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Abstract

When time-sensitive customers arrive to a system of parallel servers, they search for the
least congested queue. Customers do not always have full information of the system state,
since the search is associated with a cost. We present a model of parallel servers that provide
the same service. Upon arrival, each customer inspects the queue in front one server. Then,
she either joins it or inspects another queue. After each inspection, the customer can end the
sequential process by joining an inspected queue that minimizes her sojourn time. The solution
of this model is not straightforward even when the system contains only two servers, and the
equilibrium is not always a threshold strategy. We prove that in many cases, there exists a unique
equilibrium strategy that contains cascades: customers choose one action (join or inspect) when
they observe i and i+2 customers in the first observed queue, and the other action when they
observe i+1 customers in the first observed queue. We find cascade equilibrium strategies even
when the servers are identical with respect to service rate or inspection cost, and when the
buffer size is finite or infinite.

1 Introduction

In many service systems, customers search among servers in order to minimize their expected waiting
time. Marylandifjs Motor Vehicle Administration (MVA) is an example of such a system. Vehicle
owners in Maryland state are required periodically to bring their vehicle to an emissions inspection.

A vehicle owner can search among several nearby centers for the location with the shortest queue



length. To do so, she can use the MVA website, which provides online information about the local
service centers, including their current waiting times.

But search is not costless. Inspection cost is a fundamental cause for the generating of queues.
Haddock and Mcchesney (1994) argue that queues arise when customers are not informed of the
system condition. If inspection costs where zero, customers would have joined non-congested queues,
and congestion would have been avoided, or at least dramatically reduced. Apart from the cost of
the inspection itself (for example, the cost associated with making a phone call), there is an effort
associated with it. Even when the information is provided online, customers are required to pre-
register to the website or download the application, and to acquire the relevant equipment (such as
smartphones, tablets or similar) which has internet access.

Another aspect of inspection cost is the price of privacy that the customers pay when they
search for such information, especially when inspecting health care providers. In many settings
customers are required to reveal private information as a part of the inspection process. As argued
in the literature, customers consider sharing personal information as a cost that they are not always
willing to pay (for examples, see Miyazaki and Fernandez (2001), Sheehan (2002), Hann et al.
(2002), and Huang and Van Mieghem (2013)).

Similar to the MVA setting, we consider a Markovian queueing system that contains n parallel
servers. Each customer that arrives to the system chooses a server, and inspects its queue length.
Inspection is associated with a fixed cost. Given the information about the first observed queue,
the customer decides whether to join it, or to inspect another queue at additional cost. In the latter
case, she can join the queue that minimizes her expected sojourn time in the system, or continue the
sequential search until she decides to join one of the inspected queues. We assume that customers
valuation of the service is very high, and balking is not allowed.

We assume that customers are homogenous with respect to their waiting costs per unit time. We
also assume that customers are time-sensitive and strategic, and therefore they choose the action
that minimizes their expected cost. Our goal is to find the customers’ behavior in equilibrium, and
as a solution concept we seek for a symmetric Nash equilibrium.

Our model is innovative in combining few aspects:



e Strategic customers: We assume that a central controller does not exist. Instead, customers
are strategic in the sense of making there own decisions based on their own information.

e Costly search: We assume that inspection is costly, and that the strategic customer takes this
cost into consideration.

e Sequential search: We assume that customers search among servers sequentially, meaning that
after every inspection, there is an “exit point", where the customer can end the search process
by joining one of the observed queues.

e Dependent queue lengths: We assume that the number of servers is finite, and therefore the
lengths of the queues are dependent.

e Equilibrium solution of threshold strategies is common in queueing systems (Hassin and Haviv

(2003), p.7-9). Our work reveals a non-threshold strategy, which contains cascades.

We start by reviewing the relevant literature of each aspect that was discussed above.

e Sequential search, strategic customers and dependent queue lengths
Our study is related to the supermarket model of Mitzenmacher (2001), which is a dynamic
version of the load balancing model of Azar et al.(1999). Consider a Markovian queueing
system of n servers. Customers arrive to the system due to Poisson process. Each customer
chooses independently, uniformly and at random a fixed number of servers, and joins the one
that is less congested at that time.
While both the static and the dynamic supermarket models assume that inspection is costless,
Breitgand et al.(2006) suggest an extended model in which inspection has a cost, and this cost
is incorporated into the decision of how many servers should the customer inspect prior to
joining. They show that the efficiency of the system is affected by the tradeoff from the
reduction of the average waiting time due to increasing of management information and the
cost of its maintenance.
Xu and Hajek (2012) look at the supermarket game with strategic customers, who wish to
minimize the sum of inspection and waiting costs. The authors prove the existence of a
symmetric equilibrium strategy when the number of servers goes to infinity.

Unlike theses works, we assume that the search is sequential. The customer does not decide



prior to arrival how many servers to inspect. Instead, after every inspection, the customer
considers the information that she has already gathered, and decides whether to continue the
search or stop it and join one of the queues that she has already inspected.

Davidson (1988) also analyzes sequential costly search among competing servers. Unlike in
our model, Davidson considers that the number of queues is so large, that their lengths are
independent. Davidson shows that in equilibrium, all servers select the same price, and face
the same arrival rate. Our model deals with a more complicated problem, since the number
of servers is small, and therefore their queue lengths are dependent.

Costly search

The classical model of customers decision making in an unobservable queue assumes that it
is either too costly to acquire the queue length information (Edelson and Hildebrand, 1975),
or that inspection is free of charge (Naor, 1969). Later models consider queuing systems with
two or more queues, where “joining the shortest queue" is an optimal customers’ policy (but
not always, see Whitt (1986) for counterexamples). Technology nowadays makes information
accessible more than ever. Yet, as we argued above, the search for information is not costless.
Hassin and Haviv (1994) also assumed that inspection has a cost. They considered a model
where customers arrive to a system of two identical parallel servers. An arriving customer
can acquire the information about which queue is shorter, and then join the shorter queue. A
customer who does not purchase the information chooses one of the queues randomly. After
joining, customers jockey from one queue to another.

Hassin (1996) considered a model of two queues, where all arriving customers observe the first
queue, and decide whether to join it or the other unobservable queue. A motivation for this
model is the example of two gas stations that are located one after the other on a main road.
Drivers make their decision by comparing their expected waiting cost at the first station, to
the conditional expected cost at the second one.

Our model relates to these works in several aspects. We solve two cases: In the first case,
the queues have identical service time distribution and inspection cost. Therefore, customers

randomly decide upon arrival which queue to inspect first, similarly to Hassin and Haviv’s



model (1994), but with sequential search. In the second case, the inspection of one of the
queues is free, while the inspection of the other queue is associated with positive cost. In that
case, all customers first observe the free-of-charge queue, and then decide whether to inspect
the other queue or not, similar to Hassin’s gas stations model (1996), but with the option of
joining the first queue after observing both queues.

The question of a costly search in queueing systems is also analyzed by Hassin and Roet-Green
(2012). They consider an M/M/1 queueing model, where customers of an unobservable queue
choose among three options: join the queue, balk, or inspect with a cost and then decide
whether or not to join. Introducing the customers with this third option creates a model
that bridges the classical queueing models of the observable and unobservable queue. They
prove the existence and uniqueness of the equilibrium, and show that the monopoly firm can
increase the throughput by adding costly search.

Non-threshold strategies

A threshold strategy z = n+p,n € N,p € [0,1), prescribes one action, say A, for every state
0 < ¢ < n —1; another action, say As, for every state ¢ > n; and when ¢ = n, it randomly
selects A; or Ag, assigning probability p to A; and (1 — p) to As.

Equilibrium solution with a threshold strategy is common in queueing systems (Hassin and
Haviv (2003), p.7-9). But in many queueing systems, a customer’s choice between alternative
servers is based on partial information about these queues. Since customers’ decisions interact,
a customer may infer about the state of a particular queue from the information available about
the other queue. In other cases, it may be an indicator that the server provides high quality
service, or that it is a slower server. Customers decision is influenced by this information,
which makes the analysis of such systems very interesting, and the solution might not be of
the threshold type.

The general model that is presented here is too complex to be solved. Therefore, we focus
on the case of two queues. The solution is not straightforward even in this case. Indeed,
our investigation reveals that the equilibrium strategy has an involved structure that is often

characterized by cascades: the customer inspects the other queue (or joins the first observed



queue) when she observes i or ¢ + 2 customers in the first observed queue, and joins the first
observed queue (or, respectively, inspect the other queue) when she observes i 4+ 1 customers
in the first observed queue.

A symmetric non-threshold Nash equilibrium has been found in several works (see Whitt
(1986) for a model of two parallel queues in front of two identical servers, Altman and Hassin
(2002), Haviv and Kerner (2007) and Kerner (2011) for M/G/1 queue, and Haviv, Kella and
Kerner (2010) for M/M/N/N loss system).

The intuition behind the non-threshold strategies in our model is as follows. The more cus-
tomers inspect the other queue, the more is an individual inclined to join the first queue she
observed without inspecting the other queue. If a customer assumes with a high probability
that the customer in front of her has already inspected the other queue and nevertheless chose
to stay in that queue, then this serves as an indication that the present queue is shorter, or at
least not much longer than the other queue. Thus, the actions of other customers also serve
as signals, rendering the search associated with positive externalities.

Search externalities also exist in models where servers are heterogeneous in their service qual-
ity, and result in involved structures of the equilibrium (see Banerjee (1992) and Bikhchan-
dani, Hirshleifer and Welch (1998) for static models, and Debo and Veeraraghavan (2014) for
M/M/1 queue with service rate and quality as random variables).

A solution that contains cascades was also found by Debo, Parlour and Rajan (2012). In their
model, customers arrive to a single observable queue, and decide whether or not to join it.
The decision is based on a private signal that indicates the quality of the service, while the
queue length provides (positive) information externality. They show that for customers with
a private signal that indicates bad service, there may exist equilibrium strategies with “holes".
Other works on positive externalities due to service quality differences between parallel servers

were written by Veeraraghavan and Debo (2008, 2009).

The remainder of this paper is structured as follows: In section 2, we present the general model,
and the mathematical model for a system of two servers. In section 3, we solve the case of identical

servers. We prove the existence and uniqueness of a symmetric Nash equilibrium strategy for



systems of two identical servers with buffers of three or four slots. We prove the existence of an
equilibrium cascade strategy for the case of four slots. We also show that in the latter case, the
probability of inspecting the other queue is not always monotonic in congestion and in cost. For
both cases, we show that the probability that a customer arrives to the system and finds it at
full capacity is non-decreasing in congestion and in cost, and that the effect of a change in the
cost on that probability is relatively small. We also consider the case of two identical servers with
infinite buffers. We show the existence of equilibrium strategies that contain multiple cascades. We
find that as cost increases, customers tend to inspect the other queue less. However, for a given
observed queue length, customers may inspect the other queue more as cost increases. In section
4, we consider the case of heterogeneous servers, with respect to service rate, and with respect to
inspection cost. For each case, we calculate the symmetric equilibrium strategy. Through numerical
analysis we show that the equilibrium strategy is unique, and that it may contain cascades. In

section 5 we summarize our results and discuss future work.

2 The General Model

Consider a system of n parallel queues, denoted by Qx, K = 1,...,n. The service time at the k-th
server is exponentially distributed with parameter pi. Customers’ arrival process to the system is
Poisson with parameter A. When a customer arrives, she inspects one of the queues, and observes
its length. Let ay be the probability that the inspected queue is the one in front of server k. Thus,
the arrival process to queue k is Poisson with parameter aiA. Inspecting @y costs C > 0, and
waiting costs Cyy > 0 per unit time.

After inspecting the first queue, the customer chooses among three options: joining it, inspecting

another queue, or balking from the system. If she decides to inspect another queue, she inspects

o
l—ay

queue k' # k with probability After inspecting queues with lengths I1,...,l;,7 < n, the
customer uses the information gathered so far, and chooses among joining the queue with the
minimum expected waiting time, inspecting another queue, or balking. If j = n, the customer is

left with only two relevant actions: joining one of the queues or balking.

We also assume that each queue has a buffer. Let N € 1,2,...,00 be the size of the buffer



of Q. If a customer observes N customers in @y (including the one in service), she can either
inspect another queue or balk, but she cannot join it. If a customer observed all queues and found
that they are all full, then she is rejected from the system. For the rest of the paper we will focus

on the case of a system with two queues.

2.1 A system of two parallel queues

Consider a system of two parallel queues in front of two servers. We refer to them as Q1 and Q2.
Inspecting a queue is associated with a cost: C7 > 0 for Q1 and Cy > 0 for Q2. To avoid trivial
solutions, we assume that at least one of the queues has a positive inspection cost: C7 > 0 or
Cs > 0. We assume that the reward from service completion is very high. As a result, customers
do not balk from the system unless it is full, and they act to minimize their expected costs.

A customer who arrives to the system inspects at first one of the queues: Q1 with probability «,
and Q2 with probability 1 — a. Then, she decides whether to join it, or to inspect the other queue.
The following flowchart demonstrates the customers decision procedure, when the buffer sizes are

infinite.

Inspect Inspect
Q1 Q2
Inspect Join Inspect Join
Q2 Q1 Q1 Q2
Join Join Join Join
Ql Q2 Q1 Q2

We use i for the state of Q1, and j for the state of Q2, where state refers to the total number of

customers in service and in queue. We assume that the queues have buffers of the size N7 and Ns,



respectively. Note, that if the customer arrives to a queue with full buffer capacity, then she may

continue her search and join other queues, but she cannot join a full queue. If all queues are at full

buffer capacity, an arriving customer is rejected (blocked), leaves the system and never returns.
To describe the birth-and-death process in this model, for ¢ < N; and j < Ny we define the

indicator function d; ; as:

i+1 Jj+1
L (<))
= i+l _ g+l 1
0i,j 0.5 (ZM = u2> (1)
i+1 « j+1
0 (5>

Consider a customer who inspected both queues, and observed the state (i,7), where i < N;
and j < Na. Then, she will join Q1 with probability d; ; and Q2 with probability 1 — ; ;.

A strategy is consists of vectors PI1 and PIQ, and a constant 0 < o < 1, where:
P = [Pf(0), PF(1),..., PF(Ny = 1)], k=12 2)

Consider a given «. A customer who arrives to the system inspects Q1 first with probability a.
Given i < Nj customers in Q1, the customer joins Q1 with probability (1 — P}(i)) and inspects
Q2 with probability P}(i). If she inspects Q2 and observes j customers there, she joins it with
probability 1 — d; ;. Otherwise, she joins Q1. If she observes i = Ny customers in Q1, she inspects
Q2 with probability 1, and if she finds j < Ny in Q2 she joins it, otherwise she balks from the
system. Respectively, the same decision process takes place if she inspects Q2 first.

Suppose that the system is of state (i, j) when a new customer arrives. Let ZZ-{ ; be the probability

that the system proceeds to state (i + 1,7). Then
Z} i =a [ =P (i) + Pl (i)0i;] + (1 — )PP (j)0i;  i=0,...,Ni—1,j=0,...,Ny— 1. (3)

ZZ-{ ; 1s the sum of three probabilities:

1. the probability of arriving to Q1 first and joining without inspecting Q2;



2. the probability of arriving to Q1 first, inspecting Q2 and joining Q1 with probability d; ;;

3. the probability of arriving to Q2 first, inspecting Q1 and joining Q1 with probability d; ;.

In the same way, let Z;, 2 be the probability that the system proceeds to state (i,7 + 1). Then

Z7; = (1=a) [(1 = PF(j)) + PF(j)(1 = 6; )] +aPr (i) (1=6;;)  i=0,...,Ni—1,j=0,...,No—1.
(4)

Let m;; be the steady-state probability of state (¢,7). We use Zi{j and Zgj to write the balance
equations, from which we calculate m;;, and we use m;; to calculate the equilibrium strategy, as we

describe below.

2.2 Equilibrium

A customer observes the length of one of the queues and compares the expected cost from joining
this queue with the conditional expected cost from inspecting the other queue and joining the
shorter one. We distinguish between two complement scenarios: (a) the customer observed Q1 first,

or (b) the customer observed Q2 first. Assume that the customer inspected Q1 first. Let K, ( i) be

the expected cost from joining Q1 without inspecting Q2, given state ¢ at Q1. Then

2—1—1
M1

K}(i) = Cw (5)

If Q1 is not full, meaning i < Ny, let Kl( ) be the expected cost associated with inspecting Q2.
Then K}(i) is the sum of the following:

1. C5 which is the cost of inspecting Q2.
2. The cost of waiting in Q2 if the customer finds that Q2 is shorter than i.
-1

Z Tij J+1 (6)

:02
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3. The cost of waiting in Q1 if the customer finds that Q2 is not longer than 4,

No .
T4 1+1
C — . .

Using the indicator function that we defined in (1), we can write Kj (i) as:

51‘,]' +

mij |1+ 1 j+1
— 1—-46,)1, 8
s T ay) ®)

T

N2
K}(l) =0y + Cw Z
=0

where m; = Z;V:QO i

The expected cost of a customer who observes i < N customers in Q1, is

K*(i) = min{K (i), K] (i)} (9)

If Q1 is full, meaning ¢ = Ny, then the customer would inspect Q2, and therefore her expected

cost equals to:

N~ [ﬂ} . (10)

K}(Nl) =(Cy 4+ Cyw Z
=0 M1

T

Similarly, we define K2(j) as the expected cost of a customer that inspected Q2 first.
We assume that the customers are homogeneous. Therefore, we seek for a symmetric equilibrium.
A strategy profile is a symmetric equilibrium profile if it is a best response against itself. Define the

best response for ¢ < Ny:

and for j < Na:

11



A best response strategy is any strategy that satisfies conditions (11) and (12)).

Let E1(a) be the customers’ expected cost from inspecting Q1 first. Then:

N1 N
Ei(e) =Ci+ Y K'(i)> mj.
i=0 j=0

Let Es(a) be the customers’ expected cost from inspecting Q2 first. Then:

Ny N
Ey(a) =Ca + Z K*(5) Zﬂ'z’,j-
=0 i=0

Note, that K1(i) and K?(i) are also functions of a. In equilibrium:

7

0 E1(0) > E»(0)

a=11 Ey(1) < Ey(1)

G €[0,1] Ei(a)= Es(a)

(12)

(13)

(14)

(15)

The symmetric equilibrium strategy, (Pr*)¢ is satisfied if a best response against itself, meaning

that it satisfies conditions (11)-(15). This strategy is a best response of a player, when all other

players use (P;¥)e.

The system is characterized by two normalized parameters:

which is the congestion parameter, and

12



which is the normalized inspection cost parameter. We use these normalized parameters in the

numerical analysis.

3 Identical servers

We assume first that the servers are identical, both in their service rate (1 = ps = p), in their
buffer sizes (N7 = No = N) and in their inspection cost (C; = Co = C7). Therefore, customers are
indifferent when choosing which queue to inspect first. As a result, an arriving customer inspects
Q1 with probability 0.5, and Q2 with probability 0.5. We found that for a buffer size larger than 3,
customers’ behavior is not a threshold strategy.

Note that for stability, we require that p < 1 for the case of infinite buffers. This assumption is
not required for the case of finite buffers, because the queue lengths are bounded by the size of the
buffers.

Since the servers are identical, P} = PIQ, and therefore we use P; for customers’ strategy vector.

The definitions of the expected cost from each action are the same as in the previous section.

Theorem 1 (Ezistence of equilibrium) In a system of two identical servers, for each set of param-

eters p, Kk, there exists a symmetric Nash equilibrium strategy.

Proof: Existence of an equilibrium in this model follows from using a fixed-point theorem. This is a
game of countably many players. A strategy in this game consists of a vector Pr = [P;(0), Pr(1),..., Pr(N)],
where P(i) is the probability to inspect the other queue after observing i customers in the first ob-
served queue, and N is the size of the buffer of each server. N can be either finite or infinite. Let X

be the space of all mixed strategy vectors: X = {[PI(O),PI(l), o, Pr(N)] :Vi=0,1,...,P(i) €

0,11},

A strategy vector induces the steady state probabilities. If the buffer size IV is finite, then the
number of possible states, (N +1)?, is also finite. For infinite buffer sizes, there are countably many
possible states. In that case, for a given p, the steady state probability of each state (4, j) is bounded
by the probability that (i,j) customers are in the system, which is L; ; = (1 — p)%p’ - p?, i,j =
0,1,....

13



Following the assumption that in this case p < 1, we get lim; oo L;; = limj oo L;; = 0.
Therefore, the number of possible states is numerically bounded, and X is the N-dimensional cube
X =1[0,1]". Therefore, X is a compact space.

Let F': X — X be the function that generates the best response strategy: F(z) = {y e X:

Yy = P}"(aﬁ)}, where P (z) = [P/(0),P/(1),...,Pf(N)] : Py(i) € {0,1} is the best response vector
strategy, as was defined in conditions (11)-(12).

Let y1,y2 € F(z). Let y3 = wy1 + (1 — w)y2, where w € (0,1), be a point on the straight line
segment that joins y; and yo. If y; = yo then it is clear that y3 € F(z). If y; # yo, then for every
component ¢ for which y; (i) # y2(7), the customer is indifferent between inspection and joining, and
therefore for every w we get y3 € F(x). Therefore, F' is convex.

Given a symmetric strategy, the steady-state probabilities are derived from the linear balance
equations, which are continuous for any symmetric strategy vector. The cost function (Equation
(9)) is also continuous as a minimum of two continuous functions. The function that assigns the
best response to each steady-state probabilities (Equation (11)) is continuous, and F' is continuous
as the composition of the two. Therefore the graph of F, {{aj, ype X xX:ye F(az)}, is a closed
set.

By Kakutani’s fixed point theorem, the best response correspondence F' has a fixed point Pf.
This strategy is a best response of a player, when all other players use Pf, which defines a symmetric
Nash equilibrium. [

We wish to characterize all the feasible types of equilibrium strategies in this model. To do so,

we define cascade strategy as follows:

Definition 1 Consider a vector strategy P = P(i), where i is the queue state. A cascade is a state
i > 1 such that P(i —1) = P(i + 1) € {0,1} and P(i) =1— P(i — 1). We say that P is a cascade

strategy if it contains a cascade.

We wish to prove the existence of an equilibrium cascade strategy. The general model is too
complicated to be fully analyzed, and therefore we solve simpler cases. In the first case, each server

has a buffer with three slots. This is the minimum buffer size that allows the appearance of a cascade

14



strategy. We prove however that the equilibrium strategy in that case is of the threshold type. Then,
we solve the case of four slots at each buffer, in which we demonstrate the existence of a cascade
equilibrium strategy. To complete the case of two identical servers, we consider infinite buffers and

analyze the appearance of the cascades as a function of the problem’s normalized parameters.

3.1 Three slots at each buffer

We now consider a two-servers loss system, where each server has a buffer with three slots. A
customer who arrives to a queue inspects the other queue with probability Pf (i), when i = 0,1,2, 3.
Since the servers are identical, when a customer arrives to an empty queue, there is no advantage
in inspecting the other queue. Therefore, Pf(0) = 0. As we assumed, a customer who arrives to a
full queue, inspects the other queue with probability 1, meaning Pf(3) = 1.

It is left to calculate P;(1) and P;(2). To do so, we need to calculate the expected cost from

joining and inspecting when ¢ = 1,2. When ¢ = 1, the expected cost from joining is (see (5)):
K1) =25 (18)

and the expected cost from inspecting the other queue is (see (8)):

Cw (1,0 +2m11 + 2712 + 271 3)

Ki(1)=Cr+
U
* Cw 2m — 7 C s
:CI+_WMZCI+_W<2_LO>. (19)
o T 2 !
In (*) we used the definition m; = Z?:o mij, @ =1,2. Therefore K;(1) = K;(1) when C; = CTWﬂﬂl—lo,
or equivalently, when k = 7%0. Substituting this into condition (11), we get:
™ k3
(1) =1 )< T
™ k)
Pr(1)=0 K> (20)
™ k)
0<P(1) <1 w=T00
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By the same way, we calculate Pr(2):

2, 2,
Pr(2)¢=1 K<2 20
Pr(2)°=0 K>2. 720 4 T2l (21)

OSP](Q)BSI k=92.120 L 21

T2 2

For any given p and s, we can now calculate the equilibrium strategy [0, Pr(1), Pr(2),1] in the

following procedure:

1. Given p, we calculate the transaction probability matrix Z; ;.
2. Given Z; j, we calculate the steady state probability matrix m; ;
3. Given s and the steady state probability matrix m; ;, we calculate the equilibrium strategy

vector [0, Pr(1), Pr(2),1].

We distinguish between four possible types of pure equilibrium strategies:
I. [0,0,0,1]. II. [0,0,1,1]. III. [0,1,1,1]. IV. [0,1,0,1].

The first three types of pure equilibrium strategies (strategies I - III) represent threshold equi-
librium strategies: in case I, customers inspect the other queue only if they observe three customers
in the queue, i.e., their behavior in equilibrium corresponds to a threshold strategy with a threshold
3. In case II, the threshold is 2, while in case III the threshold is 1. However, the fourth strategy is
a cascade strategy, where customers do not inspect the other queue if the first observed queue has
0 or 2 customers in it, but inspects it if the length of the observed queue is 1 or 3.

Figure 1 shows a map of all equilibrium strategies of this model for 0 < p < 2 and 0 < Kk < 2.
For each p, we calculated the values of k that satisfy the equilibrium conditions 20 and 21.

The figure is divided into three main regions, that distinguish between the three types of pure
equilibrium strategies (strategies I - III). The regions in between relate to parameter values for which
the equilibrium is a mixed strategy. Note, that there are no parameters for which the equilibrium
strategy is of type IV. Proposition 1 states the uniqueness of a symmetric threshold equilibrium

strategy in this case.
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Figure 1: Map of equilibrium strategies for three slots system

Proposition 1 (Uniqueness of symmetric equilibrium of the threshold type) In a system of two
identical servers with buffers of three slots, for each set of parameters p,x, there exists a unique

symmetric Nash equilibrium strategy. Moreover, it is a threshold strategy.

Proof: The numerical analysis that is provided in Figure 3.1 show that for each pair p,x there
exists only one equilibrium strategy. In Lemma 2 we prove that cascade strategy cannot exist in
the three-slots case. Therefore, an equilibrium strategy must be a threshold strategy in this case.

Lemma 2 In a system of two identical servers with buffers of three slots, a cascade strategy does

not exist.

Proof: Assume that a cascade strategy of type IV exists. Then, by condition (20), there exists a
value of « such that £ < Z»*, and by condition (21) k > 2 722+ 722, Define A = Z- —2. 702 4 702,
Such k exists only if A > 0.

We used the balance equations to calculate A. We substitute: N =3, P, =1, P, = 0 and find

the steady state probabilities as a function of p:
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(4+5p)(1 +2p + 2p%) (4p + 50 (1 + 2p + 2p?)

70,0 = T o, = T1,0 = T
20°(2 + 5p + 4p%) 20" (1+p)(3+2p)
0,2 = 72,0 — T 70,3 — 73,0 — T
20%(1 4 p)(4 + Tp + 6p?) 20%(2 4 6p + 3p? + 6p3)
T, = T2 =721 =
T T
(22)
2p%(1 + 6p + 8p% + 4p%) 4p*(1 + p)(1 +2p + 4p?)
1,3 = 73,1 — T 2,2 = T
20 (1 4 2p)(2 + 5p + 4p? 4p%(1 4 2p)(2 + 5p + 4p?
R, (1+2p)(2+5p+4p7) — (1+2p)(2+5p+4p7) (23)
T T
where T = 4 + 21p + 52p% + 84p3 + 110p* + 128p° + 132p° + 124p7 + 88p% + 32p°.
Therefore:
4+ 21p + 44p® + 50p3 + 42p* + 28p° + 8p°
T =
T
8p% + 26p* + 42p° + 54p° + 44p" + 16p°
Ty = (24)
T
We substitute the probabilities into A and get:
A o 8 + 86p + 343p? + 73003 + 979p* + 94005 + T40p° + 492p" + 2248 + 48p°

T T a1 21p + 4407 + 50p° + 4207 + 2805 + 895) (8% + 260" + 4205 + 5408 + 4497 + 165
(25)

and since p > 0, we get A < 0, which is a contradiction. Therefore, there is no cascade equilibrium
strategy in this system. m

The following observations are derived from Figure 1:

Observation 3 In a system of two identical servers with buffers of three slots, in equilibrium, both

Pr(1)¢ and Pr(2)° are monotonically decreasing in p and in k.

As illustrated in Figure 1, we found numerically that as s increases, both P;(1)¢ and P;(2)°

decreases monotonically from 1 to 0. The same happens as p increases.
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Observation 4 In a system of two identical servers with buffers of three slots, an equilibrium

strategy contains at most one mized component.

Observe from Figure 1, that there is no pair (p,x) for which customers in equilibrium are
indifferent between joining their first observed queue and inspecting the other queue for both queue

lengths 1 and 2. In other words, 0 < Pr(1)° < 1 and 0 < P;(2)° < 1 do not appear simultaneously.

3.2 Four slots at each buffer

Next, we consider buffers of four slots. Here, we demonstrate the existence of an equilibrium cascade
strategy.

The customer in this case has three states in which she chooses her action: when she observes
queue length of one, two or three customers. In the other states (0 or 4) her action is determined
as before: Pr(0) = 0,P;(4) = 1. We use the same procedure as in the previous case to find the
equilibrium strategy. For ¢ = 1,2 the equilibrium conditions are similar to those in conditions
(20)-(21), only with one difference: in the current case m; = Z?:o m;,j. For i = 3 the equilibrium

condition is:

e 3m3,0+2m3,1+73,2
Pi(3)° =1 )< 2ma0timaitnse
P =0 k> Imetimrim (26)

0< P](3)e <1 k= 37T3,0+27r3,1+7r3,2'

\ - 3

We find eight types of pure equilibrium strategies:
I. [0,0,0,0,1]. III. [0,0,1,1,1]. V. [0,0,1,0,1]. VII. [0,1,1,0,1].
IL. 0,0,0,1,1]. Iv. [0,1,1,1,1]. VI. [0,1,0,0,1]. VIIL. [0,1,0,1,1].

The first four types (strategies I - IV) represent threshold equilibrium strategies with thresholds
43,2 and 1 respectively. However, strategies V - VIII are pure cascade strategies. For example,
in strategy V customers do not inspect the other queue if the first observed queue has 0,1 or 3

customers in it, but do inspect it if the length of the observed queue is 2 or 4.
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For each pair (p, k), we calculate the equilibrium strategy vector P;¢ = [0, Pr(1)¢, Pr(2)¢, Pr(3)%,1].
For each p, we calculated the values of x that satisfy the equilibrium conditions. Figure 2 shows a
map of all equilibrium strategies for 0 < p < 2 and 0 < k < 3. The figure is divided into five main
areas, corresponding to strategies I - V. The areas in between show mixed equilibrium strategies.

There are no parameters for which the equilibrium strategy is of type VI - VIII.
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Figure 2: Map of equilibrium strategies for 4-slots system

The following statements are derived from Figure 2:

Proposition 5 In a system of two identical servers with four-slots buffers, for each pair of param-
eters p, Kk, there exists a unique equilibrium strategy. Moreover, there exists parameters p and k for

which customers’ strategy in equilibrium is characterized by cascades.

Proof: The uniqueness of the equilibrium strategy follows from the equilibrium map that is pre-
sented in Figure 2. The existence of a cascade strategy is also derived from this Figure. In particular,
for 0 < p < 0.2877, the graph show that there exists values of x for which the unique equilibrium

strategy is Pr = [0,0, 1,0, 1]. [
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Observation 6 In a system of two identical servers with four-slots buffers, Pr(1)¢ and Pr(2)° are

monotonically decreasing in p and in k, while P;(3)° is non-monotonic in p and in k.

An illustration of Observation 5-6 is shown in Appendix A.

3.3 The blocking probability

Customers who arrive to a loss system with a finite buffer size, are rejected and forced to leave
if they find at arrival that the system is at full capacity. Denote Pp = 7y n is the steady-state
probability of finding the system at full capacity, or the Blocking probability. We now analyze the
effect of the system parameters on Pg. It is intuitively expected that for fixed costs (fixed k), a
growth in the congestion (p) will result in increasing of the probability to arrive to a full system
(Pp). But it is not trivial to determine the changes in Pp for fixed p as  increases. We study this

question numerically, and the results are summarized in the following observations.

Observation 7 For fized p, Pp is monotonically increasing in k. Yet, the effect of the change in

Kk on Pp is relatively small.

We analyze numerically the change in Pp as a function of x. For each value of p, p =
0.1,0.2,...,3, we find that Pp is a non-decreasing function of k, which is constant at intervals
of x that correspond to one of the possible pure equilibrium strategies.

For example, Figure 3 shows the increasing of Pp in the three-slots and four-slots cases. The
x-axis shows k while the y-axis shows Ppg. In Figure 3(a), the buffer size is 3 and p = 0.4: in region
A the equilibrium strategy is [0,0,0, 1], in region B [0,0, 1,1], and in region C [0,1,1,1]. In Figure
3(b) the buffer size is 4 and p = 0.8: in region A where the equilibrium strategy is [0, 0, 0, 0, 1], in
region B is [0, 0, 0, 1, 1], in region C is [0, 0, 1, 1, 1] and in region D is [0, 1, 1, 1, 1]. The cascade
equilibrium strategy [0, 0, 1, 0, 1] is represented in a slight increase in Pp at the end of region B.

To show that the change in Pp as a function of x is small, we calculated the minimum and the
maximum values of Pp for constants values of p. For the three-slots case, the minimum value was
calculated when the equilibrium strategy is [0, 0,0, 1] and the maximum when the equilibrium strat-

egy is [0,1,1, 1]. For the four-slots case the equilibrium strategies were [0,0,0,0,1] and [0,1,1,1,1],
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respectively.

Table 1 shows the results for a system with buffers of three slots (see Table 3.3) and with buffers
of four slots (see Table 3.3). For example, when p = 0.6, the minimum Pp in the three-slots case is

0.0269 and the maximum Ppg is 0.0346, while in the four-slots case the minimum Pg is 0.0095 while

the maximum Ppg is 0.0141.

Figure 3: Pp increases with s

(a) Buffers of three slots

(b) Buffers of four slots

p min(Pp) max(Pp) p min(Pp) max(Pp)
0.1 1.71x107% | 3.19x 107 0.1]1.71 x 1078 | 4.004 x 1078
0.2 0.00009 0.00016 0.2 | 3.68 x 107% | 8.004 x 106
0.4 0.0039 0.0058 0.4 0.00063 0.0011
0.6 0.0269 0.0346 0.6 0.0095 0.0141
0.8 0.0827 0.0957 0.8 0.0477 0.0596
1.0 0.1633 0.1770 1.0 0.1240 0.1385
1.2 0.2502 0.2616 1.2 0.2181 0.2297
1.4 0.3308 0.3393 1.4 0.3082 0.3159
1.6 0.4029 0.4968 1.6 0.3856 0.3903
1.8 0.4601 0.4642 1.8 0.4498 0.4527
2.0 0.5100 0.5128 2.0 0.5029 0.5047
2.5 0.6038 0.6050 2.5 0.6008 0.6014
3.0 0.6684 0.6690 3.0 0.6670 0.6672

Table 1: Changes in the blocking probability Pg
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3.4 Sensitivity analysis for a system of two identical queues with infinite buffers

We investigate the change of customers’ behavior in equilibrium when the buffer of each queue is
infinite. For all the numerical examples in this section, the x-axis represents i, the length of the
first observed queue. The y-axis represents Pj(i)°. Note, that the dashed line in all the figures in
this paper is for graphical help - the queue length ¢ in all cases is discrete.

We compare different levels of queue congestion. We find that more cascades appear as p

increases. Examples are shown in Figure 4, where x = 1.
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Figure 4: Cascades multiplies as p increases

We found that when p = 0.25, and customers’ strategy in equilibrium has a threshold of 2. As
p increases, customers start to mix between joining and inspecting (e.g., Figure 4(a) for p = 0.375).
As p continues to increase, cascades appear (e.g., Figure 4(b) for p = 0.5). As p continues to grow,
cascades multiply (e.g., Figures 4(c) and 4(d) where p = 0.625 and p = 0.75, respectively). For
higher values of p, customers tend to use a mixed strategy in the states that lie between the cascades

(e.g., Figure 4(e) for p = 0.875), and as p continues to grow, gaps occur between the cascades (e.g.,

Figure 4(f)).
Observation 8 For a given k, as p increases, customers tend to join without inspecting the other
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queue for longer observed queue lengths, and the appearance of cascades is delayed respectively.

The intuition behind Observation 8 is that for a given &, as p increases, the probability that the other
queue is empty decreases, and as a result customers tend to join without inspecting the other queue
when they observe longer queues. As a result, the appearance of cascades is delayed respectively.
We also look into the changes in the equilibrium as a function of k. The numerical results show,
that when & is small, customers tend to inspect the other queue prior to joining. As x increases,
the number of cascades increase. When the value of x is large, customers tend to join their first
observed queue without inspecting the other queue, and the appearance of cascades decreases. The
intuition behind this phenomenon is the customers’ motivation to inspect the other queue is inversely

proportional to cost. Figure 5 shows an example.
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Figure 5: Changes in equilibrium strategy as x increases

In Figure 5, we fixed p = 0.9. When & is low, customers have a threshold strategy (e.g., Figure
5(a) for k = 0.2). As k increases, customers start to use a mixed strategy (e.g., Figure 5(b) and
Figure 5(c) for K = 0.3 and k = 0.4, respectively). As k continues to increase, cascades appear (e.g.,
Figure 5(d) for k = 0.4), and multiply (e.g., Figure 5(e) and Figure 5(f) for k = 0.5 and x = 0.75,

respectively).
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The meaning of the multiple cascades is that customers inspect the other queue less as k in-
creases. Note, that this is not true when we compare strategies at a specific state: for example,
as shown in Figure 5, when a customer observe ¢ = 5 customers, she inspects the other queue
with probability 1 when & is low (e.g., Figure 5(a) and 5(b)), and also when & is high (e.g., Figure
5(e) and 5(f)), and uses a mixed strategy in between (e.g., Figure 5(c) and 5(d)). Precisely, when
k = 0.33 we get Pf(5) = 0.7982, when x = 0.4 we get Pf(5) = 0.2426, when x = 0.44 we get

Pf(5) = 0.0013, but then for £ = 0.45 we get P;(5) = 1. Observation 9 summarizes these results.

Observation 9 For a given p, as k increases, customers tend to inspect the other queue less.

However, for a given state, customers may inspect the other queue more as k increases.

4 Heterogeneous servers

We now abandon the assumption that the servers are identical in all aspects. The servers may
differ in three parameters: the service rate u, the inspection cost Cj, and the buffer size N. We
analyze two scenarios: first, we assume that the servers differ in their service rate (u1 # p2), but
identical in all other parameters. Second, we assume that the servers differ in their inspection costs
(C1 # C3). Specifically, we analyze the case where C; = 0 while C5 > 0. In each case, we calculate

the symmetric equilibrium strategy.

4.1 When py # po

In this case, we cannot calculate « directly from the model’s assumptions. Instead, we calculate it
numerically along with P;¢. For a = 0,0.01....,1 we calculate P;®. We substitute it into Ej ()
and Fo(a) (equations (13) and (14), respectively), and find the best response strategy o*. Finally,

we find o which is a fixed point in the graph of asx.

Observation 10 1. The best response strategy against « is to avoid the crowd (ATC).
2. The equilibrium «f is unique.

3. af is continuous in 1 (and in pa). Furthermore, af is monotonically increasing in pu.
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The intuition behind the observation is as follows. If all customers tend to inspect Q1 first,
then the congestion of Q1 increases while the congestion of Q2 decreases, and as a result the best
response would be to inspect Q2 first. The numerical results support that observation: the best
response strategy o* is a non-increasing function of a.

Uniqueness follows directly from the ATC property. Since the best response strategy o is a
non-increasing function of «, it has a unique fixed point which is the equilibrium a¥.

To explain monotonicity, we look at the ratio between the service rates. When p; << us, the
first server is significantly slower than the second one. Therefore, even if both queues are observed,
customers join Q2 no matter what is the length of Q1, and we get a® = 0. As p7 increases, customers
start to mix between joining Q1 and Q2. As pq approaches po, a€ increases. When pu; = o, the
queues are identical and therefore we get a® = 0.5. When p; > ps, symmetric results are derived.
The continuity of o is derived from the numerical analysis.

Numerical results for cascade equilibrium strategies when N > 4 are shown in Appendix B.

4.2 Inspect one queue for free

Consider a system of two servers with infinite buffers. The queues may have different service rates.
We wish to find customers’ strategy in equilibrium, when inspecting one of the servers is free.

To illustrate that, we assume that inspecting Q1 is costless, C1 = 0, while Co > 0. In this
case, all customers inspect Q1 first, meaning a® = 1. Then, after observing its length, they decide
whether to join it, or inspect Q2. Therefore, customers’ equilibrium strategy consists of one vector
Py, which is equivalent to P}, and is computed using K,(i) = K}(i) and K;(i) = K} (i) (see
Equation 8 in section 4.1).

For a fixed arrival rate A\, the symmetric equilibrium profile is influenced by the ratio %

When Z—f is very small, Q1 is significantly faster than Q2, and therefore customers join it without
inspecting Q2. As % increases, customers start to inspect Q2, and the equilibrium strategy involve
cascades and mixed strategy. When % is high, customers strategy becomes a threshold strategy:
join Q1 when its state ¢ is below a threshold n, inspect Q2 when ¢ > n, and mix between joining

and inspecting when ¢ = n.
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Numerical results are shown in Figures 6 and 7. Since it is a system with unbounded buffers

A
p1+p2

and customers do not balk, we choose p; and pg such as the utilization factor satisfies < 1.
The x-axis represents ¢, the number of customers in Q1, while the y-axis represents the equilibrium
strategy Pr(i)°. Note that the dashed line in all the figures is for graphical help - the queue length
1 in all cases is discrete.

In Figure 6, x = 0.5 and A = 2. We find that for % < 0.162, customers join Q1 without
inspecting Q2, no matter how long Q1 is. For 0.162 < ﬁ < 1.2, customers have a non-threshold
equilibrium strategy, which contains cascades (e.g. Figures 6(b) and 6(c)) and/or mixed strategies
(e.g. Figures 6(d) and 6(e)). For % > 1.2 customers adopt a threshold strategy (e.g. Figures 6(f)).

In Figure 7, k = 1.5 and A = 2. We find that for ﬁ < 0.18, customers join Q1 without inspecting
Q2, no matter how long Q1 is. For 0.18 < % < 1.56, customers have non-threshold equilibrium
strategy, which contains cascades (e.g. Figures 7(a) and 7(b)) and/or mixed strategies (e.g. Figures
7(c) and 7(d)). For Z—f > 1.56 customers adopt a threshold strategy (e.g. Figures 7(e)).

The numerical results are summarized in the following observation.

Observation 11 In a system of two servers with infinite buffers, when the inspection of one queue
is costless and the inspection of the second queue has a positive cost, customers’ equilibrium strategy
dependents on the ratio between the service rate of the costly-inspected queue and the service rate of

the free-inspected queue:

1. When the ratio is low, customers join the free-inspected queue without inspecting the other
queue.

2. When the ratio is high, customers adopt a threshold strategy, in which they inspect the other
queue if the free-inspected queue is relatively long.

3. In between, customers adopt a non-threshold strateqy which involve cascades and mized strate-

gies.
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5 Concluding remarks

When customers search for a server in a multiple servers system, their equilibrium strategy is not
necessary a threshold strategy. This is our main conclusion in this paper. In a system of two servers,
we show that when the buffers are greater than 3, the equilibrium strategy is often characterized
by cascades.

The cascade equilibrium strategy is a result of positive externalities that are induced by the
customers. One can define this phenomenon as a conditional ATC behavior: given the first observed
queue length, the customer tends to avoid the action that was made by former customers.

The model that we present here arises many questions that can serve as a basis for future
research. Most queueing models assume that equilibrium strategies are of the threshold type. The
appearance of cascade strategies arises the question is this assumption valid? If not, how can a
planner of future queueing systems take this behavior into consideration?

Our model deals with parallel servers. Alternatively, one can assume that the servers are com-
peting, trying to maximize their revenue by increasing their throughput on behalf of the other
servers. What is the search cost that a competing server should fix in order to achieve the desirable
customers’ behavior? Would a slower server benefit from lowering its cost of inspection? Analysing

such a different model requires a paper in itself and therefore we leave it for future research.
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Appendices

A Numerical results of identical servers with four slots

An illustration of Observations 5-6 is shown in Figure 8. In region A, when & is low, the threshold
is 1. As k increases, in region B, the threshold increases too and becomes 2. Note that between
the pure strategies in region A and B there is a mixed strategy in Pr(1)°. In region C we get a
cascade strategy as was described in Observation 5. At the beginning of region D the equilibrium
strategy is mixed in Pr(2), until P;(2)“ drops to 0 and we get a new threshold of 3. As x continues

to increase, at region E we get another threshold strategy with a threshold 4.

S

N o5r A B C D E
OO 0‘5 1 l‘.5 2 25 3
1

Q

L

Q osp A B C D E

o
0O 0‘5 i l‘.5 2 25 3
1

.

€ st A B C D E|

o
% 05 1 15 2 25 3

K

Figure 8: A cross section at p = 0.1
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To present the changes in equilibrium strategy as a function of p and as a function of k, we look

at other vertical cross sections of Figure 8.
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Figure 9: Changes in vertical cross sections as p increases

Figure 9 shows the change in equilibrium strategy for fixed values of p, as xk changes. Figure
9(a) shows the equilibrium strategy where p = 0.25. A cascade strategy occurs in region C, where
the probability P;(3)¢ drops to 0. In Figure 9(b), where p = 0.4, the cascade in region C is of a
mixed strategy, where the probability P;(3)¢ drops to ~ 0.276. For larger values of p, we get a
non-threshold strategy instead of pure cascade strategy, as shown in region C of Figure 9(c). As p
increases, the cascade disappears, as is shown in Figure 9(d). Note, that Figures 9(a) - 9(c) present
the non-monotonicity of Pr(3)¢, as was described in Observation 6.

Figure 10 shows the change in equilibrium strategy for fixed values of k, as p changes. Again,
the cascade occurs in region C of each figure. Note, that as k increases, equilibria with threshold
of 1 (region A) and of 2 (region B) are gradually disappearing, while the cascade at region C is
expanding. Here, the cascade occurs when p is relatively small, as captured in region A of each

subgraph. Figure 10(a) shows the equilibrium strategy when x = 0.3. Note that as p increases,
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Pr(1)¢ decreases while Py(2)¢ increases. In Figure 10(b), at the beginning of region B, we get a
mixed strategy in both probabilities. Figure 10(d) and Figure 10(d) capture the non-monotonicity
of P, [(3)6.
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Figure 10: Changes in horizonal cross sections as k increases

B Numerical results of cascade equilibrium strategies for heteroge-

neous servers

Figure 11 shows examples of non-threshold equilibrium strategy when N = 4, and po = 2,\ =
1,Cw =1and C; = Cy =0.5.

Each graph is divided into two subgraphs: the top one shows P} as a function of 7, the observed
number of customers in Q1. The bottom one shows P? as a function of i, the observed number
of customers in Q2. Since N =4, i = 0,1,2,3. From the model assumptions, for i = 4, P}(4) =
P2%(4) = 1. Each graph calculates the equilibrium for different (increasing) value of p, and therefore

af is different (increases from one graph to the following one).
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In Figure 11(a), P} is a threshold strategy with threshold 1, and P7 is a threshold strategy with
threshold 4. In Figure 11(b), P} is a threshold strategy with threshold 2, but P? is a non-threshold
strategy with cascades: customers inspect Q1 with probability 1 when Q2 length is 2 or 4 and join
Q2 without inspecting Q1 when the length is 0,1 or 3. Figure 11(c) and Figure 11(d) show the
same strategy components for P}, PIQ, which are both having a threshold of 2. Yet they differ in o®.
Figure 11(e) is a symmetric picture of 11(b) regarding P}, P?. In Figure 11(f), both P} and P} are

threshold strategies with thresholds 3 and 2 respectively.
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