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Abstrat

When time-sensitive ustomers arrive to a system of parallel servers, they searh for the

least ongested queue. Customers do not always have full information of the system state,

sine the searh is assoiated with a ost. We present a model of parallel servers that provide

the same servie. Upon arrival, eah ustomer inspets the queue in front one server. Then,

she either joins it or inspets another queue. After eah inspetion, the ustomer an end the

sequential proess by joining an inspeted queue that minimizes her sojourn time. The solution

of this model is not straightforward even when the system ontains only two servers, and the

equilibrium is not always a threshold strategy. We prove that in many ases, there exists a unique

equilibrium strategy that ontains asades: ustomers hoose one ation (join or inspet) when

they observe i and i+2 ustomers in the �rst observed queue, and the other ation when they

observe i+1 ustomers in the �rst observed queue. We �nd asade equilibrium strategies even

when the servers are idential with respet to servie rate or inspetion ost, and when the

bu�er size is �nite or in�nite.

1 Introdution

In many servie systems, ustomers searh among servers in order to minimize their expeted waiting

time. Marylandï¿½s Motor Vehile Administration (MVA) is an example of suh a system. Vehile

owners in Maryland state are required periodially to bring their vehile to an emissions inspetion.

A vehile owner an searh among several nearby enters for the loation with the shortest queue
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length. To do so, she an use the MVA website, whih provides online information about the loal

servie enters, inluding their urrent waiting times.

But searh is not ostless. Inspetion ost is a fundamental ause for the generating of queues.

Haddok and Mhesney (1994) argue that queues arise when ustomers are not informed of the

system ondition. If inspetion osts where zero, ustomers would have joined non-ongested queues,

and ongestion would have been avoided, or at least dramatially redued. Apart from the ost of

the inspetion itself (for example, the ost assoiated with making a phone all), there is an e�ort

assoiated with it. Even when the information is provided online, ustomers are required to pre-

register to the website or download the appliation, and to aquire the relevant equipment (suh as

smartphones, tablets or similar) whih has internet aess.

Another aspet of inspetion ost is the prie of privay that the ustomers pay when they

searh for suh information, espeially when inspeting health are providers. In many settings

ustomers are required to reveal private information as a part of the inspetion proess. As argued

in the literature, ustomers onsider sharing personal information as a ost that they are not always

willing to pay (for examples, see Miyazaki and Fernandez (2001), Sheehan (2002), Hann et al.

(2002), and Huang and Van Mieghem (2013)).

Similar to the MVA setting, we onsider a Markovian queueing system that ontains n parallel

servers. Eah ustomer that arrives to the system hooses a server, and inspets its queue length.

Inspetion is assoiated with a �xed ost. Given the information about the �rst observed queue,

the ustomer deides whether to join it, or to inspet another queue at additional ost. In the latter

ase, she an join the queue that minimizes her expeted sojourn time in the system, or ontinue the

sequential searh until she deides to join one of the inspeted queues. We assume that ustomers

valuation of the servie is very high, and balking is not allowed.

We assume that ustomers are homogenous with respet to their waiting osts per unit time. We

also assume that ustomers are time-sensitive and strategi, and therefore they hoose the ation

that minimizes their expeted ost. Our goal is to �nd the ustomers' behavior in equilibrium, and

as a solution onept we seek for a symmetri Nash equilibrium.

Our model is innovative in ombining few aspets:
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• Strategi ustomers: We assume that a entral ontroller does not exist. Instead, ustomers

are strategi in the sense of making there own deisions based on their own information.

• Costly searh: We assume that inspetion is ostly, and that the strategi ustomer takes this

ost into onsideration.

• Sequential searh: We assume that ustomers searh among servers sequentially, meaning that

after every inspetion, there is an �exit point", where the ustomer an end the searh proess

by joining one of the observed queues.

• Dependent queue lengths: We assume that the number of servers is �nite, and therefore the

lengths of the queues are dependent.

• Equilibrium solution of threshold strategies is ommon in queueing systems (Hassin and Haviv

(2003), p.7-9). Our work reveals a non-threshold strategy, whih ontains asades.

We start by reviewing the relevant literature of eah aspet that was disussed above.

• Sequential searh, strategi ustomers and dependent queue lengths

Our study is related to the supermarket model of Mitzenmaher (2001), whih is a dynami

version of the load balaning model of Azar et al.(1999). Consider a Markovian queueing

system of n servers. Customers arrive to the system due to Poisson proess. Eah ustomer

hooses independently, uniformly and at random a �xed number of servers, and joins the one

that is less ongested at that time.

While both the stati and the dynami supermarket models assume that inspetion is ostless,

Breitgand et al.(2006) suggest an extended model in whih inspetion has a ost, and this ost

is inorporated into the deision of how many servers should the ustomer inspet prior to

joining. They show that the e�ieny of the system is a�eted by the tradeo� from the

redution of the average waiting time due to inreasing of management information and the

ost of its maintenane.

Xu and Hajek (2012) look at the supermarket game with strategi ustomers, who wish to

minimize the sum of inspetion and waiting osts. The authors prove the existene of a

symmetri equilibrium strategy when the number of servers goes to in�nity.

Unlike theses works, we assume that the searh is sequential. The ustomer does not deide
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prior to arrival how many servers to inspet. Instead, after every inspetion, the ustomer

onsiders the information that she has already gathered, and deides whether to ontinue the

searh or stop it and join one of the queues that she has already inspeted.

Davidson (1988) also analyzes sequential ostly searh among ompeting servers. Unlike in

our model, Davidson onsiders that the number of queues is so large, that their lengths are

independent. Davidson shows that in equilibrium, all servers selet the same prie, and fae

the same arrival rate. Our model deals with a more ompliated problem, sine the number

of servers is small, and therefore their queue lengths are dependent.

• Costly searh

The lassial model of ustomers deision making in an unobservable queue assumes that it

is either too ostly to aquire the queue length information (Edelson and Hildebrand, 1975),

or that inspetion is free of harge (Naor, 1969). Later models onsider queuing systems with

two or more queues, where �joining the shortest queue" is an optimal ustomers' poliy (but

not always, see Whitt (1986) for ounterexamples). Tehnology nowadays makes information

aessible more than ever. Yet, as we argued above, the searh for information is not ostless.

Hassin and Haviv (1994) also assumed that inspetion has a ost. They onsidered a model

where ustomers arrive to a system of two idential parallel servers. An arriving ustomer

an aquire the information about whih queue is shorter, and then join the shorter queue. A

ustomer who does not purhase the information hooses one of the queues randomly. After

joining, ustomers jokey from one queue to another.

Hassin (1996) onsidered a model of two queues, where all arriving ustomers observe the �rst

queue, and deide whether to join it or the other unobservable queue. A motivation for this

model is the example of two gas stations that are loated one after the other on a main road.

Drivers make their deision by omparing their expeted waiting ost at the �rst station, to

the onditional expeted ost at the seond one.

Our model relates to these works in several aspets. We solve two ases: In the �rst ase,

the queues have idential servie time distribution and inspetion ost. Therefore, ustomers

randomly deide upon arrival whih queue to inspet �rst, similarly to Hassin and Haviv's
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model (1994), but with sequential searh. In the seond ase, the inspetion of one of the

queues is free, while the inspetion of the other queue is assoiated with positive ost. In that

ase, all ustomers �rst observe the free-of-harge queue, and then deide whether to inspet

the other queue or not, similar to Hassin's gas stations model (1996), but with the option of

joining the �rst queue after observing both queues.

The question of a ostly searh in queueing systems is also analyzed by Hassin and Roet-Green

(2012). They onsider an M/M/1 queueing model, where ustomers of an unobservable queue

hoose among three options: join the queue, balk, or inspet with a ost and then deide

whether or not to join. Introduing the ustomers with this third option reates a model

that bridges the lassial queueing models of the observable and unobservable queue. They

prove the existene and uniqueness of the equilibrium, and show that the monopoly �rm an

inrease the throughput by adding ostly searh.

• Non-threshold strategies

A threshold strategy x = n+ p, n ∈ N, p ∈ [0, 1), presribes one ation, say A1, for every state

0 ≤ i ≤ n − 1; another ation, say A2, for every state i > n; and when i = n, it randomly

selets A1 or A2, assigning probability p to A1 and (1− p) to A2.

Equilibrium solution with a threshold strategy is ommon in queueing systems (Hassin and

Haviv (2003), p.7-9). But in many queueing systems, a ustomer's hoie between alternative

servers is based on partial information about these queues. Sine ustomers' deisions interat,

a ustomer may infer about the state of a partiular queue from the information available about

the other queue. In other ases, it may be an indiator that the server provides high quality

servie, or that it is a slower server. Customers deision is in�uened by this information,

whih makes the analysis of suh systems very interesting, and the solution might not be of

the threshold type.

The general model that is presented here is too omplex to be solved. Therefore, we fous

on the ase of two queues. The solution is not straightforward even in this ase. Indeed,

our investigation reveals that the equilibrium strategy has an involved struture that is often

haraterized by asades: the ustomer inspets the other queue (or joins the �rst observed
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queue) when she observes i or i+ 2 ustomers in the �rst observed queue, and joins the �rst

observed queue (or, respetively, inspet the other queue) when she observes i+ 1 ustomers

in the �rst observed queue.

A symmetri non-threshold Nash equilibrium has been found in several works (see Whitt

(1986) for a model of two parallel queues in front of two idential servers, Altman and Hassin

(2002), Haviv and Kerner (2007) and Kerner (2011) for M/G/1 queue, and Haviv, Kella and

Kerner (2010) for M/M/N/N loss system).

The intuition behind the non-threshold strategies in our model is as follows. The more us-

tomers inspet the other queue, the more is an individual inlined to join the �rst queue she

observed without inspeting the other queue. If a ustomer assumes with a high probability

that the ustomer in front of her has already inspeted the other queue and nevertheless hose

to stay in that queue, then this serves as an indiation that the present queue is shorter, or at

least not muh longer than the other queue. Thus, the ations of other ustomers also serve

as signals, rendering the searh assoiated with positive externalities.

Searh externalities also exist in models where servers are heterogeneous in their servie qual-

ity, and result in involved strutures of the equilibrium (see Banerjee (1992) and Bikhhan-

dani, Hirshleifer and Welh (1998) for stati models, and Debo and Veeraraghavan (2014) for

M/M/1 queue with servie rate and quality as random variables).

A solution that ontains asades was also found by Debo, Parlour and Rajan (2012). In their

model, ustomers arrive to a single observable queue, and deide whether or not to join it.

The deision is based on a private signal that indiates the quality of the servie, while the

queue length provides (positive) information externality. They show that for ustomers with

a private signal that indiates bad servie, there may exist equilibrium strategies with �holes".

Other works on positive externalities due to servie quality di�erenes between parallel servers

were written by Veeraraghavan and Debo (2008, 2009).

The remainder of this paper is strutured as follows: In setion 2, we present the general model,

and the mathematial model for a system of two servers. In setion 3, we solve the ase of idential

servers. We prove the existene and uniqueness of a symmetri Nash equilibrium strategy for
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systems of two idential servers with bu�ers of three or four slots. We prove the existene of an

equilibrium asade strategy for the ase of four slots. We also show that in the latter ase, the

probability of inspeting the other queue is not always monotoni in ongestion and in ost. For

both ases, we show that the probability that a ustomer arrives to the system and �nds it at

full apaity is non-dereasing in ongestion and in ost, and that the e�et of a hange in the

ost on that probability is relatively small. We also onsider the ase of two idential servers with

in�nite bu�ers. We show the existene of equilibrium strategies that ontain multiple asades. We

�nd that as ost inreases, ustomers tend to inspet the other queue less. However, for a given

observed queue length, ustomers may inspet the other queue more as ost inreases. In setion

4, we onsider the ase of heterogeneous servers, with respet to servie rate, and with respet to

inspetion ost. For eah ase, we alulate the symmetri equilibrium strategy. Through numerial

analysis we show that the equilibrium strategy is unique, and that it may ontain asades. In

setion 5 we summarize our results and disuss future work.

2 The General Model

Consider a system of n parallel queues, denoted by Qk, k = 1, . . . , n. The servie time at the k-th

server is exponentially distributed with parameter µk. Customers' arrival proess to the system is

Poisson with parameter λ. When a ustomer arrives, she inspets one of the queues, and observes

its length. Let αk be the probability that the inspeted queue is the one in front of server k. Thus,

the arrival proess to queue k is Poisson with parameter αkλ. Inspeting Qk osts Ck ≥ 0, and

waiting osts CW ≥ 0 per unit time.

After inspeting the �rst queue, the ustomer hooses among three options: joining it, inspeting

another queue, or balking from the system. If she deides to inspet another queue, she inspets

queue k′ 6= k with probability

αk′

1−αk
. After inspeting queues with lengths l1, . . . , lj , j < n, the

ustomer uses the information gathered so far, and hooses among joining the queue with the

minimum expeted waiting time, inspeting another queue, or balking. If j = n, the ustomer is

left with only two relevant ations: joining one of the queues or balking.

We also assume that eah queue has a bu�er. Let Nk ∈ 1, 2, . . . ,∞ be the size of the bu�er

7



of Qk. If a ustomer observes Nk ustomers in Qk (inluding the one in servie), she an either

inspet another queue or balk, but she annot join it. If a ustomer observed all queues and found

that they are all full, then she is rejeted from the system. For the rest of the paper we will fous

on the ase of a system with two queues.

2.1 A system of two parallel queues

Consider a system of two parallel queues in front of two servers. We refer to them as Q1 and Q2.

Inspeting a queue is assoiated with a ost: C1 ≥ 0 for Q1 and C2 ≥ 0 for Q2. To avoid trivial

solutions, we assume that at least one of the queues has a positive inspetion ost: C1 > 0 or

C2 > 0. We assume that the reward from servie ompletion is very high. As a result, ustomers

do not balk from the system unless it is full, and they at to minimize their expeted osts.

A ustomer who arrives to the system inspets at �rst one of the queues: Q1 with probability α,

and Q2 with probability 1− α. Then, she deides whether to join it, or to inspet the other queue.

The following �owhart demonstrates the ustomers deision proedure, when the bu�er sizes are

in�nite.

Inspet

Q2

1− α

Inspet

Q1

α

Join

Q2

Inspet

Q1

Join

Q2

Join

Q1

Join

Q1

Inspet

Q2

Join

Q1

Join

Q2

We use i for the state of Q1, and j for the state of Q2, where state refers to the total number of

ustomers in servie and in queue. We assume that the queues have bu�ers of the size N1 and N2,
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respetively. Note, that if the ustomer arrives to a queue with full bu�er apaity, then she may

ontinue her searh and join other queues, but she annot join a full queue. If all queues are at full

bu�er apaity, an arriving ustomer is rejeted (bloked), leaves the system and never returns.

To desribe the birth-and-death proess in this model, for i < N1 and j < N2 we de�ne the

indiator funtion δi,j as:

δi,j =































1
(

i+1
µ1

< j+1
µ2

)

0.5
(

i+1
µ1

= j+1
µ2

)

0
(

i+1
µ1

> j+1
µ2

)

(1)

Consider a ustomer who inspeted both queues, and observed the state (i, j), where i < N1

and j < N2. Then, she will join Q1 with probability δi,j and Q2 with probability 1− δi,j .

A strategy is onsists of vetors P 1
I and P 2

I , and a onstant 0 ≤ α ≤ 1, where:

P k
I = [P k

I (0), P
k
I (1), . . . , P

k
I (Nk − 1)], k = 1, 2. (2)

Consider a given α. A ustomer who arrives to the system inspets Q1 �rst with probability α.

Given i < N1 ustomers in Q1, the ustomer joins Q1 with probability (1 − P 1
I (i)) and inspets

Q2 with probability P 1
I (i). If she inspets Q2 and observes j ustomers there, she joins it with

probability 1− δi,j . Otherwise, she joins Q1. If she observes i = N1 ustomers in Q1, she inspets

Q2 with probability 1, and if she �nds j < N2 in Q2 she joins it, otherwise she balks from the

system. Respetively, the same deision proess takes plae if she inspets Q2 �rst.

Suppose that the system is of state (i, j) when a new ustomer arrives. Let Z1
i,j be the probability

that the system proeeds to state (i+ 1, j). Then

Z1
i,j = α

[

(1− P 1
I (i)) + P 1

I (i)δi,j
]

+ (1− α)P 2
I (j)δi,j i = 0, . . . , N1 − 1, j = 0, . . . , N2 − 1. (3)

Z1
i,j is the sum of three probabilities:

1. the probability of arriving to Q1 �rst and joining without inspeting Q2;
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2. the probability of arriving to Q1 �rst, inspeting Q2 and joining Q1 with probability δi,j ;

3. the probability of arriving to Q2 �rst, inspeting Q1 and joining Q1 with probability δi,j .

In the same way, let Z2
i,j be the probability that the system proeeds to state (i, j + 1). Then

Z2
i,j = (1−α)

[

(1− P 2
I (j)) + P 2

I (j)(1 − δi,j)
]

+αP 1
I (i)(1−δi,j) i = 0, . . . , N1−1, j = 0, . . . , N2−1.

(4)

Let πij be the steady-state probability of state (i, j). We use Z1
i,j and Z2

i,j to write the balane

equations, from whih we alulate πij , and we use πij to alulate the equilibrium strategy, as we

desribe below.

2.2 Equilibrium

A ustomer observes the length of one of the queues and ompares the expeted ost from joining

this queue with the onditional expeted ost from inspeting the other queue and joining the

shorter one. We distinguish between two omplement senarios: (a) the ustomer observed Q1 �rst,

or (b) the ustomer observed Q2 �rst. Assume that the ustomer inspeted Q1 �rst. Let K
(
J i) be

the expeted ost from joining Q1 without inspeting Q2, given state i at Q1. Then

K1
J(i) = CW

i+ 1

µ1
. (5)

If Q1 is not full, meaning i < N1, let K
1
I (i) be the expeted ost assoiated with inspeting Q2.

Then K1
I (i) is the sum of the following:

1. C2 whih is the ost of inspeting Q2.

2. The ost of waiting in Q2 if the ustomer �nds that Q2 is shorter than i.

CW

i−1
∑

j=0

πij
πi

·
j + 1

µ1
, (6)
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3. The ost of waiting in Q1 if the ustomer �nds that Q2 is not longer than i,

CW

N2
∑

j=i

πij
πi

·
i+ 1

µ1
. (7)

Using the indiator funtion that we de�ned in (1), we an write K1
I (i) as:

K1
I (i) = C2 + CW

N2
∑

j=0

πij
πi

[

i+ 1

µ1
δi,j +

j + 1

µ2
(1− δi,j)

]

, (8)

where πi =
∑N2

j=0 πij .

The expeted ost of a ustomer who observes i < N1 ustomers in Q1, is

K1(i) = min{K1
J (i),K

1
I (i)}. (9)

If Q1 is full, meaning i = N1, then the ustomer would inspet Q2, and therefore her expeted

ost equals to:

K1
I (N1) = C2 +CW

N2−1
∑

j=0

πij
πi

[

i+ 1

µ1

]

. (10)

Similarly, we de�ne K2(j) as the expeted ost of a ustomer that inspeted Q2 �rst.

We assume that the ustomers are homogeneous. Therefore, we seek for a symmetri equilibrium.

A strategy pro�le is a symmetri equilibrium pro�le if it is a best response against itself. De�ne the

best response for i < N1:































P 1
I (i) = 1 K1

I (i) < K1
J(i)

P 1
I (i) = 0 K1

I (i) > K1
J(i)

0 ≤ P 1
I (i) ≤ 1 K1

I (i) = K1
J(i),

(11)

and for j < N2:
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P 2
I (j) = 1 K2

I (j) < K2
J(j)

P 2
I (j) = 0 K2

I (j) > K2
J(j)

0 ≤ P 2
I (j) ≤ 1 K2

I (j) = K2
J(j).

(12)

A best response strategy is any strategy that satis�es onditions (11) and (12)).

Let E1(α) be the ustomers' expeted ost from inspeting Q1 �rst. Then:

E1(α) = C1 +

N1
∑

i=0

K1(i)

N2
∑

j=0

πi,j. (13)

Let E2(α) be the ustomers' expeted ost from inspeting Q2 �rst. Then:

E2(α) = C2 +

N2
∑

j=0

K2(j)

N1
∑

i=0

πi,j. (14)

Note, that K1(i) and K2(i) are also funtions of α. In equilibrium:

α =































0 E1(0) > E2(0)

1 E1(1) < E2(1)

α ∈ [0, 1] E1(α) = E2(α)

(15)

The symmetri equilibrium strategy, (PI
k)e is satis�ed if a best response against itself, meaning

that it satis�es onditions (11)-(15). This strategy is a best response of a player, when all other

players use (PI
k)e.

The system is haraterized by two normalized parameters:

ρ =
λ

µ
(16)

whih is the ongestion parameter, and

κ =
µCI

CW
(17)

12



whih is the normalized inspetion ost parameter. We use these normalized parameters in the

numerial analysis.

3 Idential servers

We assume �rst that the servers are idential, both in their servie rate (µ1 = µ2 = µ), in their

bu�er sizes (N1 = N2 = N) and in their inspetion ost (C1 = C2 = CI). Therefore, ustomers are

indi�erent when hoosing whih queue to inspet �rst. As a result, an arriving ustomer inspets

Q1 with probability 0.5, and Q2 with probability 0.5. We found that for a bu�er size larger than 3,

ustomers' behavior is not a threshold strategy.

Note that for stability, we require that ρ < 1 for the ase of in�nite bu�ers. This assumption is

not required for the ase of �nite bu�ers, beause the queue lengths are bounded by the size of the

bu�ers.

Sine the servers are idential, P 1
I = P 2

I , and therefore we use PI for ustomers' strategy vetor.

The de�nitions of the expeted ost from eah ation are the same as in the previous setion.

Theorem 1 (Existene of equilibrium) In a system of two idential servers, for eah set of param-

eters ρ, κ, there exists a symmetri Nash equilibrium strategy.

Proof: Existene of an equilibrium in this model follows from using a �xed-point theorem. This is a

game of ountably many players. A strategy in this game onsists of a vetor PI = [PI(0), PI (1), . . . , PI(N)],

where PI(i) is the probability to inspet the other queue after observing i ustomers in the �rst ob-

served queue, and N is the size of the bu�er of eah server. N an be either �nite or in�nite. Let X

be the spae of all mixed strategy vetors: X =

{

[PI(0), PI (1), . . . , PI(N)] : ∀i = 0, 1, . . . , PI(i) ∈

[0, 1]

}

.

A strategy vetor indues the steady state probabilities. If the bu�er size N is �nite, then the

number of possible states, (N +1)2, is also �nite. For in�nite bu�er sizes, there are ountably many

possible states. In that ase, for a given ρ, the steady state probability of eah state (i, j) is bounded

by the probability that (i, j) ustomers are in the system, whih is Li,j = (1 − ρ)2ρi · ρj , i, j =

0, 1, . . . .
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Following the assumption that in this ase ρ < 1, we get limi→∞Li,j = limj→∞Li,j = 0.

Therefore, the number of possible states is numerially bounded, and X is the N -dimensional ube

X = [0, 1]N . Therefore, X is a ompat spae.

Let F : X −→ X be the funtion that generates the best response strategy: F (x) =

{

y ∈ X :

y = P ∗

I (x)

}

, where P ∗

I (x) = [P ∗

I (0), P
∗

I (1), . . . , P
∗

I (N)] : P ∗

I (i) ∈ {0, 1} is the best response vetor

strategy, as was de�ned in onditions (11)-(12).

Let y1, y2 ∈ F (x). Let y3 = ωy1 + (1 − ω)y2, where ω ∈ (0, 1), be a point on the straight line

segment that joins y1 and y2. If y1 = y2 then it is lear that y3 ∈ F (x). If y1 6= y2, then for every

omponent i for whih y1(i) 6= y2(i), the ustomer is indi�erent between inspetion and joining, and

therefore for every ω we get y3 ∈ F (x). Therefore, F is onvex.

Given a symmetri strategy, the steady-state probabilities are derived from the linear balane

equations, whih are ontinuous for any symmetri strategy vetor. The ost funtion (Equation

(9)) is also ontinuous as a minimum of two ontinuous funtions. The funtion that assigns the

best response to eah steady-state probabilities (Equation (11)) is ontinuous, and F is ontinuous

as the omposition of the two. Therefore the graph of F ,

{

{x, y} ∈ X ×X : y ∈ F (x)

}

, is a losed

set.

By Kakutani's �xed point theorem, the best response orrespondene F has a �xed point P e
I .

This strategy is a best response of a player, when all other players use P e
I , whih de�nes a symmetri

Nash equilibrium.

We wish to haraterize all the feasible types of equilibrium strategies in this model. To do so,

we de�ne asade strategy as follows:

De�nition 1 Consider a vetor strategy P = P (i), where i is the queue state. A asade is a state

i ≥ 1 suh that P (i− 1) = P (i + 1) ∈ {0, 1} and P (i) = 1− P (i− 1). We say that P is a asade

strategy if it ontains a asade.

We wish to prove the existene of an equilibrium asade strategy. The general model is too

ompliated to be fully analyzed, and therefore we solve simpler ases. In the �rst ase, eah server

has a bu�er with three slots. This is the minimum bu�er size that allows the appearane of a asade
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strategy. We prove however that the equilibrium strategy in that ase is of the threshold type. Then,

we solve the ase of four slots at eah bu�er, in whih we demonstrate the existene of a asade

equilibrium strategy. To omplete the ase of two idential servers, we onsider in�nite bu�ers and

analyze the appearane of the asades as a funtion of the problem's normalized parameters.

3.1 Three slots at eah bu�er

We now onsider a two-servers loss system, where eah server has a bu�er with three slots. A

ustomer who arrives to a queue inspets the other queue with probability P e
I (i), when i = 0, 1, 2, 3.

Sine the servers are idential, when a ustomer arrives to an empty queue, there is no advantage

in inspeting the other queue. Therefore, P e
I (0) = 0. As we assumed, a ustomer who arrives to a

full queue, inspets the other queue with probability 1, meaning P e
I (3) = 1.

It is left to alulate PI(1) and PI(2). To do so, we need to alulate the expeted ost from

joining and inspeting when i = 1, 2. When i = 1, the expeted ost from joining is (see (5)):

KJ(1) = 2
CW

µ
, (18)

and the expeted ost from inspeting the other queue is (see (8)):

KI(1) = CI +
CW

µ

(π1,0 + 2π1,1 + 2π1,2 + 2π1,3)

π1

∗

= CI +
CW

µ

(2π1 − π1,0)

π1
= CI +

CW

µ

(

2−
π1,0
π1

)

. (19)

In (*) we used the de�nition πi =
∑3

j=0 πi,j , i = 1, 2. Therefore KJ(1) = KI(1) when CI =
CW

µ

π1,0

π1
,

or equivalently, when κ =
π1,0

π1
. Substituting this into ondition (11), we get:































PI(1)
e = 1 κ <

π1,0

π1

PI(1)
e = 0 κ >

π1,0

π1

0 ≤ PI(1)
e ≤ 1 κ =

π1,0

π1
.

(20)
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By the same way, we alulate PI(2):































PI(2)
e = 1 κ < 2 ·

π2,0

π2
+

π2,1

π2

PI(2)
e = 0 κ > 2 ·

π2,0

π2
+

π2,1

π2

0 ≤ PI(2)
e ≤ 1 κ = 2 ·

π2,0

π2
+

π2,1

π2
.

(21)

For any given ρ and κ, we an now alulate the equilibrium strategy [0, PI(1), PI (2), 1] in the

following proedure:

1. Given ρ, we alulate the transation probability matrix Zi,j .

2. Given Zi,j , we alulate the steady state probability matrix πi,j

3. Given κ and the steady state probability matrix πi,j , we alulate the equilibrium strategy

vetor [0, PI (1), PI (2), 1].

We distinguish between four possible types of pure equilibrium strategies:

I. [0, 0, 0, 1]. II. [0, 0, 1, 1]. III. [0, 1, 1, 1]. IV. [0, 1, 0, 1].

The �rst three types of pure equilibrium strategies (strategies I - III) represent threshold equi-

librium strategies: in ase I, ustomers inspet the other queue only if they observe three ustomers

in the queue, i.e., their behavior in equilibrium orresponds to a threshold strategy with a threshold

3. In ase II, the threshold is 2, while in ase III the threshold is 1. However, the fourth strategy is

a asade strategy, where ustomers do not inspet the other queue if the �rst observed queue has

0 or 2 ustomers in it, but inspets it if the length of the observed queue is 1 or 3.

Figure 1 shows a map of all equilibrium strategies of this model for 0 < ρ < 2 and 0 < κ < 2.

For eah ρ, we alulated the values of κ that satisfy the equilibrium onditions 20 and 21.

The �gure is divided into three main regions, that distinguish between the three types of pure

equilibrium strategies (strategies I - III). The regions in between relate to parameter values for whih

the equilibrium is a mixed strategy. Note, that there are no parameters for whih the equilibrium

strategy is of type IV. Proposition 1 states the uniqueness of a symmetri threshold equilibrium

strategy in this ase.
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Figure 1: Map of equilibrium strategies for three slots system

Proposition 1 (Uniqueness of symmetri equilibrium of the threshold type) In a system of two

idential servers with bu�ers of three slots, for eah set of parameters ρ, κ, there exists a unique

symmetri Nash equilibrium strategy. Moreover, it is a threshold strategy.

Proof: The numerial analysis that is provided in Figure 3.1 show that for eah pair ρ, κ there

exists only one equilibrium strategy. In Lemma 2 we prove that asade strategy annot exist in

the three-slots ase. Therefore, an equilibrium strategy must be a threshold strategy in this ase.

Lemma 2 In a system of two idential servers with bu�ers of three slots, a asade strategy does

not exist.

Proof: Assume that a asade strategy of type IV exists. Then, by ondition (20), there exists a

value of κ suh that κ <
π0,1

π1
, and by ondition (21) κ > 2·

π0,2

π2
+

π1,2

π2
. De�ne ∆ =

π0,1

π1
−2·

π0,2

π2
+

π1,2

π2
.

Suh κ exists only if ∆ > 0.

We used the balane equations to alulate ∆. We substitute: N = 3, P1 = 1, P2 = 0 and �nd

the steady state probabilities as a funtion of ρ:
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π0,0 =
(4 + 5ρ)(1 + 2ρ+ 2ρ2)

T
π0,1 = π1,0 =

(4ρ+ 5ρ2)(1 + 2ρ+ 2ρ2)

T

π0,2 = π2,0 =
2ρ3(2 + 5ρ+ 4ρ2)

T
π0,3 = π3,0 =

2ρ4(1 + ρ)(3 + 2ρ)

T

π1,1 =
2ρ2(1 + ρ)(4 + 7ρ+ 6ρ2)

T
π1,2 = π2,1 =

2ρ3(2 + 6ρ+ 3ρ2 + 6ρ3)

T

(22)

π1,3 = π3,1 =
2ρ4(1 + 6ρ+ 8ρ2 + 4ρ3)

T
π2,2 =

4ρ4(1 + ρ)(1 + 2ρ+ 4ρ2)

T

π2,3 = π3,2 =
2ρ5(1 + 2ρ)(2 + 5ρ+ 4ρ2)

T
π1,3 = π3,1 =

4ρ6(1 + 2ρ)(2 + 5ρ+ 4ρ2)

T
(23)

where T = 4 + 21ρ+ 52ρ2 + 84ρ3 + 110ρ4 + 128ρ5 + 132ρ6 + 124ρ7 + 88ρ8 + 32ρ9.

Therefore:

π1 =
4 + 21ρ+ 44ρ2 + 50ρ3 + 42ρ4 + 28ρ5 + 8ρ6

T

π2 =
8ρ3 + 26ρ4 + 42ρ5 + 54ρ6 + 44ρ7 + 16ρ8

T
(24)

We substitute the probabilities into ∆ and get:

∆ = −2ρ4 ·
8 + 86ρ+ 343ρ2 + 730ρ3 + 979ρ4 + 940ρ5 + 740ρ6 + 492ρ7 + 224ρ8 + 48ρ9

(4 + 21ρ+ 44ρ2 + 50ρ3 + 42ρ4 + 28ρ5 + 8ρ6)(8ρ3 + 26ρ4 + 42ρ5 + 54ρ6 + 44ρ7 + 16ρ8)

(25)

and sine ρ > 0, we get ∆ < 0, whih is a ontradition. Therefore, there is no asade equilibrium

strategy in this system.

The following observations are derived from Figure 1:

Observation 3 In a system of two idential servers with bu�ers of three slots, in equilibrium, both

PI(1)
e
and PI(2)

e
are monotonially dereasing in ρ and in κ.

As illustrated in Figure 1, we found numerially that as κ inreases, both PI(1)
e
and PI(2)

e

dereases monotonially from 1 to 0. The same happens as ρ inreases.
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Observation 4 In a system of two idential servers with bu�ers of three slots, an equilibrium

strategy ontains at most one mixed omponent.

Observe from Figure 1, that there is no pair (ρ, κ) for whih ustomers in equilibrium are

indi�erent between joining their �rst observed queue and inspeting the other queue for both queue

lengths 1 and 2. In other words, 0 < PI(1)
e < 1 and 0 < PI(2)

e < 1 do not appear simultaneously.

3.2 Four slots at eah bu�er

Next, we onsider bu�ers of four slots. Here, we demonstrate the existene of an equilibrium asade

strategy.

The ustomer in this ase has three states in whih she hooses her ation: when she observes

queue length of one, two or three ustomers. In the other states (0 or 4) her ation is determined

as before: PI(0) = 0, PI(4) = 1. We use the same proedure as in the previous ase to �nd the

equilibrium strategy. For i = 1, 2 the equilibrium onditions are similar to those in onditions

(20)-(21), only with one di�erene: in the urrent ase πi =
∑4

j=0 πi,j . For i = 3 the equilibrium

ondition is:































PI(3)
e = 1 κ <

3π3,0+2π3,1+π3,2

π3

PI(3)
e = 0 κ >

3π3,0+2π3,1+π3,2

π3

0 ≤ PI(3)
e ≤ 1 κ =

3π3,0+2π3,1+π3,2

π3
.

(26)

We �nd eight types of pure equilibrium strategies:

I. [0, 0, 0, 0, 1].

II. [0, 0, 0, 1, 1].

III. [0, 0, 1, 1, 1].

IV. [0, 1, 1, 1, 1].

V. [0, 0, 1, 0, 1].

VI. [0, 1, 0, 0, 1].

VII. [0, 1, 1, 0, 1].

VIII. [0, 1, 0, 1, 1].

The �rst four types (strategies I - IV) represent threshold equilibrium strategies with thresholds

4,3,2 and 1 respetively. However, strategies V - VIII are pure asade strategies. For example,

in strategy V ustomers do not inspet the other queue if the �rst observed queue has 0, 1 or 3

ustomers in it, but do inspet it if the length of the observed queue is 2 or 4.
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For eah pair (ρ, κ), we alulate the equilibrium strategy vetor PI
e = [0, PI(1)

e, PI(2)
e, PI(3)

e, 1].

For eah ρ, we alulated the values of κ that satisfy the equilibrium onditions. Figure 2 shows a

map of all equilibrium strategies for 0 < ρ < 2 and 0 < κ < 3. The �gure is divided into �ve main

areas, orresponding to strategies I - V. The areas in between show mixed equilibrium strategies.

There are no parameters for whih the equilibrium strategy is of type VI - VIII.
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IV. 
[0,1,1,1,1]

Figure 2: Map of equilibrium strategies for 4-slots system

The following statements are derived from Figure 2:

Proposition 5 In a system of two idential servers with four-slots bu�ers, for eah pair of param-

eters ρ, κ, there exists a unique equilibrium strategy. Moreover, there exists parameters ρ and κ for

whih ustomers' strategy in equilibrium is haraterized by asades.

Proof: The uniqueness of the equilibrium strategy follows from the equilibrium map that is pre-

sented in Figure 2. The existene of a asade strategy is also derived from this Figure. In partiular,

for 0 < ρ ≤ 0.2877, the graph show that there exists values of κ for whih the unique equilibrium

strategy is PI = [0, 0, 1, 0, 1].
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Observation 6 In a system of two idential servers with four-slots bu�ers, PI(1)
e
and PI(2)

e
are

monotonially dereasing in ρ and in κ, while PI(3)
e
is non-monotoni in ρ and in κ.

An illustration of Observation 5-6 is shown in Appendix A.

3.3 The bloking probability

Customers who arrive to a loss system with a �nite bu�er size, are rejeted and fored to leave

if they �nd at arrival that the system is at full apaity. Denote PB = πN,N is the steady-state

probability of �nding the system at full apaity, or the Bloking probability. We now analyze the

e�et of the system parameters on PB . It is intuitively expeted that for �xed osts (�xed κ), a

growth in the ongestion (ρ) will result in inreasing of the probability to arrive to a full system

(PB). But it is not trivial to determine the hanges in PB for �xed ρ as κ inreases. We study this

question numerially, and the results are summarized in the following observations.

Observation 7 For �xed ρ, PB is monotonially inreasing in κ. Yet, the e�et of the hange in

κ on PB is relatively small.

We analyze numerially the hange in PB as a funtion of κ. For eah value of ρ, ρ =

0.1, 0.2, . . . , 3, we �nd that PB is a non-dereasing funtion of κ, whih is onstant at intervals

of κ that orrespond to one of the possible pure equilibrium strategies.

For example, Figure 3 shows the inreasing of PB in the three-slots and four-slots ases. The

x-axis shows κ while the y-axis shows PB . In Figure 3(a), the bu�er size is 3 and ρ = 0.4: in region

A the equilibrium strategy is [0, 0, 0, 1], in region B [0, 0, 1, 1], and in region C [0, 1, 1, 1]. In Figure

3(b) the bu�er size is 4 and ρ = 0.8: in region A where the equilibrium strategy is [0, 0, 0, 0, 1℄, in

region B is [0, 0, 0, 1, 1℄, in region C is [0, 0, 1, 1, 1℄ and in region D is [0, 1, 1, 1, 1℄. The asade

equilibrium strategy [0, 0, 1, 0, 1℄ is represented in a slight inrease in PB at the end of region B.

To show that the hange in PB as a funtion of κ is small, we alulated the minimum and the

maximum values of PB for onstants values of ρ. For the three-slots ase, the minimum value was

alulated when the equilibrium strategy is [0, 0, 0, 1] and the maximum when the equilibrium strat-

egy is [0, 1, 1, 1]. For the four-slots ase the equilibrium strategies were [0, 0, 0, 0, 1] and [0, 1, 1, 1, 1],
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Figure 3: PB inreases with κ

respetively.

Table 1 shows the results for a system with bu�ers of three slots (see Table 3.3) and with bu�ers

of four slots (see Table 3.3). For example, when ρ = 0.6, the minimum PB in the three-slots ase is

0.0269 and the maximum PB is 0.0346, while in the four-slots ase the minimum PB is 0.0095 while

the maximum PB is 0.0141.

(a) Bu�ers of three slots

ρ min(PB) max(PB)

0.1 1.71 × 10−6 3.19 × 10−6

0.2 0.00009 0.00016

0.4 0.0039 0.0058

0.6 0.0269 0.0346

0.8 0.0827 0.0957

1.0 0.1633 0.1770

1.2 0.2502 0.2616

1.4 0.3308 0.3393

1.6 0.4029 0.4968

1.8 0.4601 0.4642

2.0 0.5100 0.5128

2.5 0.6038 0.6050

3.0 0.6684 0.6690

(b) Bu�ers of four slots

ρ min(PB) max(PB)

0.1 1.71 × 10−8 4.004 × 10−8

0.2 3.68 × 10−6 8.004 × 10−6

0.4 0.00063 0.0011

0.6 0.0095 0.0141

0.8 0.0477 0.0596

1.0 0.1240 0.1385

1.2 0.2181 0.2297

1.4 0.3082 0.3159

1.6 0.3856 0.3903

1.8 0.4498 0.4527

2.0 0.5029 0.5047

2.5 0.6008 0.6014

3.0 0.6670 0.6672

Table 1: Changes in the bloking probability PB
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3.4 Sensitivity analysis for a system of two idential queues with in�nite bu�ers

We investigate the hange of ustomers' behavior in equilibrium when the bu�er of eah queue is

in�nite. For all the numerial examples in this setion, the x-axis represents i, the length of the

�rst observed queue. The y-axis represents PI(i)
e
. Note, that the dashed line in all the �gures in

this paper is for graphial help - the queue length i in all ases is disrete.

We ompare di�erent levels of queue ongestion. We �nd that more asades appear as ρ

inreases. Examples are shown in Figure 4, where κ = 1.
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(b) ρ = 0.5
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(d) ρ = 0.75
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(e) ρ = 0.875
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(f) ρ = 0.975

Figure 4: Casades multiplies as ρ inreases

We found that when ρ = 0.25, and ustomers' strategy in equilibrium has a threshold of 2. As

ρ inreases, ustomers start to mix between joining and inspeting (e.g., Figure 4(a) for ρ = 0.375).

As ρ ontinues to inrease, asades appear (e.g., Figure 4(b) for ρ = 0.5). As ρ ontinues to grow,

asades multiply (e.g., Figures 4() and 4(d) where ρ = 0.625 and ρ = 0.75, respetively). For

higher values of ρ, ustomers tend to use a mixed strategy in the states that lie between the asades

(e.g., Figure 4(e) for ρ = 0.875), and as ρ ontinues to grow, gaps our between the asades (e.g.,

Figure 4(f)).

Observation 8 For a given κ, as ρ inreases, ustomers tend to join without inspeting the other

23



queue for longer observed queue lengths, and the appearane of asades is delayed respetively.

The intuition behind Observation 8 is that for a given κ, as ρ inreases, the probability that the other

queue is empty dereases, and as a result ustomers tend to join without inspeting the other queue

when they observe longer queues. As a result, the appearane of asades is delayed respetively.

We also look into the hanges in the equilibrium as a funtion of κ. The numerial results show,

that when κ is small, ustomers tend to inspet the other queue prior to joining. As κ inreases,

the number of asades inrease. When the value of κ is large, ustomers tend to join their �rst

observed queue without inspeting the other queue, and the appearane of asades dereases. The

intuition behind this phenomenon is the ustomers' motivation to inspet the other queue is inversely

proportional to ost. Figure 5 shows an example.
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(b) κ = 0.3
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() κ = 0.33
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(d) κ = 0.4
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(e) κ = 0.5
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(f) κ = 0.75

Figure 5: Changes in equilibrium strategy as κ inreases

In Figure 5, we �xed ρ = 0.9. When κ is low, ustomers have a threshold strategy (e.g., Figure

5(a) for κ = 0.2). As κ inreases, ustomers start to use a mixed strategy (e.g., Figure 5(b) and

Figure 5() for κ = 0.3 and κ = 0.4, respetively). As κ ontinues to inrease, asades appear (e.g.,

Figure 5(d) for κ = 0.4), and multiply (e.g., Figure 5(e) and Figure 5(f) for κ = 0.5 and κ = 0.75,

respetively).
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The meaning of the multiple asades is that ustomers inspet the other queue less as κ in-

reases. Note, that this is not true when we ompare strategies at a spei� state: for example,

as shown in Figure 5, when a ustomer observe i = 5 ustomers, she inspets the other queue

with probability 1 when κ is low (e.g., Figure 5(a) and 5(b)), and also when κ is high (e.g., Figure

5(e) and 5(f)), and uses a mixed strategy in between (e.g., Figure 5() and 5(d)). Preisely, when

κ = 0.33 we get P e
I (5) = 0.7982, when κ = 0.4 we get P e

I (5) = 0.2426, when κ = 0.44 we get

P e
I (5) = 0.0013, but then for κ = 0.45 we get P e

I (5) = 1. Observation 9 summarizes these results.

Observation 9 For a given ρ, as κ inreases, ustomers tend to inspet the other queue less.

However, for a given state, ustomers may inspet the other queue more as κ inreases.

4 Heterogeneous servers

We now abandon the assumption that the servers are idential in all aspets. The servers may

di�er in three parameters: the servie rate µ, the inspetion ost CI , and the bu�er size N . We

analyze two senarios: �rst, we assume that the servers di�er in their servie rate (µ1 6= µ2), but

idential in all other parameters. Seond, we assume that the servers di�er in their inspetion osts

(C1 6= C2). Spei�ally, we analyze the ase where C1 = 0 while C2 > 0. In eah ase, we alulate

the symmetri equilibrium strategy.

4.1 When µ1 6= µ2

In this ase, we annot alulate α diretly from the model's assumptions. Instead, we alulate it

numerially along with PI
e
. For α = 0, 0.01. . . . , 1 we alulate PI

e
. We substitute it into E1(α)

and E2(α) (equations (13) and (14), respetively), and �nd the best response strategy α∗
. Finally,

we �nd αe
whih is a �xed point in the graph of α∗.

Observation 10 1. The best response strategy against α is to avoid the rowd (ATC).

2. The equilibrium αe
is unique.

3. αe
is ontinuous in µ1 (and in µ2). Furthermore, αe

is monotonially inreasing in µ1.
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The intuition behind the observation is as follows. If all ustomers tend to inspet Q1 �rst,

then the ongestion of Q1 inreases while the ongestion of Q2 dereases, and as a result the best

response would be to inspet Q2 �rst. The numerial results support that observation: the best

response strategy α∗
is a non-inreasing funtion of α.

Uniqueness follows diretly from the ATC property. Sine the best response strategy α∗
is a

non-inreasing funtion of α, it has a unique �xed point whih is the equilibrium αe
.

To explain monotoniity, we look at the ratio between the servie rates. When µ1 << µ2, the

�rst server is signi�antly slower than the seond one. Therefore, even if both queues are observed,

ustomers join Q2 no matter what is the length of Q1, and we get αe = 0. As µ1 inreases, ustomers

start to mix between joining Q1 and Q2. As µ1 approahes µ2, α
e
inreases. When µ1 = µ2, the

queues are idential and therefore we get αe = 0.5. When µ1 > µ2, symmetri results are derived.

The ontinuity of αe
is derived from the numerial analysis.

Numerial results for asade equilibrium strategies when N ≥ 4 are shown in Appendix B.

4.2 Inspet one queue for free

Consider a system of two servers with in�nite bu�ers. The queues may have di�erent servie rates.

We wish to �nd ustomers' strategy in equilibrium, when inspeting one of the servers is free.

To illustrate that, we assume that inspeting Q1 is ostless, C1 = 0, while C2 > 0. In this

ase, all ustomers inspet Q1 �rst, meaning αe = 1. Then, after observing its length, they deide

whether to join it, or inspet Q2. Therefore, ustomers' equilibrium strategy onsists of one vetor

PI , whih is equivalent to P 1
I , and is omputed using KJ(i) = K1

J(i) and KI(i) = K1
I (i) (see

Equation 8 in setion 4.1).

For a �xed arrival rate λ, the symmetri equilibrium pro�le is in�uened by the ratio

µ2

µ1
.

When

µ2

µ1
is very small, Q1 is signi�antly faster than Q2, and therefore ustomers join it without

inspeting Q2. As

µ1

µ2
inreases, ustomers start to inspet Q2, and the equilibrium strategy involve

asades and mixed strategy. When

µ1

µ2
is high, ustomers strategy beomes a threshold strategy:

join Q1 when its state i is below a threshold n, inspet Q2 when i > n, and mix between joining

and inspeting when i = n.
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Numerial results are shown in Figures 6 and 7. Sine it is a system with unbounded bu�ers

and ustomers do not balk, we hoose µ1 and µ2 suh as the utilization fator satis�es

λ
µ1+µ2

< 1.

The x-axis represents i, the number of ustomers in Q1, while the y-axis represents the equilibrium

strategy PI(i)
e
. Note that the dashed line in all the �gures is for graphial help - the queue length

i in all ases is disrete.

In Figure 6, κ = 0.5 and λ = 2. We �nd that for

µ2

µ1
≤ 0.162, ustomers join Q1 without

inspeting Q2, no matter how long Q1 is. For 0.162 < µ2

µ1
< 1.2, ustomers have a non-threshold

equilibrium strategy, whih ontains asades (e.g. Figures 6(b) and 6()) and/or mixed strategies

(e.g. Figures 6(d) and 6(e)). For

µ2

µ1
≥ 1.2 ustomers adopt a threshold strategy (e.g. Figures 6(f)).

In Figure 7, κ = 1.5 and λ = 2. We �nd that for

µ2

µ1
≤ 0.18, ustomers join Q1 without inspeting

Q2, no matter how long Q1 is. For 0.18 < µ2

µ1
< 1.56, ustomers have non-threshold equilibrium

strategy, whih ontains asades (e.g. Figures 7(a) and 7(b)) and/or mixed strategies (e.g. Figures

7() and 7(d)). For

µ2

µ1
≥ 1.56 ustomers adopt a threshold strategy (e.g. Figures 7(e)).

The numerial results are summarized in the following observation.

Observation 11 In a system of two servers with in�nite bu�ers, when the inspetion of one queue

is ostless and the inspetion of the seond queue has a positive ost, ustomers' equilibrium strategy

dependents on the ratio between the servie rate of the ostly-inspeted queue and the servie rate of

the free-inspeted queue:

1. When the ratio is low, ustomers join the free-inspeted queue without inspeting the other

queue.

2. When the ratio is high, ustomers adopt a threshold strategy, in whih they inspet the other

queue if the free-inspeted queue is relatively long.

3. In between, ustomers adopt a non-threshold strategy whih involve asades and mixed strate-

gies.
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Figure 6: Customers' strategy when κ = 0.5 and C1
I = 0
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5 Conluding remarks

When ustomers searh for a server in a multiple servers system, their equilibrium strategy is not

neessary a threshold strategy. This is our main onlusion in this paper. In a system of two servers,

we show that when the bu�ers are greater than 3, the equilibrium strategy is often haraterized

by asades.

The asade equilibrium strategy is a result of positive externalities that are indued by the

ustomers. One an de�ne this phenomenon as a onditional ATC behavior: given the �rst observed

queue length, the ustomer tends to avoid the ation that was made by former ustomers.

The model that we present here arises many questions that an serve as a basis for future

researh. Most queueing models assume that equilibrium strategies are of the threshold type. The

appearane of asade strategies arises the question is this assumption valid? If not, how an a

planner of future queueing systems take this behavior into onsideration?

Our model deals with parallel servers. Alternatively, one an assume that the servers are om-

peting, trying to maximize their revenue by inreasing their throughput on behalf of the other

servers. What is the searh ost that a ompeting server should �x in order to ahieve the desirable

ustomers' behavior? Would a slower server bene�t from lowering its ost of inspetion? Analysing

suh a di�erent model requires a paper in itself and therefore we leave it for future researh.
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Appendies

A Numerial results of idential servers with four slots

An illustration of Observations 5-6 is shown in Figure 8. In region A, when κ is low, the threshold

is 1. As κ inreases, in region B, the threshold inreases too and beomes 2. Note that between

the pure strategies in region A and B there is a mixed strategy in PI(1)
e
. In region C we get a

asade strategy as was desribed in Observation 5. At the beginning of region D the equilibrium

strategy is mixed in PI(2)
e
, until PI(2)

e
drops to 0 and we get a new threshold of 3. As κ ontinues

to inrease, at region E we get another threshold strategy with a threshold 4.
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To present the hanges in equilibrium strategy as a funtion of ρ and as a funtion of κ, we look

at other vertial ross setions of Figure 8.
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Figure 9: Changes in vertial ross setions as ρ inreases

Figure 9 shows the hange in equilibrium strategy for �xed values of ρ, as κ hanges. Figure

9(a) shows the equilibrium strategy where ρ = 0.25. A asade strategy ours in region C, where

the probability PI(3)
e
drops to 0. In Figure 9(b), where ρ = 0.4, the asade in region C is of a

mixed strategy, where the probability PI(3)
e
drops to ≈ 0.276. For larger values of ρ, we get a

non-threshold strategy instead of pure asade strategy, as shown in region C of Figure 9(). As ρ

inreases, the asade disappears, as is shown in Figure 9(d). Note, that Figures 9(a) - 9() present

the non-monotoniity of PI(3)
e
, as was desribed in Observation 6.

Figure 10 shows the hange in equilibrium strategy for �xed values of κ, as ρ hanges. Again,

the asade ours in region C of eah �gure. Note, that as κ inreases, equilibria with threshold

of 1 (region A) and of 2 (region B) are gradually disappearing, while the asade at region C is

expanding. Here, the asade ours when ρ is relatively small, as aptured in region A of eah

subgraph. Figure 10(a) shows the equilibrium strategy when κ = 0.3. Note that as ρ inreases,
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PI(1)
e
dereases while PI(2)

e
inreases. In Figure 10(b), at the beginning of region B, we get a

mixed strategy in both probabilities. Figure 10(d) and Figure 10(d) apture the non-monotoniity

of PI(3)
e
.
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Figure 10: Changes in horizonal ross setions as κ inreases

B Numerial results of asade equilibrium strategies for heteroge-

neous servers

Figure 11 shows examples of non-threshold equilibrium strategy when N = 4, and µ2 = 2, λ =

1, CW = 1 and C1 = C2 = 0.5.

Eah graph is divided into two subgraphs: the top one shows P 1
I as a funtion of i, the observed

number of ustomers in Q1. The bottom one shows P 2
I as a funtion of i, the observed number

of ustomers in Q2. Sine N = 4, i = 0, 1, 2, 3. From the model assumptions, for i = 4, P 1
I (4) =

P 2
I (4) = 1. Eah graph alulates the equilibrium for di�erent (inreasing) value of µ, and therefore

αe
is di�erent (inreases from one graph to the following one).
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Figure 11: Changes in horizonal ross setions as κ inreases
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In Figure 11(a), P 1
I is a threshold strategy with threshold 1, and P 2

I is a threshold strategy with

threshold 4. In Figure 11(b), P 1
I is a threshold strategy with threshold 2, but P 2

I is a non-threshold

strategy with asades: ustomers inspet Q1 with probability 1 when Q2 length is 2 or 4 and join

Q2 without inspeting Q1 when the length is 0,1 or 3. Figure 11() and Figure 11(d) show the

same strategy omponents for P 1
I , P

2
I , whih are both having a threshold of 2. Yet they di�er in αe

.

Figure 11(e) is a symmetri piture of 11(b) regarding P 1
I , P

2
I . In Figure 11(f), both P 1

I and P 2
I are

threshold strategies with thresholds 3 and 2 respetively.
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