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Abstra
t

When time-sensitive 
ustomers arrive to a system of parallel servers, they sear
h for the

least 
ongested queue. Customers do not always have full information of the system state,

sin
e the sear
h is asso
iated with a 
ost. We present a model of parallel servers that provide

the same servi
e. Upon arrival, ea
h 
ustomer inspe
ts the queue in front one server. Then,

she either joins it or inspe
ts another queue. After ea
h inspe
tion, the 
ustomer 
an end the

sequential pro
ess by joining an inspe
ted queue that minimizes her sojourn time. The solution

of this model is not straightforward even when the system 
ontains only two servers, and the

equilibrium is not always a threshold strategy. We prove that in many 
ases, there exists a unique

equilibrium strategy that 
ontains 
as
ades: 
ustomers 
hoose one a
tion (join or inspe
t) when

they observe i and i+2 
ustomers in the �rst observed queue, and the other a
tion when they

observe i+1 
ustomers in the �rst observed queue. We �nd 
as
ade equilibrium strategies even

when the servers are identi
al with respe
t to servi
e rate or inspe
tion 
ost, and when the

bu�er size is �nite or in�nite.

1 Introdu
tion

In many servi
e systems, 
ustomers sear
h among servers in order to minimize their expe
ted waiting

time. Marylandï¿½s Motor Vehi
le Administration (MVA) is an example of su
h a system. Vehi
le

owners in Maryland state are required periodi
ally to bring their vehi
le to an emissions inspe
tion.

A vehi
le owner 
an sear
h among several nearby 
enters for the lo
ation with the shortest queue
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length. To do so, she 
an use the MVA website, whi
h provides online information about the lo
al

servi
e 
enters, in
luding their 
urrent waiting times.

But sear
h is not 
ostless. Inspe
tion 
ost is a fundamental 
ause for the generating of queues.

Haddo
k and M

hesney (1994) argue that queues arise when 
ustomers are not informed of the

system 
ondition. If inspe
tion 
osts where zero, 
ustomers would have joined non-
ongested queues,

and 
ongestion would have been avoided, or at least dramati
ally redu
ed. Apart from the 
ost of

the inspe
tion itself (for example, the 
ost asso
iated with making a phone 
all), there is an e�ort

asso
iated with it. Even when the information is provided online, 
ustomers are required to pre-

register to the website or download the appli
ation, and to a
quire the relevant equipment (su
h as

smartphones, tablets or similar) whi
h has internet a

ess.

Another aspe
t of inspe
tion 
ost is the pri
e of priva
y that the 
ustomers pay when they

sear
h for su
h information, espe
ially when inspe
ting health 
are providers. In many settings


ustomers are required to reveal private information as a part of the inspe
tion pro
ess. As argued

in the literature, 
ustomers 
onsider sharing personal information as a 
ost that they are not always

willing to pay (for examples, see Miyazaki and Fernandez (2001), Sheehan (2002), Hann et al.

(2002), and Huang and Van Mieghem (2013)).

Similar to the MVA setting, we 
onsider a Markovian queueing system that 
ontains n parallel

servers. Ea
h 
ustomer that arrives to the system 
hooses a server, and inspe
ts its queue length.

Inspe
tion is asso
iated with a �xed 
ost. Given the information about the �rst observed queue,

the 
ustomer de
ides whether to join it, or to inspe
t another queue at additional 
ost. In the latter


ase, she 
an join the queue that minimizes her expe
ted sojourn time in the system, or 
ontinue the

sequential sear
h until she de
ides to join one of the inspe
ted queues. We assume that 
ustomers

valuation of the servi
e is very high, and balking is not allowed.

We assume that 
ustomers are homogenous with respe
t to their waiting 
osts per unit time. We

also assume that 
ustomers are time-sensitive and strategi
, and therefore they 
hoose the a
tion

that minimizes their expe
ted 
ost. Our goal is to �nd the 
ustomers' behavior in equilibrium, and

as a solution 
on
ept we seek for a symmetri
 Nash equilibrium.

Our model is innovative in 
ombining few aspe
ts:
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• Strategi
 
ustomers: We assume that a 
entral 
ontroller does not exist. Instead, 
ustomers

are strategi
 in the sense of making there own de
isions based on their own information.

• Costly sear
h: We assume that inspe
tion is 
ostly, and that the strategi
 
ustomer takes this


ost into 
onsideration.

• Sequential sear
h: We assume that 
ustomers sear
h among servers sequentially, meaning that

after every inspe
tion, there is an �exit point", where the 
ustomer 
an end the sear
h pro
ess

by joining one of the observed queues.

• Dependent queue lengths: We assume that the number of servers is �nite, and therefore the

lengths of the queues are dependent.

• Equilibrium solution of threshold strategies is 
ommon in queueing systems (Hassin and Haviv

(2003), p.7-9). Our work reveals a non-threshold strategy, whi
h 
ontains 
as
ades.

We start by reviewing the relevant literature of ea
h aspe
t that was dis
ussed above.

• Sequential sear
h, strategi
 
ustomers and dependent queue lengths

Our study is related to the supermarket model of Mitzenma
her (2001), whi
h is a dynami


version of the load balan
ing model of Azar et al.(1999). Consider a Markovian queueing

system of n servers. Customers arrive to the system due to Poisson pro
ess. Ea
h 
ustomer


hooses independently, uniformly and at random a �xed number of servers, and joins the one

that is less 
ongested at that time.

While both the stati
 and the dynami
 supermarket models assume that inspe
tion is 
ostless,

Breitgand et al.(2006) suggest an extended model in whi
h inspe
tion has a 
ost, and this 
ost

is in
orporated into the de
ision of how many servers should the 
ustomer inspe
t prior to

joining. They show that the e�
ien
y of the system is a�e
ted by the tradeo� from the

redu
tion of the average waiting time due to in
reasing of management information and the


ost of its maintenan
e.

Xu and Hajek (2012) look at the supermarket game with strategi
 
ustomers, who wish to

minimize the sum of inspe
tion and waiting 
osts. The authors prove the existen
e of a

symmetri
 equilibrium strategy when the number of servers goes to in�nity.

Unlike theses works, we assume that the sear
h is sequential. The 
ustomer does not de
ide
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prior to arrival how many servers to inspe
t. Instead, after every inspe
tion, the 
ustomer


onsiders the information that she has already gathered, and de
ides whether to 
ontinue the

sear
h or stop it and join one of the queues that she has already inspe
ted.

Davidson (1988) also analyzes sequential 
ostly sear
h among 
ompeting servers. Unlike in

our model, Davidson 
onsiders that the number of queues is so large, that their lengths are

independent. Davidson shows that in equilibrium, all servers sele
t the same pri
e, and fa
e

the same arrival rate. Our model deals with a more 
ompli
ated problem, sin
e the number

of servers is small, and therefore their queue lengths are dependent.

• Costly sear
h

The 
lassi
al model of 
ustomers de
ision making in an unobservable queue assumes that it

is either too 
ostly to a
quire the queue length information (Edelson and Hildebrand, 1975),

or that inspe
tion is free of 
harge (Naor, 1969). Later models 
onsider queuing systems with

two or more queues, where �joining the shortest queue" is an optimal 
ustomers' poli
y (but

not always, see Whitt (1986) for 
ounterexamples). Te
hnology nowadays makes information

a

essible more than ever. Yet, as we argued above, the sear
h for information is not 
ostless.

Hassin and Haviv (1994) also assumed that inspe
tion has a 
ost. They 
onsidered a model

where 
ustomers arrive to a system of two identi
al parallel servers. An arriving 
ustomer


an a
quire the information about whi
h queue is shorter, and then join the shorter queue. A


ustomer who does not pur
hase the information 
hooses one of the queues randomly. After

joining, 
ustomers jo
key from one queue to another.

Hassin (1996) 
onsidered a model of two queues, where all arriving 
ustomers observe the �rst

queue, and de
ide whether to join it or the other unobservable queue. A motivation for this

model is the example of two gas stations that are lo
ated one after the other on a main road.

Drivers make their de
ision by 
omparing their expe
ted waiting 
ost at the �rst station, to

the 
onditional expe
ted 
ost at the se
ond one.

Our model relates to these works in several aspe
ts. We solve two 
ases: In the �rst 
ase,

the queues have identi
al servi
e time distribution and inspe
tion 
ost. Therefore, 
ustomers

randomly de
ide upon arrival whi
h queue to inspe
t �rst, similarly to Hassin and Haviv's
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model (1994), but with sequential sear
h. In the se
ond 
ase, the inspe
tion of one of the

queues is free, while the inspe
tion of the other queue is asso
iated with positive 
ost. In that


ase, all 
ustomers �rst observe the free-of-
harge queue, and then de
ide whether to inspe
t

the other queue or not, similar to Hassin's gas stations model (1996), but with the option of

joining the �rst queue after observing both queues.

The question of a 
ostly sear
h in queueing systems is also analyzed by Hassin and Roet-Green

(2012). They 
onsider an M/M/1 queueing model, where 
ustomers of an unobservable queue


hoose among three options: join the queue, balk, or inspe
t with a 
ost and then de
ide

whether or not to join. Introdu
ing the 
ustomers with this third option 
reates a model

that bridges the 
lassi
al queueing models of the observable and unobservable queue. They

prove the existen
e and uniqueness of the equilibrium, and show that the monopoly �rm 
an

in
rease the throughput by adding 
ostly sear
h.

• Non-threshold strategies

A threshold strategy x = n+ p, n ∈ N, p ∈ [0, 1), pres
ribes one a
tion, say A1, for every state

0 ≤ i ≤ n − 1; another a
tion, say A2, for every state i > n; and when i = n, it randomly

sele
ts A1 or A2, assigning probability p to A1 and (1− p) to A2.

Equilibrium solution with a threshold strategy is 
ommon in queueing systems (Hassin and

Haviv (2003), p.7-9). But in many queueing systems, a 
ustomer's 
hoi
e between alternative

servers is based on partial information about these queues. Sin
e 
ustomers' de
isions intera
t,

a 
ustomer may infer about the state of a parti
ular queue from the information available about

the other queue. In other 
ases, it may be an indi
ator that the server provides high quality

servi
e, or that it is a slower server. Customers de
ision is in�uen
ed by this information,

whi
h makes the analysis of su
h systems very interesting, and the solution might not be of

the threshold type.

The general model that is presented here is too 
omplex to be solved. Therefore, we fo
us

on the 
ase of two queues. The solution is not straightforward even in this 
ase. Indeed,

our investigation reveals that the equilibrium strategy has an involved stru
ture that is often


hara
terized by 
as
ades: the 
ustomer inspe
ts the other queue (or joins the �rst observed
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queue) when she observes i or i+ 2 
ustomers in the �rst observed queue, and joins the �rst

observed queue (or, respe
tively, inspe
t the other queue) when she observes i+ 1 
ustomers

in the �rst observed queue.

A symmetri
 non-threshold Nash equilibrium has been found in several works (see Whitt

(1986) for a model of two parallel queues in front of two identi
al servers, Altman and Hassin

(2002), Haviv and Kerner (2007) and Kerner (2011) for M/G/1 queue, and Haviv, Kella and

Kerner (2010) for M/M/N/N loss system).

The intuition behind the non-threshold strategies in our model is as follows. The more 
us-

tomers inspe
t the other queue, the more is an individual in
lined to join the �rst queue she

observed without inspe
ting the other queue. If a 
ustomer assumes with a high probability

that the 
ustomer in front of her has already inspe
ted the other queue and nevertheless 
hose

to stay in that queue, then this serves as an indi
ation that the present queue is shorter, or at

least not mu
h longer than the other queue. Thus, the a
tions of other 
ustomers also serve

as signals, rendering the sear
h asso
iated with positive externalities.

Sear
h externalities also exist in models where servers are heterogeneous in their servi
e qual-

ity, and result in involved stru
tures of the equilibrium (see Banerjee (1992) and Bikh
han-

dani, Hirshleifer and Wel
h (1998) for stati
 models, and Debo and Veeraraghavan (2014) for

M/M/1 queue with servi
e rate and quality as random variables).

A solution that 
ontains 
as
ades was also found by Debo, Parlour and Rajan (2012). In their

model, 
ustomers arrive to a single observable queue, and de
ide whether or not to join it.

The de
ision is based on a private signal that indi
ates the quality of the servi
e, while the

queue length provides (positive) information externality. They show that for 
ustomers with

a private signal that indi
ates bad servi
e, there may exist equilibrium strategies with �holes".

Other works on positive externalities due to servi
e quality di�eren
es between parallel servers

were written by Veeraraghavan and Debo (2008, 2009).

The remainder of this paper is stru
tured as follows: In se
tion 2, we present the general model,

and the mathemati
al model for a system of two servers. In se
tion 3, we solve the 
ase of identi
al

servers. We prove the existen
e and uniqueness of a symmetri
 Nash equilibrium strategy for
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systems of two identi
al servers with bu�ers of three or four slots. We prove the existen
e of an

equilibrium 
as
ade strategy for the 
ase of four slots. We also show that in the latter 
ase, the

probability of inspe
ting the other queue is not always monotoni
 in 
ongestion and in 
ost. For

both 
ases, we show that the probability that a 
ustomer arrives to the system and �nds it at

full 
apa
ity is non-de
reasing in 
ongestion and in 
ost, and that the e�e
t of a 
hange in the


ost on that probability is relatively small. We also 
onsider the 
ase of two identi
al servers with

in�nite bu�ers. We show the existen
e of equilibrium strategies that 
ontain multiple 
as
ades. We

�nd that as 
ost in
reases, 
ustomers tend to inspe
t the other queue less. However, for a given

observed queue length, 
ustomers may inspe
t the other queue more as 
ost in
reases. In se
tion

4, we 
onsider the 
ase of heterogeneous servers, with respe
t to servi
e rate, and with respe
t to

inspe
tion 
ost. For ea
h 
ase, we 
al
ulate the symmetri
 equilibrium strategy. Through numeri
al

analysis we show that the equilibrium strategy is unique, and that it may 
ontain 
as
ades. In

se
tion 5 we summarize our results and dis
uss future work.

2 The General Model

Consider a system of n parallel queues, denoted by Qk, k = 1, . . . , n. The servi
e time at the k-th

server is exponentially distributed with parameter µk. Customers' arrival pro
ess to the system is

Poisson with parameter λ. When a 
ustomer arrives, she inspe
ts one of the queues, and observes

its length. Let αk be the probability that the inspe
ted queue is the one in front of server k. Thus,

the arrival pro
ess to queue k is Poisson with parameter αkλ. Inspe
ting Qk 
osts Ck ≥ 0, and

waiting 
osts CW ≥ 0 per unit time.

After inspe
ting the �rst queue, the 
ustomer 
hooses among three options: joining it, inspe
ting

another queue, or balking from the system. If she de
ides to inspe
t another queue, she inspe
ts

queue k′ 6= k with probability

αk′

1−αk
. After inspe
ting queues with lengths l1, . . . , lj , j < n, the


ustomer uses the information gathered so far, and 
hooses among joining the queue with the

minimum expe
ted waiting time, inspe
ting another queue, or balking. If j = n, the 
ustomer is

left with only two relevant a
tions: joining one of the queues or balking.

We also assume that ea
h queue has a bu�er. Let Nk ∈ 1, 2, . . . ,∞ be the size of the bu�er
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of Qk. If a 
ustomer observes Nk 
ustomers in Qk (in
luding the one in servi
e), she 
an either

inspe
t another queue or balk, but she 
annot join it. If a 
ustomer observed all queues and found

that they are all full, then she is reje
ted from the system. For the rest of the paper we will fo
us

on the 
ase of a system with two queues.

2.1 A system of two parallel queues

Consider a system of two parallel queues in front of two servers. We refer to them as Q1 and Q2.

Inspe
ting a queue is asso
iated with a 
ost: C1 ≥ 0 for Q1 and C2 ≥ 0 for Q2. To avoid trivial

solutions, we assume that at least one of the queues has a positive inspe
tion 
ost: C1 > 0 or

C2 > 0. We assume that the reward from servi
e 
ompletion is very high. As a result, 
ustomers

do not balk from the system unless it is full, and they a
t to minimize their expe
ted 
osts.

A 
ustomer who arrives to the system inspe
ts at �rst one of the queues: Q1 with probability α,

and Q2 with probability 1− α. Then, she de
ides whether to join it, or to inspe
t the other queue.

The following �ow
hart demonstrates the 
ustomers de
ision pro
edure, when the bu�er sizes are

in�nite.

Inspe
t

Q2

1− α

Inspe
t

Q1

α

Join

Q2

Inspe
t

Q1

Join

Q2

Join

Q1

Join

Q1

Inspe
t

Q2

Join

Q1

Join

Q2

We use i for the state of Q1, and j for the state of Q2, where state refers to the total number of


ustomers in servi
e and in queue. We assume that the queues have bu�ers of the size N1 and N2,
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respe
tively. Note, that if the 
ustomer arrives to a queue with full bu�er 
apa
ity, then she may


ontinue her sear
h and join other queues, but she 
annot join a full queue. If all queues are at full

bu�er 
apa
ity, an arriving 
ustomer is reje
ted (blo
ked), leaves the system and never returns.

To des
ribe the birth-and-death pro
ess in this model, for i < N1 and j < N2 we de�ne the

indi
ator fun
tion δi,j as:

δi,j =































1
(

i+1
µ1

< j+1
µ2

)

0.5
(

i+1
µ1

= j+1
µ2

)

0
(

i+1
µ1

> j+1
µ2

)

(1)

Consider a 
ustomer who inspe
ted both queues, and observed the state (i, j), where i < N1

and j < N2. Then, she will join Q1 with probability δi,j and Q2 with probability 1− δi,j .

A strategy is 
onsists of ve
tors P 1
I and P 2

I , and a 
onstant 0 ≤ α ≤ 1, where:

P k
I = [P k

I (0), P
k
I (1), . . . , P

k
I (Nk − 1)], k = 1, 2. (2)

Consider a given α. A 
ustomer who arrives to the system inspe
ts Q1 �rst with probability α.

Given i < N1 
ustomers in Q1, the 
ustomer joins Q1 with probability (1 − P 1
I (i)) and inspe
ts

Q2 with probability P 1
I (i). If she inspe
ts Q2 and observes j 
ustomers there, she joins it with

probability 1− δi,j . Otherwise, she joins Q1. If she observes i = N1 
ustomers in Q1, she inspe
ts

Q2 with probability 1, and if she �nds j < N2 in Q2 she joins it, otherwise she balks from the

system. Respe
tively, the same de
ision pro
ess takes pla
e if she inspe
ts Q2 �rst.

Suppose that the system is of state (i, j) when a new 
ustomer arrives. Let Z1
i,j be the probability

that the system pro
eeds to state (i+ 1, j). Then

Z1
i,j = α

[

(1− P 1
I (i)) + P 1

I (i)δi,j
]

+ (1− α)P 2
I (j)δi,j i = 0, . . . , N1 − 1, j = 0, . . . , N2 − 1. (3)

Z1
i,j is the sum of three probabilities:

1. the probability of arriving to Q1 �rst and joining without inspe
ting Q2;
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2. the probability of arriving to Q1 �rst, inspe
ting Q2 and joining Q1 with probability δi,j ;

3. the probability of arriving to Q2 �rst, inspe
ting Q1 and joining Q1 with probability δi,j .

In the same way, let Z2
i,j be the probability that the system pro
eeds to state (i, j + 1). Then

Z2
i,j = (1−α)

[

(1− P 2
I (j)) + P 2

I (j)(1 − δi,j)
]

+αP 1
I (i)(1−δi,j) i = 0, . . . , N1−1, j = 0, . . . , N2−1.

(4)

Let πij be the steady-state probability of state (i, j). We use Z1
i,j and Z2

i,j to write the balan
e

equations, from whi
h we 
al
ulate πij , and we use πij to 
al
ulate the equilibrium strategy, as we

des
ribe below.

2.2 Equilibrium

A 
ustomer observes the length of one of the queues and 
ompares the expe
ted 
ost from joining

this queue with the 
onditional expe
ted 
ost from inspe
ting the other queue and joining the

shorter one. We distinguish between two 
omplement s
enarios: (a) the 
ustomer observed Q1 �rst,

or (b) the 
ustomer observed Q2 �rst. Assume that the 
ustomer inspe
ted Q1 �rst. Let K
(
J i) be

the expe
ted 
ost from joining Q1 without inspe
ting Q2, given state i at Q1. Then

K1
J(i) = CW

i+ 1

µ1
. (5)

If Q1 is not full, meaning i < N1, let K
1
I (i) be the expe
ted 
ost asso
iated with inspe
ting Q2.

Then K1
I (i) is the sum of the following:

1. C2 whi
h is the 
ost of inspe
ting Q2.

2. The 
ost of waiting in Q2 if the 
ustomer �nds that Q2 is shorter than i.

CW

i−1
∑

j=0

πij
πi

·
j + 1

µ1
, (6)

10



3. The 
ost of waiting in Q1 if the 
ustomer �nds that Q2 is not longer than i,

CW

N2
∑

j=i

πij
πi

·
i+ 1

µ1
. (7)

Using the indi
ator fun
tion that we de�ned in (1), we 
an write K1
I (i) as:

K1
I (i) = C2 + CW

N2
∑

j=0

πij
πi

[

i+ 1

µ1
δi,j +

j + 1

µ2
(1− δi,j)

]

, (8)

where πi =
∑N2

j=0 πij .

The expe
ted 
ost of a 
ustomer who observes i < N1 
ustomers in Q1, is

K1(i) = min{K1
J (i),K

1
I (i)}. (9)

If Q1 is full, meaning i = N1, then the 
ustomer would inspe
t Q2, and therefore her expe
ted


ost equals to:

K1
I (N1) = C2 +CW

N2−1
∑

j=0

πij
πi

[

i+ 1

µ1

]

. (10)

Similarly, we de�ne K2(j) as the expe
ted 
ost of a 
ustomer that inspe
ted Q2 �rst.

We assume that the 
ustomers are homogeneous. Therefore, we seek for a symmetri
 equilibrium.

A strategy pro�le is a symmetri
 equilibrium pro�le if it is a best response against itself. De�ne the

best response for i < N1:































P 1
I (i) = 1 K1

I (i) < K1
J(i)

P 1
I (i) = 0 K1

I (i) > K1
J(i)

0 ≤ P 1
I (i) ≤ 1 K1

I (i) = K1
J(i),

(11)

and for j < N2:
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





























P 2
I (j) = 1 K2

I (j) < K2
J(j)

P 2
I (j) = 0 K2

I (j) > K2
J(j)

0 ≤ P 2
I (j) ≤ 1 K2

I (j) = K2
J(j).

(12)

A best response strategy is any strategy that satis�es 
onditions (11) and (12)).

Let E1(α) be the 
ustomers' expe
ted 
ost from inspe
ting Q1 �rst. Then:

E1(α) = C1 +

N1
∑

i=0

K1(i)

N2
∑

j=0

πi,j. (13)

Let E2(α) be the 
ustomers' expe
ted 
ost from inspe
ting Q2 �rst. Then:

E2(α) = C2 +

N2
∑

j=0

K2(j)

N1
∑

i=0

πi,j. (14)

Note, that K1(i) and K2(i) are also fun
tions of α. In equilibrium:

α =































0 E1(0) > E2(0)

1 E1(1) < E2(1)

α ∈ [0, 1] E1(α) = E2(α)

(15)

The symmetri
 equilibrium strategy, (PI
k)e is satis�ed if a best response against itself, meaning

that it satis�es 
onditions (11)-(15). This strategy is a best response of a player, when all other

players use (PI
k)e.

The system is 
hara
terized by two normalized parameters:

ρ =
λ

µ
(16)

whi
h is the 
ongestion parameter, and

κ =
µCI

CW
(17)

12



whi
h is the normalized inspe
tion 
ost parameter. We use these normalized parameters in the

numeri
al analysis.

3 Identi
al servers

We assume �rst that the servers are identi
al, both in their servi
e rate (µ1 = µ2 = µ), in their

bu�er sizes (N1 = N2 = N) and in their inspe
tion 
ost (C1 = C2 = CI). Therefore, 
ustomers are

indi�erent when 
hoosing whi
h queue to inspe
t �rst. As a result, an arriving 
ustomer inspe
ts

Q1 with probability 0.5, and Q2 with probability 0.5. We found that for a bu�er size larger than 3,


ustomers' behavior is not a threshold strategy.

Note that for stability, we require that ρ < 1 for the 
ase of in�nite bu�ers. This assumption is

not required for the 
ase of �nite bu�ers, be
ause the queue lengths are bounded by the size of the

bu�ers.

Sin
e the servers are identi
al, P 1
I = P 2

I , and therefore we use PI for 
ustomers' strategy ve
tor.

The de�nitions of the expe
ted 
ost from ea
h a
tion are the same as in the previous se
tion.

Theorem 1 (Existen
e of equilibrium) In a system of two identi
al servers, for ea
h set of param-

eters ρ, κ, there exists a symmetri
 Nash equilibrium strategy.

Proof: Existen
e of an equilibrium in this model follows from using a �xed-point theorem. This is a

game of 
ountably many players. A strategy in this game 
onsists of a ve
tor PI = [PI(0), PI (1), . . . , PI(N)],

where PI(i) is the probability to inspe
t the other queue after observing i 
ustomers in the �rst ob-

served queue, and N is the size of the bu�er of ea
h server. N 
an be either �nite or in�nite. Let X

be the spa
e of all mixed strategy ve
tors: X =

{

[PI(0), PI (1), . . . , PI(N)] : ∀i = 0, 1, . . . , PI(i) ∈

[0, 1]

}

.

A strategy ve
tor indu
es the steady state probabilities. If the bu�er size N is �nite, then the

number of possible states, (N +1)2, is also �nite. For in�nite bu�er sizes, there are 
ountably many

possible states. In that 
ase, for a given ρ, the steady state probability of ea
h state (i, j) is bounded

by the probability that (i, j) 
ustomers are in the system, whi
h is Li,j = (1 − ρ)2ρi · ρj , i, j =

0, 1, . . . .

13



Following the assumption that in this 
ase ρ < 1, we get limi→∞Li,j = limj→∞Li,j = 0.

Therefore, the number of possible states is numeri
ally bounded, and X is the N -dimensional 
ube

X = [0, 1]N . Therefore, X is a 
ompa
t spa
e.

Let F : X −→ X be the fun
tion that generates the best response strategy: F (x) =

{

y ∈ X :

y = P ∗

I (x)

}

, where P ∗

I (x) = [P ∗

I (0), P
∗

I (1), . . . , P
∗

I (N)] : P ∗

I (i) ∈ {0, 1} is the best response ve
tor

strategy, as was de�ned in 
onditions (11)-(12).

Let y1, y2 ∈ F (x). Let y3 = ωy1 + (1 − ω)y2, where ω ∈ (0, 1), be a point on the straight line

segment that joins y1 and y2. If y1 = y2 then it is 
lear that y3 ∈ F (x). If y1 6= y2, then for every


omponent i for whi
h y1(i) 6= y2(i), the 
ustomer is indi�erent between inspe
tion and joining, and

therefore for every ω we get y3 ∈ F (x). Therefore, F is 
onvex.

Given a symmetri
 strategy, the steady-state probabilities are derived from the linear balan
e

equations, whi
h are 
ontinuous for any symmetri
 strategy ve
tor. The 
ost fun
tion (Equation

(9)) is also 
ontinuous as a minimum of two 
ontinuous fun
tions. The fun
tion that assigns the

best response to ea
h steady-state probabilities (Equation (11)) is 
ontinuous, and F is 
ontinuous

as the 
omposition of the two. Therefore the graph of F ,

{

{x, y} ∈ X ×X : y ∈ F (x)

}

, is a 
losed

set.

By Kakutani's �xed point theorem, the best response 
orresponden
e F has a �xed point P e
I .

This strategy is a best response of a player, when all other players use P e
I , whi
h de�nes a symmetri


Nash equilibrium.

We wish to 
hara
terize all the feasible types of equilibrium strategies in this model. To do so,

we de�ne 
as
ade strategy as follows:

De�nition 1 Consider a ve
tor strategy P = P (i), where i is the queue state. A 
as
ade is a state

i ≥ 1 su
h that P (i− 1) = P (i + 1) ∈ {0, 1} and P (i) = 1− P (i− 1). We say that P is a 
as
ade

strategy if it 
ontains a 
as
ade.

We wish to prove the existen
e of an equilibrium 
as
ade strategy. The general model is too


ompli
ated to be fully analyzed, and therefore we solve simpler 
ases. In the �rst 
ase, ea
h server

has a bu�er with three slots. This is the minimum bu�er size that allows the appearan
e of a 
as
ade

14



strategy. We prove however that the equilibrium strategy in that 
ase is of the threshold type. Then,

we solve the 
ase of four slots at ea
h bu�er, in whi
h we demonstrate the existen
e of a 
as
ade

equilibrium strategy. To 
omplete the 
ase of two identi
al servers, we 
onsider in�nite bu�ers and

analyze the appearan
e of the 
as
ades as a fun
tion of the problem's normalized parameters.

3.1 Three slots at ea
h bu�er

We now 
onsider a two-servers loss system, where ea
h server has a bu�er with three slots. A


ustomer who arrives to a queue inspe
ts the other queue with probability P e
I (i), when i = 0, 1, 2, 3.

Sin
e the servers are identi
al, when a 
ustomer arrives to an empty queue, there is no advantage

in inspe
ting the other queue. Therefore, P e
I (0) = 0. As we assumed, a 
ustomer who arrives to a

full queue, inspe
ts the other queue with probability 1, meaning P e
I (3) = 1.

It is left to 
al
ulate PI(1) and PI(2). To do so, we need to 
al
ulate the expe
ted 
ost from

joining and inspe
ting when i = 1, 2. When i = 1, the expe
ted 
ost from joining is (see (5)):

KJ(1) = 2
CW

µ
, (18)

and the expe
ted 
ost from inspe
ting the other queue is (see (8)):

KI(1) = CI +
CW

µ

(π1,0 + 2π1,1 + 2π1,2 + 2π1,3)

π1

∗

= CI +
CW

µ

(2π1 − π1,0)

π1
= CI +

CW

µ

(

2−
π1,0
π1

)

. (19)

In (*) we used the de�nition πi =
∑3

j=0 πi,j , i = 1, 2. Therefore KJ(1) = KI(1) when CI =
CW

µ

π1,0

π1
,

or equivalently, when κ =
π1,0

π1
. Substituting this into 
ondition (11), we get:































PI(1)
e = 1 κ <

π1,0

π1

PI(1)
e = 0 κ >

π1,0

π1

0 ≤ PI(1)
e ≤ 1 κ =

π1,0

π1
.

(20)
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By the same way, we 
al
ulate PI(2):































PI(2)
e = 1 κ < 2 ·

π2,0

π2
+

π2,1

π2

PI(2)
e = 0 κ > 2 ·

π2,0

π2
+

π2,1

π2

0 ≤ PI(2)
e ≤ 1 κ = 2 ·

π2,0

π2
+

π2,1

π2
.

(21)

For any given ρ and κ, we 
an now 
al
ulate the equilibrium strategy [0, PI(1), PI (2), 1] in the

following pro
edure:

1. Given ρ, we 
al
ulate the transa
tion probability matrix Zi,j .

2. Given Zi,j , we 
al
ulate the steady state probability matrix πi,j

3. Given κ and the steady state probability matrix πi,j , we 
al
ulate the equilibrium strategy

ve
tor [0, PI (1), PI (2), 1].

We distinguish between four possible types of pure equilibrium strategies:

I. [0, 0, 0, 1]. II. [0, 0, 1, 1]. III. [0, 1, 1, 1]. IV. [0, 1, 0, 1].

The �rst three types of pure equilibrium strategies (strategies I - III) represent threshold equi-

librium strategies: in 
ase I, 
ustomers inspe
t the other queue only if they observe three 
ustomers

in the queue, i.e., their behavior in equilibrium 
orresponds to a threshold strategy with a threshold

3. In 
ase II, the threshold is 2, while in 
ase III the threshold is 1. However, the fourth strategy is

a 
as
ade strategy, where 
ustomers do not inspe
t the other queue if the �rst observed queue has

0 or 2 
ustomers in it, but inspe
ts it if the length of the observed queue is 1 or 3.

Figure 1 shows a map of all equilibrium strategies of this model for 0 < ρ < 2 and 0 < κ < 2.

For ea
h ρ, we 
al
ulated the values of κ that satisfy the equilibrium 
onditions 20 and 21.

The �gure is divided into three main regions, that distinguish between the three types of pure

equilibrium strategies (strategies I - III). The regions in between relate to parameter values for whi
h

the equilibrium is a mixed strategy. Note, that there are no parameters for whi
h the equilibrium

strategy is of type IV. Proposition 1 states the uniqueness of a symmetri
 threshold equilibrium

strategy in this 
ase.
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Figure 1: Map of equilibrium strategies for three slots system

Proposition 1 (Uniqueness of symmetri
 equilibrium of the threshold type) In a system of two

identi
al servers with bu�ers of three slots, for ea
h set of parameters ρ, κ, there exists a unique

symmetri
 Nash equilibrium strategy. Moreover, it is a threshold strategy.

Proof: The numeri
al analysis that is provided in Figure 3.1 show that for ea
h pair ρ, κ there

exists only one equilibrium strategy. In Lemma 2 we prove that 
as
ade strategy 
annot exist in

the three-slots 
ase. Therefore, an equilibrium strategy must be a threshold strategy in this 
ase.

Lemma 2 In a system of two identi
al servers with bu�ers of three slots, a 
as
ade strategy does

not exist.

Proof: Assume that a 
as
ade strategy of type IV exists. Then, by 
ondition (20), there exists a

value of κ su
h that κ <
π0,1

π1
, and by 
ondition (21) κ > 2·

π0,2

π2
+

π1,2

π2
. De�ne ∆ =

π0,1

π1
−2·

π0,2

π2
+

π1,2

π2
.

Su
h κ exists only if ∆ > 0.

We used the balan
e equations to 
al
ulate ∆. We substitute: N = 3, P1 = 1, P2 = 0 and �nd

the steady state probabilities as a fun
tion of ρ:

17



π0,0 =
(4 + 5ρ)(1 + 2ρ+ 2ρ2)

T
π0,1 = π1,0 =

(4ρ+ 5ρ2)(1 + 2ρ+ 2ρ2)

T

π0,2 = π2,0 =
2ρ3(2 + 5ρ+ 4ρ2)

T
π0,3 = π3,0 =

2ρ4(1 + ρ)(3 + 2ρ)

T

π1,1 =
2ρ2(1 + ρ)(4 + 7ρ+ 6ρ2)

T
π1,2 = π2,1 =

2ρ3(2 + 6ρ+ 3ρ2 + 6ρ3)

T

(22)

π1,3 = π3,1 =
2ρ4(1 + 6ρ+ 8ρ2 + 4ρ3)

T
π2,2 =

4ρ4(1 + ρ)(1 + 2ρ+ 4ρ2)

T

π2,3 = π3,2 =
2ρ5(1 + 2ρ)(2 + 5ρ+ 4ρ2)

T
π1,3 = π3,1 =

4ρ6(1 + 2ρ)(2 + 5ρ+ 4ρ2)

T
(23)

where T = 4 + 21ρ+ 52ρ2 + 84ρ3 + 110ρ4 + 128ρ5 + 132ρ6 + 124ρ7 + 88ρ8 + 32ρ9.

Therefore:

π1 =
4 + 21ρ+ 44ρ2 + 50ρ3 + 42ρ4 + 28ρ5 + 8ρ6

T

π2 =
8ρ3 + 26ρ4 + 42ρ5 + 54ρ6 + 44ρ7 + 16ρ8

T
(24)

We substitute the probabilities into ∆ and get:

∆ = −2ρ4 ·
8 + 86ρ+ 343ρ2 + 730ρ3 + 979ρ4 + 940ρ5 + 740ρ6 + 492ρ7 + 224ρ8 + 48ρ9

(4 + 21ρ+ 44ρ2 + 50ρ3 + 42ρ4 + 28ρ5 + 8ρ6)(8ρ3 + 26ρ4 + 42ρ5 + 54ρ6 + 44ρ7 + 16ρ8)

(25)

and sin
e ρ > 0, we get ∆ < 0, whi
h is a 
ontradi
tion. Therefore, there is no 
as
ade equilibrium

strategy in this system.

The following observations are derived from Figure 1:

Observation 3 In a system of two identi
al servers with bu�ers of three slots, in equilibrium, both

PI(1)
e
and PI(2)

e
are monotoni
ally de
reasing in ρ and in κ.

As illustrated in Figure 1, we found numeri
ally that as κ in
reases, both PI(1)
e
and PI(2)

e

de
reases monotoni
ally from 1 to 0. The same happens as ρ in
reases.

18



Observation 4 In a system of two identi
al servers with bu�ers of three slots, an equilibrium

strategy 
ontains at most one mixed 
omponent.

Observe from Figure 1, that there is no pair (ρ, κ) for whi
h 
ustomers in equilibrium are

indi�erent between joining their �rst observed queue and inspe
ting the other queue for both queue

lengths 1 and 2. In other words, 0 < PI(1)
e < 1 and 0 < PI(2)

e < 1 do not appear simultaneously.

3.2 Four slots at ea
h bu�er

Next, we 
onsider bu�ers of four slots. Here, we demonstrate the existen
e of an equilibrium 
as
ade

strategy.

The 
ustomer in this 
ase has three states in whi
h she 
hooses her a
tion: when she observes

queue length of one, two or three 
ustomers. In the other states (0 or 4) her a
tion is determined

as before: PI(0) = 0, PI(4) = 1. We use the same pro
edure as in the previous 
ase to �nd the

equilibrium strategy. For i = 1, 2 the equilibrium 
onditions are similar to those in 
onditions

(20)-(21), only with one di�eren
e: in the 
urrent 
ase πi =
∑4

j=0 πi,j . For i = 3 the equilibrium


ondition is:































PI(3)
e = 1 κ <

3π3,0+2π3,1+π3,2

π3

PI(3)
e = 0 κ >

3π3,0+2π3,1+π3,2

π3

0 ≤ PI(3)
e ≤ 1 κ =

3π3,0+2π3,1+π3,2

π3
.

(26)

We �nd eight types of pure equilibrium strategies:

I. [0, 0, 0, 0, 1].

II. [0, 0, 0, 1, 1].

III. [0, 0, 1, 1, 1].

IV. [0, 1, 1, 1, 1].

V. [0, 0, 1, 0, 1].

VI. [0, 1, 0, 0, 1].

VII. [0, 1, 1, 0, 1].

VIII. [0, 1, 0, 1, 1].

The �rst four types (strategies I - IV) represent threshold equilibrium strategies with thresholds

4,3,2 and 1 respe
tively. However, strategies V - VIII are pure 
as
ade strategies. For example,

in strategy V 
ustomers do not inspe
t the other queue if the �rst observed queue has 0, 1 or 3


ustomers in it, but do inspe
t it if the length of the observed queue is 2 or 4.
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For ea
h pair (ρ, κ), we 
al
ulate the equilibrium strategy ve
tor PI
e = [0, PI(1)

e, PI(2)
e, PI(3)

e, 1].

For ea
h ρ, we 
al
ulated the values of κ that satisfy the equilibrium 
onditions. Figure 2 shows a

map of all equilibrium strategies for 0 < ρ < 2 and 0 < κ < 3. The �gure is divided into �ve main

areas, 
orresponding to strategies I - V. The areas in between show mixed equilibrium strategies.

There are no parameters for whi
h the equilibrium strategy is of type VI - VIII.
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[0,0,0,1,1]V. 
[0,0,1,0,1]

III. 
[0,0,1,1,1]

IV. 
[0,1,1,1,1]

Figure 2: Map of equilibrium strategies for 4-slots system

The following statements are derived from Figure 2:

Proposition 5 In a system of two identi
al servers with four-slots bu�ers, for ea
h pair of param-

eters ρ, κ, there exists a unique equilibrium strategy. Moreover, there exists parameters ρ and κ for

whi
h 
ustomers' strategy in equilibrium is 
hara
terized by 
as
ades.

Proof: The uniqueness of the equilibrium strategy follows from the equilibrium map that is pre-

sented in Figure 2. The existen
e of a 
as
ade strategy is also derived from this Figure. In parti
ular,

for 0 < ρ ≤ 0.2877, the graph show that there exists values of κ for whi
h the unique equilibrium

strategy is PI = [0, 0, 1, 0, 1].
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Observation 6 In a system of two identi
al servers with four-slots bu�ers, PI(1)
e
and PI(2)

e
are

monotoni
ally de
reasing in ρ and in κ, while PI(3)
e
is non-monotoni
 in ρ and in κ.

An illustration of Observation 5-6 is shown in Appendix A.

3.3 The blo
king probability

Customers who arrive to a loss system with a �nite bu�er size, are reje
ted and for
ed to leave

if they �nd at arrival that the system is at full 
apa
ity. Denote PB = πN,N is the steady-state

probability of �nding the system at full 
apa
ity, or the Blo
king probability. We now analyze the

e�e
t of the system parameters on PB . It is intuitively expe
ted that for �xed 
osts (�xed κ), a

growth in the 
ongestion (ρ) will result in in
reasing of the probability to arrive to a full system

(PB). But it is not trivial to determine the 
hanges in PB for �xed ρ as κ in
reases. We study this

question numeri
ally, and the results are summarized in the following observations.

Observation 7 For �xed ρ, PB is monotoni
ally in
reasing in κ. Yet, the e�e
t of the 
hange in

κ on PB is relatively small.

We analyze numeri
ally the 
hange in PB as a fun
tion of κ. For ea
h value of ρ, ρ =

0.1, 0.2, . . . , 3, we �nd that PB is a non-de
reasing fun
tion of κ, whi
h is 
onstant at intervals

of κ that 
orrespond to one of the possible pure equilibrium strategies.

For example, Figure 3 shows the in
reasing of PB in the three-slots and four-slots 
ases. The

x-axis shows κ while the y-axis shows PB . In Figure 3(a), the bu�er size is 3 and ρ = 0.4: in region

A the equilibrium strategy is [0, 0, 0, 1], in region B [0, 0, 1, 1], and in region C [0, 1, 1, 1]. In Figure

3(b) the bu�er size is 4 and ρ = 0.8: in region A where the equilibrium strategy is [0, 0, 0, 0, 1℄, in

region B is [0, 0, 0, 1, 1℄, in region C is [0, 0, 1, 1, 1℄ and in region D is [0, 1, 1, 1, 1℄. The 
as
ade

equilibrium strategy [0, 0, 1, 0, 1℄ is represented in a slight in
rease in PB at the end of region B.

To show that the 
hange in PB as a fun
tion of κ is small, we 
al
ulated the minimum and the

maximum values of PB for 
onstants values of ρ. For the three-slots 
ase, the minimum value was


al
ulated when the equilibrium strategy is [0, 0, 0, 1] and the maximum when the equilibrium strat-

egy is [0, 1, 1, 1]. For the four-slots 
ase the equilibrium strategies were [0, 0, 0, 0, 1] and [0, 1, 1, 1, 1],
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Figure 3: PB in
reases with κ

respe
tively.

Table 1 shows the results for a system with bu�ers of three slots (see Table 3.3) and with bu�ers

of four slots (see Table 3.3). For example, when ρ = 0.6, the minimum PB in the three-slots 
ase is

0.0269 and the maximum PB is 0.0346, while in the four-slots 
ase the minimum PB is 0.0095 while

the maximum PB is 0.0141.

(a) Bu�ers of three slots

ρ min(PB) max(PB)

0.1 1.71 × 10−6 3.19 × 10−6

0.2 0.00009 0.00016

0.4 0.0039 0.0058

0.6 0.0269 0.0346

0.8 0.0827 0.0957

1.0 0.1633 0.1770

1.2 0.2502 0.2616

1.4 0.3308 0.3393

1.6 0.4029 0.4968

1.8 0.4601 0.4642

2.0 0.5100 0.5128

2.5 0.6038 0.6050

3.0 0.6684 0.6690

(b) Bu�ers of four slots

ρ min(PB) max(PB)

0.1 1.71 × 10−8 4.004 × 10−8

0.2 3.68 × 10−6 8.004 × 10−6

0.4 0.00063 0.0011

0.6 0.0095 0.0141

0.8 0.0477 0.0596

1.0 0.1240 0.1385

1.2 0.2181 0.2297

1.4 0.3082 0.3159

1.6 0.3856 0.3903

1.8 0.4498 0.4527

2.0 0.5029 0.5047

2.5 0.6008 0.6014

3.0 0.6670 0.6672

Table 1: Changes in the blo
king probability PB
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3.4 Sensitivity analysis for a system of two identi
al queues with in�nite bu�ers

We investigate the 
hange of 
ustomers' behavior in equilibrium when the bu�er of ea
h queue is

in�nite. For all the numeri
al examples in this se
tion, the x-axis represents i, the length of the

�rst observed queue. The y-axis represents PI(i)
e
. Note, that the dashed line in all the �gures in

this paper is for graphi
al help - the queue length i in all 
ases is dis
rete.

We 
ompare di�erent levels of queue 
ongestion. We �nd that more 
as
ades appear as ρ

in
reases. Examples are shown in Figure 4, where κ = 1.
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(b) ρ = 0.5
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(
) ρ = 0.625
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(d) ρ = 0.75
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(e) ρ = 0.875
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(f) ρ = 0.975

Figure 4: Cas
ades multiplies as ρ in
reases

We found that when ρ = 0.25, and 
ustomers' strategy in equilibrium has a threshold of 2. As

ρ in
reases, 
ustomers start to mix between joining and inspe
ting (e.g., Figure 4(a) for ρ = 0.375).

As ρ 
ontinues to in
rease, 
as
ades appear (e.g., Figure 4(b) for ρ = 0.5). As ρ 
ontinues to grow,


as
ades multiply (e.g., Figures 4(
) and 4(d) where ρ = 0.625 and ρ = 0.75, respe
tively). For

higher values of ρ, 
ustomers tend to use a mixed strategy in the states that lie between the 
as
ades

(e.g., Figure 4(e) for ρ = 0.875), and as ρ 
ontinues to grow, gaps o

ur between the 
as
ades (e.g.,

Figure 4(f)).

Observation 8 For a given κ, as ρ in
reases, 
ustomers tend to join without inspe
ting the other
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queue for longer observed queue lengths, and the appearan
e of 
as
ades is delayed respe
tively.

The intuition behind Observation 8 is that for a given κ, as ρ in
reases, the probability that the other

queue is empty de
reases, and as a result 
ustomers tend to join without inspe
ting the other queue

when they observe longer queues. As a result, the appearan
e of 
as
ades is delayed respe
tively.

We also look into the 
hanges in the equilibrium as a fun
tion of κ. The numeri
al results show,

that when κ is small, 
ustomers tend to inspe
t the other queue prior to joining. As κ in
reases,

the number of 
as
ades in
rease. When the value of κ is large, 
ustomers tend to join their �rst

observed queue without inspe
ting the other queue, and the appearan
e of 
as
ades de
reases. The

intuition behind this phenomenon is the 
ustomers' motivation to inspe
t the other queue is inversely

proportional to 
ost. Figure 5 shows an example.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

P
I1 (i)

e

(a) κ = 0.2
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(b) κ = 0.3
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(
) κ = 0.33

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

P
I1 (i)

e

(d) κ = 0.4
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(e) κ = 0.5
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(f) κ = 0.75

Figure 5: Changes in equilibrium strategy as κ in
reases

In Figure 5, we �xed ρ = 0.9. When κ is low, 
ustomers have a threshold strategy (e.g., Figure

5(a) for κ = 0.2). As κ in
reases, 
ustomers start to use a mixed strategy (e.g., Figure 5(b) and

Figure 5(
) for κ = 0.3 and κ = 0.4, respe
tively). As κ 
ontinues to in
rease, 
as
ades appear (e.g.,

Figure 5(d) for κ = 0.4), and multiply (e.g., Figure 5(e) and Figure 5(f) for κ = 0.5 and κ = 0.75,

respe
tively).
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The meaning of the multiple 
as
ades is that 
ustomers inspe
t the other queue less as κ in-


reases. Note, that this is not true when we 
ompare strategies at a spe
i�
 state: for example,

as shown in Figure 5, when a 
ustomer observe i = 5 
ustomers, she inspe
ts the other queue

with probability 1 when κ is low (e.g., Figure 5(a) and 5(b)), and also when κ is high (e.g., Figure

5(e) and 5(f)), and uses a mixed strategy in between (e.g., Figure 5(
) and 5(d)). Pre
isely, when

κ = 0.33 we get P e
I (5) = 0.7982, when κ = 0.4 we get P e

I (5) = 0.2426, when κ = 0.44 we get

P e
I (5) = 0.0013, but then for κ = 0.45 we get P e

I (5) = 1. Observation 9 summarizes these results.

Observation 9 For a given ρ, as κ in
reases, 
ustomers tend to inspe
t the other queue less.

However, for a given state, 
ustomers may inspe
t the other queue more as κ in
reases.

4 Heterogeneous servers

We now abandon the assumption that the servers are identi
al in all aspe
ts. The servers may

di�er in three parameters: the servi
e rate µ, the inspe
tion 
ost CI , and the bu�er size N . We

analyze two s
enarios: �rst, we assume that the servers di�er in their servi
e rate (µ1 6= µ2), but

identi
al in all other parameters. Se
ond, we assume that the servers di�er in their inspe
tion 
osts

(C1 6= C2). Spe
i�
ally, we analyze the 
ase where C1 = 0 while C2 > 0. In ea
h 
ase, we 
al
ulate

the symmetri
 equilibrium strategy.

4.1 When µ1 6= µ2

In this 
ase, we 
annot 
al
ulate α dire
tly from the model's assumptions. Instead, we 
al
ulate it

numeri
ally along with PI
e
. For α = 0, 0.01. . . . , 1 we 
al
ulate PI

e
. We substitute it into E1(α)

and E2(α) (equations (13) and (14), respe
tively), and �nd the best response strategy α∗
. Finally,

we �nd αe
whi
h is a �xed point in the graph of α∗.

Observation 10 1. The best response strategy against α is to avoid the 
rowd (ATC).

2. The equilibrium αe
is unique.

3. αe
is 
ontinuous in µ1 (and in µ2). Furthermore, αe

is monotoni
ally in
reasing in µ1.
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The intuition behind the observation is as follows. If all 
ustomers tend to inspe
t Q1 �rst,

then the 
ongestion of Q1 in
reases while the 
ongestion of Q2 de
reases, and as a result the best

response would be to inspe
t Q2 �rst. The numeri
al results support that observation: the best

response strategy α∗
is a non-in
reasing fun
tion of α.

Uniqueness follows dire
tly from the ATC property. Sin
e the best response strategy α∗
is a

non-in
reasing fun
tion of α, it has a unique �xed point whi
h is the equilibrium αe
.

To explain monotoni
ity, we look at the ratio between the servi
e rates. When µ1 << µ2, the

�rst server is signi�
antly slower than the se
ond one. Therefore, even if both queues are observed,


ustomers join Q2 no matter what is the length of Q1, and we get αe = 0. As µ1 in
reases, 
ustomers

start to mix between joining Q1 and Q2. As µ1 approa
hes µ2, α
e
in
reases. When µ1 = µ2, the

queues are identi
al and therefore we get αe = 0.5. When µ1 > µ2, symmetri
 results are derived.

The 
ontinuity of αe
is derived from the numeri
al analysis.

Numeri
al results for 
as
ade equilibrium strategies when N ≥ 4 are shown in Appendix B.

4.2 Inspe
t one queue for free

Consider a system of two servers with in�nite bu�ers. The queues may have di�erent servi
e rates.

We wish to �nd 
ustomers' strategy in equilibrium, when inspe
ting one of the servers is free.

To illustrate that, we assume that inspe
ting Q1 is 
ostless, C1 = 0, while C2 > 0. In this


ase, all 
ustomers inspe
t Q1 �rst, meaning αe = 1. Then, after observing its length, they de
ide

whether to join it, or inspe
t Q2. Therefore, 
ustomers' equilibrium strategy 
onsists of one ve
tor

PI , whi
h is equivalent to P 1
I , and is 
omputed using KJ(i) = K1

J(i) and KI(i) = K1
I (i) (see

Equation 8 in se
tion 4.1).

For a �xed arrival rate λ, the symmetri
 equilibrium pro�le is in�uen
ed by the ratio

µ2

µ1
.

When

µ2

µ1
is very small, Q1 is signi�
antly faster than Q2, and therefore 
ustomers join it without

inspe
ting Q2. As

µ1

µ2
in
reases, 
ustomers start to inspe
t Q2, and the equilibrium strategy involve


as
ades and mixed strategy. When

µ1

µ2
is high, 
ustomers strategy be
omes a threshold strategy:

join Q1 when its state i is below a threshold n, inspe
t Q2 when i > n, and mix between joining

and inspe
ting when i = n.
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Numeri
al results are shown in Figures 6 and 7. Sin
e it is a system with unbounded bu�ers

and 
ustomers do not balk, we 
hoose µ1 and µ2 su
h as the utilization fa
tor satis�es

λ
µ1+µ2

< 1.

The x-axis represents i, the number of 
ustomers in Q1, while the y-axis represents the equilibrium

strategy PI(i)
e
. Note that the dashed line in all the �gures is for graphi
al help - the queue length

i in all 
ases is dis
rete.

In Figure 6, κ = 0.5 and λ = 2. We �nd that for

µ2

µ1
≤ 0.162, 
ustomers join Q1 without

inspe
ting Q2, no matter how long Q1 is. For 0.162 < µ2

µ1
< 1.2, 
ustomers have a non-threshold

equilibrium strategy, whi
h 
ontains 
as
ades (e.g. Figures 6(b) and 6(
)) and/or mixed strategies

(e.g. Figures 6(d) and 6(e)). For

µ2

µ1
≥ 1.2 
ustomers adopt a threshold strategy (e.g. Figures 6(f)).

In Figure 7, κ = 1.5 and λ = 2. We �nd that for

µ2

µ1
≤ 0.18, 
ustomers join Q1 without inspe
ting

Q2, no matter how long Q1 is. For 0.18 < µ2

µ1
< 1.56, 
ustomers have non-threshold equilibrium

strategy, whi
h 
ontains 
as
ades (e.g. Figures 7(a) and 7(b)) and/or mixed strategies (e.g. Figures

7(
) and 7(d)). For

µ2

µ1
≥ 1.56 
ustomers adopt a threshold strategy (e.g. Figures 7(e)).

The numeri
al results are summarized in the following observation.

Observation 11 In a system of two servers with in�nite bu�ers, when the inspe
tion of one queue

is 
ostless and the inspe
tion of the se
ond queue has a positive 
ost, 
ustomers' equilibrium strategy

dependents on the ratio between the servi
e rate of the 
ostly-inspe
ted queue and the servi
e rate of

the free-inspe
ted queue:

1. When the ratio is low, 
ustomers join the free-inspe
ted queue without inspe
ting the other

queue.

2. When the ratio is high, 
ustomers adopt a threshold strategy, in whi
h they inspe
t the other

queue if the free-inspe
ted queue is relatively long.

3. In between, 
ustomers adopt a non-threshold strategy whi
h involve 
as
ades and mixed strate-

gies.
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Figure 6: Customers' strategy when κ = 0.5 and C1
I = 0
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Figure 7: Customers' strategy when κ = 1.5 and C1
I = 0
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5 Con
luding remarks

When 
ustomers sear
h for a server in a multiple servers system, their equilibrium strategy is not

ne
essary a threshold strategy. This is our main 
on
lusion in this paper. In a system of two servers,

we show that when the bu�ers are greater than 3, the equilibrium strategy is often 
hara
terized

by 
as
ades.

The 
as
ade equilibrium strategy is a result of positive externalities that are indu
ed by the


ustomers. One 
an de�ne this phenomenon as a 
onditional ATC behavior: given the �rst observed

queue length, the 
ustomer tends to avoid the a
tion that was made by former 
ustomers.

The model that we present here arises many questions that 
an serve as a basis for future

resear
h. Most queueing models assume that equilibrium strategies are of the threshold type. The

appearan
e of 
as
ade strategies arises the question is this assumption valid? If not, how 
an a

planner of future queueing systems take this behavior into 
onsideration?

Our model deals with parallel servers. Alternatively, one 
an assume that the servers are 
om-

peting, trying to maximize their revenue by in
reasing their throughput on behalf of the other

servers. What is the sear
h 
ost that a 
ompeting server should �x in order to a
hieve the desirable


ustomers' behavior? Would a slower server bene�t from lowering its 
ost of inspe
tion? Analysing

su
h a di�erent model requires a paper in itself and therefore we leave it for future resear
h.
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Appendi
es

A Numeri
al results of identi
al servers with four slots

An illustration of Observations 5-6 is shown in Figure 8. In region A, when κ is low, the threshold

is 1. As κ in
reases, in region B, the threshold in
reases too and be
omes 2. Note that between

the pure strategies in region A and B there is a mixed strategy in PI(1)
e
. In region C we get a


as
ade strategy as was des
ribed in Observation 5. At the beginning of region D the equilibrium

strategy is mixed in PI(2)
e
, until PI(2)

e
drops to 0 and we get a new threshold of 3. As κ 
ontinues

to in
rease, at region E we get another threshold strategy with a threshold 4.
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To present the 
hanges in equilibrium strategy as a fun
tion of ρ and as a fun
tion of κ, we look

at other verti
al 
ross se
tions of Figure 8.
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Figure 9: Changes in verti
al 
ross se
tions as ρ in
reases

Figure 9 shows the 
hange in equilibrium strategy for �xed values of ρ, as κ 
hanges. Figure

9(a) shows the equilibrium strategy where ρ = 0.25. A 
as
ade strategy o

urs in region C, where

the probability PI(3)
e
drops to 0. In Figure 9(b), where ρ = 0.4, the 
as
ade in region C is of a

mixed strategy, where the probability PI(3)
e
drops to ≈ 0.276. For larger values of ρ, we get a

non-threshold strategy instead of pure 
as
ade strategy, as shown in region C of Figure 9(
). As ρ

in
reases, the 
as
ade disappears, as is shown in Figure 9(d). Note, that Figures 9(a) - 9(
) present

the non-monotoni
ity of PI(3)
e
, as was des
ribed in Observation 6.

Figure 10 shows the 
hange in equilibrium strategy for �xed values of κ, as ρ 
hanges. Again,

the 
as
ade o

urs in region C of ea
h �gure. Note, that as κ in
reases, equilibria with threshold

of 1 (region A) and of 2 (region B) are gradually disappearing, while the 
as
ade at region C is

expanding. Here, the 
as
ade o

urs when ρ is relatively small, as 
aptured in region A of ea
h

subgraph. Figure 10(a) shows the equilibrium strategy when κ = 0.3. Note that as ρ in
reases,
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PI(1)
e
de
reases while PI(2)

e
in
reases. In Figure 10(b), at the beginning of region B, we get a

mixed strategy in both probabilities. Figure 10(d) and Figure 10(d) 
apture the non-monotoni
ity

of PI(3)
e
.
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Figure 10: Changes in horizonal 
ross se
tions as κ in
reases

B Numeri
al results of 
as
ade equilibrium strategies for heteroge-

neous servers

Figure 11 shows examples of non-threshold equilibrium strategy when N = 4, and µ2 = 2, λ =

1, CW = 1 and C1 = C2 = 0.5.

Ea
h graph is divided into two subgraphs: the top one shows P 1
I as a fun
tion of i, the observed

number of 
ustomers in Q1. The bottom one shows P 2
I as a fun
tion of i, the observed number

of 
ustomers in Q2. Sin
e N = 4, i = 0, 1, 2, 3. From the model assumptions, for i = 4, P 1
I (4) =

P 2
I (4) = 1. Ea
h graph 
al
ulates the equilibrium for di�erent (in
reasing) value of µ, and therefore

αe
is di�erent (in
reases from one graph to the following one).
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= 0.865
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Figure 11: Changes in horizonal 
ross se
tions as κ in
reases
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In Figure 11(a), P 1
I is a threshold strategy with threshold 1, and P 2

I is a threshold strategy with

threshold 4. In Figure 11(b), P 1
I is a threshold strategy with threshold 2, but P 2

I is a non-threshold

strategy with 
as
ades: 
ustomers inspe
t Q1 with probability 1 when Q2 length is 2 or 4 and join

Q2 without inspe
ting Q1 when the length is 0,1 or 3. Figure 11(
) and Figure 11(d) show the

same strategy 
omponents for P 1
I , P

2
I , whi
h are both having a threshold of 2. Yet they di�er in αe

.

Figure 11(e) is a symmetri
 pi
ture of 11(b) regarding P 1
I , P

2
I . In Figure 11(f), both P 1

I and P 2
I are

threshold strategies with thresholds 3 and 2 respe
tively.
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