1 is

in region 2. Then PI = 1 can be in region 1 or 2:

(I) If PI = 1 is in region 2, PI = 1 is a pure equilibrium. The EUS boundaries {PI > 0, PJ =

0, PB > 0} and {PI = 0, PJ > 0, PB > 0} intersect with line 4, but these intersections do not

define another equilibrium (e.g, see Figure 4(a)).

(II) If PI = 1 is in region 1, the boundary {PI > 0, PJ > 0, PB = 0} must intersect with line 4,

and {PI > 0, PJ > 0, PB = 0} is a mixed equilibrium. The EUS boundary {PI = 0, PJ >

0, PB > 0} also must intersect with line 4, but this intersection does not define an equilibrium.

Next, assume the point where PJ = 1 is in region 3. Then PI = 1 can be in region 1, 2, or 3:

(I) If PI = 1 is in region 2, PI = 1 is a pure equilibrium. In this case, the EUS boundaries

{PI > 0, PJ = 0, PB > 0} and {PI = 0, PJ > 0, PB > 0} intersect with line 4, and the
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boundaries {PI > 0, PJ > 0, PB = 0} and {PI = 0, PJ > 0, PB > 0} intersect with line 6,

but these intersections do not define another equilibrium (see Figure 4(b)).

(II) If PI = 1 is in region 1, one of the following three cases must occur:

(1) {PI > 0, PJ > 0, PB = 0} intersects with line 4, and then {PI > 0, PJ > 0, PB = 0} is

a mixed equilibrium. No other equilibrium exists here, because the intersections {PI >

0, PJ > 0, PB = 0} and {PI = 0, PJ > 0, PB > 0} with line 6 and {PI = 0, PJ > 0, PB >

0} with line 4 do not define another equilibrium (e.g., see Figure 4(c)).

(2) {PI = 0, PJ > 0, PB > 0} intersects with line 5, and then {PI = 0, PJ > 0, PB > 0} is

a mixed equilibrium. The intersection of the boundary {PI > 0, PJ > 0, PB = 0} with

line 5 does not yield another equilibrium (e.g., see Figure 4(d)).

(3) The origin is contained in the EUS, and then {PI > 0, PJ > 0, PB > 0} is a mixed

equilibrium. No other equilibrium exists here, because the intersections {PI > 0, PJ >

0, PB = 0} with line 5 and {PI = 0, PJ > 0, PB > 0} with line 6 do not define another

equilibrium (e.g., see Figure 4(f)).

(III) If PI = 1 is in region 3, one of the following three cases must occur:

(1) {PI > 0, PJ = 0, PB > 0} intersects with line 6, and then {PI > 0, PJ = 0, PB > 0} is

a mixed equilibrium. The intersection of {PI = 0, PJ > 0, PB > 0} with line 6 does not

define another equilibrium (e.g., see Figure 4(e)).

(2) {PI = 0, PJ > 0, PB > 0} intersects with line 5, and then {PI = 0, PJ > 0, PB > 0} is

a mixed equilibrium. The intersection of {PI = 0, PJ > 0, PB > 0} with line 5 does not

define another equilibrium.

(3) The origin is in the EUS, and then {PI > 0, PJ > 0, PB > 0} is a mixed equilibrium.

The intersections of {PI = 0, PJ > 0, PB > 0} with lines 4 and 6, and the intersection of

{PI > 0, PJ > 0, PB = 0} with line 5 do not define another equilibrium.

If the point where PJ = 1 is in region 1, PJ = 1 is a pure equilibrium. See Figure (4(a)) for an

example. Otherwise, PJ = 1 must be in region 2 or 3. First, assume PJ = 1 is in region 2. If
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PI = 1 is also in region 2, PI = 1 is a pure equilibrium (e.g., see Figure 4(b)). Otherwise, based on

Lemma 2, PI = 1 must be in region 1. In that case, the boundary {PI > 0, PJ > 0, PB = 0} must

intersect with line (region) 4, and {PI > 0, PJ > 0, PB = 0} is a mixed equilibrium.

Assume the point where PJ = 1 is in region 3. If PI = 1 is in region 2, PI = 1 is a pure

equilibrium. Otherwise, PI = 1 must be in region 1 or 3. If PI = 1 is in region 1, one of the

following three cases must occur:

(1) {PI > 0, PJ > 0, PB = 0} intersects with line 4, and then {PI > 0, PJ > 0, PB = 0} is a mixed

equilibrium (e.g., see Figure 4(c)).

(2) {PI = 0, PJ > 0, PB > 0} intersects with line 5, and then {PI = 0, PJ > 0, PB > 0} is a mixed

equilibrium (e.g., see Figure 4(d)).

(3) The origin is contained in the EUS, and then {PI > 0, PJ > 0, PB > 0} is a mixed equilibrium

(e.g., see Figure 4(f)).

Otherwise, PI = 1 must be in region 3 and then one of the following three cases must occur:

(1) {PI > 0, PJ = 0, PB > 0} intersects with line 6, and then {PI > 0, PJ = 0, PB > 0} is a mixed

equilibrium (e.g., see Figure 4(e)).

(2) {PI = 0, PJ > 0, PB > 0} intersects with line 5, and then {PI = 0, PJ > 0, PB > 0} is a mixed

equilibrium.

(3) The origin is contained in the EUS, and then {PI > 0, PJ > 0, PB > 0} is a mixed equilibrium.

The following Lemmas complete the proof.

Lemma 12. Along the EUS curve {PI > 0, PJ > 0, PB = 0}, V (UI) decreases.

Proof. Recall that when PB = 0, ξ = ρ. We show that in this case, as η increases, V (UI) decreases.

First, we evaluate V (UI) as a function of η:

V (UI) =

∞∑

i=ne

πi

(
CW

i+ 1

µ
−R

)
=

∞∑

i=ne

ρne(1− η)i−neπ0

(
CW

i+ 1

µ
−R

)

= ρne(1− ρ)
η(CW

µ ne −R) + CW

µ

η[(1 − ρne)η + ρne(1− ρ)]
. (26)
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Next, we find the derivative of V (UI) with respect to η:

∂V (UI)

∂η
= −ρne(1− ρ)(1− ρne)

(CW

µ ne −R)η + CW

µ

η[(1 − ρne)η + ρne(1− ρ)]2
. (27)

Last, we determine the sign of the derivative. ρne is strictly positive, and so is the product (1 −

ρ)(1− ρne). The denominator is also positive. It is left to show that the nominator is also positive:

(
CW

µ
ne −R

)
η +

CW

µ
>

(
CW

µ
ne −R+

CW

µ

)
η =

CW

µ
(ne + 1− ν)η > 0. (28)

Therefore, ∂V (UI)
∂η < 0, and we conclude V (UI) decreases as η increases along the EUS curve

{PI > 0, PJ > 0, PB = 0}.

Lemma 13. Along the EUS curve {PI = 0, PJ > 0, PB > 0}, V (UI) decreases.

Proof. We show that when η = 1− ξ, V (UI) decreases as ξ decreases. First, we evaluate V (UI) as

a function of ξ:

V (UI) =
∞∑

i=ne

πi

(
CW

i+ 1

µ
−R

)
=

∞∑

i=ne

ξneξi−ne(1− ξ)

(
CW

i+ 1

µ
−R

)

=
∞∑

i=ne

ξi(1− ξ)

(
CW

i+ 1

µ
−R

)
= ξne

[
CW

µ
ne −R+

CW

µ

1

1− ξ

]
. (29)

Next, we find the derivative of V (UI) with respect to ξ:

∂V (UI)

∂ξ
= neξ

ne−1

[
CW

µ
ne −R+

CW

µ

1

1− ξ

]
+ ξne

CW

µ

1

(1− ξ)2
. (30)

Last, we determine the sign of the derivative. In this case, η = 1 − ξ, and therefore ξ < 1. As a

result, 1
1−ξ > 1 and

CW

µ
ne −R+

CW

µ

1

1− ξ
=

CW

µ

[
ne − ν +

1

1− ξ

]
> 0, (31)

and because neξ
ne−1 > 0 and ξne CW

µ
1

(1−ξ)2
are strictly positive as products of positive elements,

we conclude the derivative is strictly positive. Therefore, along the boundary that represents

{PI = 0, PJ > 0, PB > 0}, when ξ decreases, V (UI) decreases.
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B Proofs for section 4

Proof of Proposition 3. We first explain how we calculate the thresholds K1,K2,K3,K4, and

K5.

K1 is the maximum inspection-cost level for which the equilibrium strategy is still PI = 1. This

level is achieved in one of two scenarios: either UI = 0 > UJ or UI = UJ > 0. When PI = 1,

ξ = ρ and η = 1. Substituting into the definitions of UI and UJ and solving the corresponding

equalities, we get K1 = S1 for UI = UJ > 0, and K1 = S2 for UI = 0 > UJ . Moreover, for

ν >
∑

ne

i=0
ρi−(ne+1)ρne+1

1−ρne+1 , S1 > S2; otherwise, S1 ≤ S2.

K2 and K3 are defined as the minimum cost for which the EUS contains the origin that can

happen in one of the two following scenarios:

• The cost for which the EUS boundary {PI > 0, PJ > 0, PB = 0} intersects with the origin

where UI = UJ = 0. At that point, PB = 0 and therefore ξ = ρ. To find K2, we first find the

η that solves UI = UJ (which is the positive root of a quadratic equation in η). We substitute

η into UI and find κ such that UI = 0.

• The cost for which the EUS boundary {PI > 0, PJ = 0, PB > 0} intersects with the origin

where UI = UJ = 0. At that point, PJ = 0 and therefore η = 1. To find K3, we first find the

ξ that solves UI = UJ . Then we substitute ξ into UI = 0 and find κ.

K4 is the minimum cost for which {PI = 0, PJ > 0, PB > 0} and is calculated by finding the

cost for which UI = UJ = 0 when PI = 0.

K5 is the minimum cost for which PJ = 1 and is calculated by finding the cost for which

UI = UJ > 0 when PI = 0.

Next, we prove that given the EUS position when κ = 0, we can determine which scenario will

hold. To do so, we use the properties of the EUS as proven in Lemmas 1 and 2. For fixed ρ and

ν, as we increase κ, the calculation of the UJ component for every given strategy vector does not

change; the only change is in UI . If we increase κ continuously from 0, the EUS would shift to

the left continuously. We use this property in demonstrating the evolution of the equilibrium as a

function of κ.
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We start from the EUS when κ = 0. In this case, the equilibrium strategy is always defined

at the point that represents PI = 1. Observing the EUS for these values, we distinguish between

three scenarios corresponding to those described in the proof of Lemma 2:

1. The vertex representing PJ = 1 has UJ ≥ 0. As we increase κ, the EUS shifts to the left. At

κ = K1, this vertex intersects with the line UI = UJ ≥ 0. At κ = K4, the vertex representing

PI = 1 intersects with the line UI = UJ ≥ 0. Between K1 and K4, the equilibrium strategy

would be {PI > 0, PJ > 0, PB = 0}; for κ > K4, it would be PJ = 1. Therefore, we get

Scenario 1.

2. The vertex representing PJ = 1 has UJ < 0, and the vertex representing PI = 1 has UJ ≥ 0.

We increase κ, and at κ = K1, this vertex intersects with the line UI = UJ ≥ 0. At κ = K2,

the line representing {PI > 0, PJ > 0, PB = 0} intersects with the origin. At K3, the line

representing {PI = 0, PJ > 0, PB > 0} intersects with the origin, corresponding to Scenario

2.

3. The vertex representing PJ = 1 has UJ < 0, and the vertex representing PI = 1 has UJ < 0.

As we increase κ, at κ = K1, this vertex intersects with the line representing UI = 0. At

κ = K2, the line representing {PI > 0, PJ = 0, PB > 0} intersects with the origin. At K3,

the line representing {PI > 0, PJ = 0, PB > 0} intersects with the origin, corresponding to

Scenario 3.

Proof of Lemma 5.

1. When UI = UJ > 0, PB = 0 and ξ = (1 − PB)ρ = ρ. From Proposition 3, PJ increases with

κ. Therefore, to show PE increases with κ in this case, it is enough to show PE increases with

PJ . We substitute PI = 1− PJ and PJ = 1−η
ρ into the definition of PE :

PE =

ne−1∑

i=0

πiPI + PJ =
1

ρ

[
(1− ρne)η(ρ+ η − 1)

(1− ρne)η + ρne(1− ρ)
+ 1− η

]
. (32)
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We use the chain rule:

dPE

dPJ
=

∂PE

∂ξ

∂ξ

∂PJ
+

∂PE

∂η

∂η

∂PJ

= 0 + (−
(1− ρ)2ρne

ρ(η − ρne(η + ρ− 1))2
)(−ρ) =

(1− ρ)2ρne

(η − ρne(η + ρ− 1))2
> 0.

(33)

2. When UI = 0 > UJ , PJ = 0 and η = 1. Then

PE =

ne−1∑

i=0

πiPI =
1− ξne

1− ξne+1
PI . (34)

When κ increases, PB increases and therefore ξ decreases. As a result, 1−ξne

1−ξne+1 decreases. At

the same time, PI decreases, and therefore PE decreases.

Numerical analysis for Observation 1. To analyze the change in PE at the interval [K2,K4]

for (ρ, ν) such that Scenario 2 holds, we took κ∗ = K2,K2+0.1(K4−K2),K2+0.2(K4−K2), . . . ,K4.

Then we calculated PE at every κ∗. By plotting the graph of PE as a function of κ at those points,

we verified that PE decreases with κ when κ ∈ [K2,K4]. We repeated the same process for (ρ, ν)

such that Scenario 3 holds, and verified that within the interval (K3,K4), PE decreases with κ.

The numerical analysis was done systematically by examining pairs of ρ and ν with high resolution.

Proof of Lemma 6. To prove Proposition 6, we rely on the evolution of the equilibrium at

each scenario as described in Proposition 3. For κ ≤ K1, PE is fixed and equal to P obs
E . Consider

now κ > K1.

1. When Scenario 1 holds, UI = UJ > 0 on the interval (K1,K5). By Lemma 5, PE is monoton-

ically increasing with κ on this interval. Note that as long as PI > 0, PE < 1 by definition

(see Equation 15). The maximum is obtained at every κ ≥ K5 where PJ = 1 and P unobs
E = 1.

2. When Scenario 2 holds, by Lemma 5, PE increases with κ on the interval (K1,K2) for which

UI = UJ > 0. By Observation 1, PE decreases with κ on the interval (K2,K4) for which

UI = UJ = 0, and stays fixed for every κ ≥ K4 where PE = P unobs
E . Therefore, PE is unimodal

and maximized at K2.
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3. When Scenario 3 holds, PE decreases when κ ∈ (K1,K3) for which UI = 0 > UJ , and by

Observation 1, it continues to decrease on the interval (K3,K4) for which UI = UJ = 0. For

κ > K4, PE is fixed and equal to P unobs
E . Therefore, PE decreases with κ and reaches its

maximum at every κ ≤ K1 where PI = 1 and PE = P obs
E .

Proof of Proposition 7. When κ ≤ K1, SW = λUI > 0. Because UI decreases with κ, the

maximum is obtained when κ = 0. For κ ≥ K1, our analysis corresponds to Scenarios 1-3. For

each scenario, we show SW is monotonically decreasing with κ.

Scenario 1: For K1 ≤ κ < K5, where the equilibrium strategy is {PI > 0, PJ > 0, PB = 0}, as κ

increases, PI decreases and the system becomes more congested. Consequently, both UJ and

UI decrease, and as a result, SW also decreases until it reaches κ = K5. At this point, UJ

reaches its minimum value, and so does SW , and they both stay fixed for every κ > K5.

Scenario 2: For K1 ≤ κ < K2, where the equilibrium strategy is {PI > 0, PJ > 0, PB = 0}, by

the same argument above, SW decreases with κ. For κ ≥ K2, PB > 0 and therefore SW = 0.

Scenario 3: For κ > K1, PB > 0 and therefore SW = 0.
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