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Abstract

We study vehicle routing problems with constraints on the distance traveled by each vehicle or on the number of vehicles.
The objective is either to minimize the total distance traveled by vehicles or to minimize the number of vehicles used.We design
constant differential approximation algorithms forkVRP. Note that, using the differential bound for METRIC 3VRP, we obtain
the randomized standard ratio19799 + �,∀�>0. This is an improvement of the best-known bound of 2 given by Haimovich et al.
(Vehicle Routing Methods and Studies, Golden, Assad, editors, Elsevier, Amsterdam, 1988). For natural generalizations of this
problem, called EDGECOSTVRP,VERTEXCOSTVRP, MIN VEHICLE andkTSP we obtain constant differential approximation
algorithms and we show that these problems have no differential approximation scheme, unless P= NP.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Vehicle routing problems that involve the periodic collection and delivery of goods and services such as mail delivery or
trash collection are of great practical importance. Simple variants of these real problems can be modeled naturally with graphs.
Unfortunately even simple variants of vehicle routing problems areNP-hard. In this paper we consider approximation algorithms,
and measure their efficiencies in two ways. One is thestandardmeasure giving the ratioapx/opt , whereopt andapxare the
values of an optimal and approximate solution, respectively. The other measure is thedifferentialmeasure, that compares the
worst ratio of, on the one hand, the difference between the cost of the solution generated by the algorithm and the worst cost,
and on the other hand, the difference between the optimal cost and the worst cost. Formally, the differential measure gives the
ratio � = (wor − apx)/(wor − opt), wherewor is the value of the optimal solution for the complementary problem. In[15],
the measure 1− � is considered and it is called therez-approximation. Justification for this measure can be found for example
in [1,6,15,20,27].
The main subject of this paper is differential approximation of routing problems. In these problemsn customershave to be

served byvehiclesof limited capacity from a commondepot. A solution consists of a set of routes, where each starts at the depot
and returns there after visiting a subset of customers, such that each customer is visited exactly once. We refer to a problem
as aVEHICLE ROUTING PROBLEM(VRP) if there is a constraint on the (possibly weighted) number of customers visited by a
vehicle. This constraint reflects the assumption that the vehicle has a finite capacity and that itcollectsfrom the customers (or
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distributesamong them) a commodity. The goal is to find a solution such that the total length of the routes is as small as possible.
In other cases, the vehicle is just supposed tovisit the customers, for example, in order to serve them. In such cases we refer
to the problem as a TRAVELING SALESMAN PROBLEM (TSP) problem. We will assume in such cases that the limitation is on
the total distance traveled by a vehicle and not on the number of customers it visits, and in this case we search solution with a
minimum number of vehicles used.
The problems that are considered here generalize the (undirected) TSP. Differential approximation algorithms for the TSP are

given by Hassin and Khuller[15] and Monnot[20]. We will sometimes use these algorithms to generate approximations for the
problems of this paper. However, we note an important difference. In the TSP, adding a constantk to all of the edge lengths does
not affect the set of optimal solutions or the value of the differential ratio. The reason is that every solution contains exactlyn
edges and therefore every solution value increases by exactly the same value, namelynk. In particular, this means that for the
purpose of designing algorithms with bounded differential ratio, it does not matter whetherd is a metric or not (it can be made
a metric by adding a suitable constant to the edge lengths). In contrast, in some of the problems dealt with here, the number of
edges used by a solution is not the same for every solution and therefore it may turn out, as we will see, that in some cases the
metric version is easier to approximate.
It is easy to see that 2VRP is polynomial time solvable. Fork�3, METRIC kVRP was proved NP-hard by Haimovich and

Rinnooy Kan[11]. Haimovich et al.[12] gave a52 −3/2k standard approximation for METRICkVRP.We study for the first time

the differential approximability ofkVRP. More exactly we give a12 differential approximation for the non-metric case for any

k�3.We improve this bound to35 for METRIC4VRP and23 for METRICkVRP with 5�k�8.We also improve the casesk = 3

andk�9 to 50
99 − �,∀�>0 and 25(k − 1)/33k − �,∀�>0, respectively, by using a randomized algorithm. An approximation

lower bound of22192220 is given here for METRICnVRP with length 1 and 2 using a lower bound of TSP(1,2)[8].
We study a generalization of VRP, called EDGECOSTVRP, where the maximum length traversed by each vehicle is bounded.

We establish a13 differential approximation for this problem.
MIN–MAX kTSP is a generalization ofTSPwhere we search to cover the customers by at mostk vehicles such that the

maximum length traversed by the vehicles is minimum. The metric case of the problem was studied by Fredrickson et al.[9]
where they give a52 − 1/k standard approximation algorithm by constructing a reduction from this problem to METRIC TSP

and using Christofides’ algorithm[4]. We establish a12 differential approximation for METRICMIN–MAX kTSP and prove that
it has no differential approximation scheme, unless P= NP. We also give a standard lower bound of(p + 1)/p for MIN–MAX
�n/p�TSP, forp�6.
MIN–SUM EkTSP is another generalization of TSP where we search to cover the customers byexactly kvehicles such that

the total length is minimum. We show that METRICMIN–SUM EkTSP is23 differential approximable and it has no differential
approximation scheme unless P= NP.
In MIN VEHICLE the goal is to minimize the number of vehicles subject to a constraint on the maximum length traversed by

any single vehicle. Li et al.[19], proved that MIN VEHICLE is not standard 2 approximable, unless P= NP and it is 1+�/(�−2)
standard approximable with� = �/dm anddm =max{d0,1, . . . , d0,n}, where� is the maximum distance that each vehicle could
cover.We first present a23 differential approximation algorithm and show how to improve the bound to289

360 for themetric version
of MIN VEHICLE. We also show that even when� is constant and the lengths are 1 and 2, MIN VEHICLE has no standard and
differential approximation scheme, unless P= NP.
The paper is organized as follows: In Section 2, we give the necessary definitions. In Section 3, we give a constant differential

approximationalgorithm forGENERALkVRP,andabetter constant differential approximation for themetric case. InSection4, the
main result is a constant differential approximation for EDGECOSTVRP. In the last three sectionswe show thatMIN–MAX kTSP,
MIN–SUM EkTSP and METRICMIN VEHICLE are constant differential approximable and have no differential approximation
scheme, if P
= NP.

2. Terminology

Given an instancexof an optimization problem and a feasible solutionyof x, we denote byval(x, y) the value of the solution
y, byopt(x) the value of an optimal solution ofx, and bywor(x) the value of a worst solution ofx. Thedifferential approximation
ratio of y is defined as�(x, y)=|val(x, y)−wor(x)|/|opt(x)−wor(x)|. This ratio measures how the value of an approximate
solutionval(x, y) is located in the interval betweenopt(x) andwor(x). In particular, it is equivalent for a minimization problem
to prove�(x, y)�� andval(x, y)��opt(x) + (1− �)wor(x).
For a functionf, f (n)<1, an algorithm is af (n) differential approximation algorithmfor a problemQ if, for any instancex

ofQ, it returns a solutiony such that�(x, y)�f (|x|).We say that an optimization problem isconstant differential approximable
if, for some constant�<1, there exists a polynomial time� differential approximation algorithm for it. An optimization problem
has adifferential polynomial time approximation schemeif it has a polynomial time(1− �) differential approximation, for every
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constant�>0. We say that two optimization problems are standard (differential)equivalentif a � differential approximation
algorithm for one of them implies a� standard (differential) approximation algorithm for the other one.
We consider in this paper several routing problems. The problems are defined on a complete undirected graph denoted

G= (V ,E). The vertex setV consists of adepot vertex0, andcustomer vertices{1, . . . , n}, and each edge(i, j) ∈ E is endowed
with a weightdi,j �0. We call a such graph acomplete valued graph. We refer to the version of the problem in whichd is
assumed to satisfy the triangle inequality as themetric case. The output to the problems consists of ap-tour, that is, a set of
simple cycles,C1, . . . , Cp, such thatV (Ci)∩ V (Cj )= {0}, ∀i 
= j , and

⋃p
i=1V (Ci)= V . The sequence(0, i,0) with i 
= 0 is

accepted as a cycle.We now describe the problems. For each one we specify the input, the problem’s constraints, and the output.

kVRP
Input: A complete valued graph.
Constraint: |Cj |�k + 1, j = 1, . . . , p.
Output: A p-tour minimizing the total weight of the cycles.

EDGECOSTVRP
Input: A complete valued graph and a metric{�e : e ∈ E}, and�>0.
Constraint:

∑
e∈E(Cj )

�e��, j = 1, . . . , p.

Output: A p-tour minimizing the total weight of the cycles.

VERTEXCOSTVRP
Input: A complete valued graph and a function{ci �0 : i ∈ V }, whereci denotes the cost of the vertexi and�>0.
Constraint:

∑
i∈V (Cj )

ci ��, j = 1, . . . , p.

Output: A p-tour minimizing the total weight of the cycles.

MIN–MAX kTSP
Input: A complete valued graph.
Constraint: p�k.
Output: A p-tour minimizing the maximum weight of the cycles.

MIN–SUM EkTSP
Input: A complete valued graph.
Constraint: p = k.
Output: A p-tour minimizing the total weight of the cycles.

MIN VEHICLE
Input: A complete valued graph and�>0.
Constraint:

∑
e∈E(Cj )

de��,j = 1, . . . , p.

Output: A p-tour minimizingp.

MIN DISTANCE
Input: A complete valued graph and�>0.
Constraint:

∑
e∈E(Cj )

de��, j = 1, . . . , p.

Output: A p-tour minimizing the total weight of the cycles.

For an optimization problem Q with edge lengths, we denote by Q(a, b) the version of Q where weights are betweena andb
and more specifically Q[t], for t >1, the variant whereb� ta for anya >0. We will use the following problem:
MIN TSPPATH(1,2) is the variant ofMIN TSP(1,2) problemwhere instead of a tour we ask for a Hamiltonian path ofminimum

weight. MIN TSP PATH(1,2) has no differential approximation scheme[21] even ifopt = n − 1 andwor = 2(n − 1) where
n is the number of vertices since it is proved in[2] that MIN TSP(1,2), when the subgraph restricted to edges of length 1 is
Hamiltonian and cubic, has no standard approximation scheme. We will also use the following problems:

PARTITIONING INTO PATHS OF LENGTHk (kPP): Given a graphG = (V ,E) with |V | = (k + 1)q, is there a partition ofV
into q pathsP1, . . . , Pq , each path withk + 1 vertices? 2PP has been proved NP-complete in[10] whereas, more generally,
the NP-completeness ofkPP is proved in[18] as a special case of theG-PARTITION PROBLEM. Thus(n − 1)PP is the decision
version of HAMILTONIAN PATH.
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MAXWEIGHTEDPARTITIONING INTOPATHSWITHATMOSTkVERTICES(MAXWEIGHTEDATMOSTkPP):Givenaweighted
complete graphG where each edge(i, j) ∈ E is endowed with aweightdi,j �0, we want to find a partition of vertices into

pathsP1, ..., Pq , each path with at mostk vertices (or indifferentlyk − 1 edges) such that
∑q

i=1d(Pi) is maximum. There is an
easy reduction proving the NP-hardness of this problem betweenkPP and MAXWEIGHTED ATMOST(k + 1)PP that consist to
complete the graphG instance ofkPP by edges of weight 0.
A binary 2-matching(also called2-factororcycle cover) is a subgraph inwhich each vertex inVhas a degree 2. Since the graph

is simple, each cycle has at least three vertices.Aminimumbinary 2-matchingis onewithminimum total edgeweight. Hartvigsen
[14] has shown how to compute a minimum binary 2-matching in O(n3) time (see[25] for another O(n2|E|) algorithm). More
generally, abinary f-matching, wheref is a vector of sizen + 1, is a subgraph in which each vertexi of V has a degreefi . A
minimum binary f-matchingis one with minimum total edge weight and is computable in polynomial time[5].

3. kVRP

nVRP is standard equivalent to TSP. So, using the result of Sahni andGonzalez[26] we deduce thatnVRP is not 2p(n) standard
approximable for any polynomialp, unless P= NP. In fact for anyk�5 the problem is as hard to approximate asnVRP.

Theorem 1. For all k�5 (even if k is a function of n), kVRP, is not2p(n) standard approximable for any polynomial p, unless
P= NP.

Proof. We use a reduction fromPARTITIONING INTO PATHSOF LENGTHk (kPP). Given the graphG= (V ,E) onn′ = (k+1)q
vertices we construct a graphG′ on n vertices, instance of(k + 3)VRP. We add a vertex 0 (the depot) toG and a setA of 2q
vertices. We define the functiond as follows:di,j = 1, if i ∈ V ∪ {0} andj ∈ A or if (i, j) ∈ E andi, j ∈ V . Finally, the

remaining edges have weightn2p(n).
If G contains a decomposition into disjoint paths ofk + 1 vertices thenopt(G′)= q(k + 4), otherwiseopt(G′)>n2p(n). So,

a 2p(n) standard approximation for (k + 3)VRP could decidekPP in polynomial time. The conclusion follows.�

3.1. GENERAL kVRP

Whend is a metric, the reduction of TSP tonVRP is straightforward, and it easily follows that computingopt is NP-hard.
On the other hand, this reduction between the corresponding maximization problems MAX TSP and MAX nVRP leading to the
conclusion that computingwor is also NP-hard, does not work. We can easily prove this result by applying a reduction from
kPP with weight 1 and 3. The idea of this reduction is to construct from a graphG= (V ,E) with |V | = (k + 1)q an instance of
kVRP by adding the depot vertex 0 and settingde = 3 if e ∈ E andde = 1 otherwise. It is easy to verify that the answer tokPP
is positive if and only ifwor�q(3k + 2).
In the following we give a12 differential approximation for non-metrickVRP. We first compute a lower boundLB. Then we

generate a feasible solution forGwith valuegood=LB+�1. Next, we generate another feasible solution of valuebad=LB+�2
where�2��1. This proves that the approximate solution with valuegoodis an� differential approximation where

� = wor − good

wor − opt
� bad − good

bad − opt
� �2 − �1

bad − LB
= �2 − �1

�2
= 1− �1

�2
, (1)

since for a minimization problemwor�bad�good�opt�LB. To generateLBwe replace 0 by a complete graph with a set
V0 of 2n vertices and zero length edges. The distance between a vertex ofV0 and a vertexi of V \V0 is the same as the distance
between 0 andi. Denote the resulting graph byG′. Compute inG′ a minimum weight binary 2-matchingM ′.

Lemma 2. Let LB denote the weight ofM ′, and denote by opt the value of an optimalVRPsolution. Thenopt�LB.

Proof. It is sufficient to show that for anyVRP solution inG there exists a binary 2-matching inG′ with the same value. Consider
an optimal VRP solution inG and letC be a cycle in it. Generate inG′ a cycleC′ which is asC except that 0 is replaced by two
new adjacent vertices fromV0. Repeat this process for every cycle in the VRP solution, taking care that the subsets of vertices
selected fromV0 are disjoint (an optimal solution may only contain cycles(0, i,0) for i = 1, . . . , n and in such a case, we need
to use all vertices ofV0). In the last cycle insert all the remaining vertices ofV0. The result is a binary 2-matching since every
cycle has at least three vertices and the cycles are disjoint and coverV. Since the value of cycleC′ is the same as the value ofC,
the optimum of VRP is greater than or equal to the minimum binary 2-matching.�
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Fig. 1.m = 6.

Lemma 3. A binary 2-matchingM ′ ofG′ can be transformed in polynomial time into a set M of cycles covering vertices of G
with the same weight.

Proof. If a cycle ofM ′ does not contain a vertex ofV0 then this cycle is considered inM. If a cycle ofM ′ contains more than
one consecutive vertices fromV0 then replace these vertices by one vertex ofV0. Consider in the following a cycleC′ of M ′
containing at least one vertex fromV0 and one fromV (G′)\V0. Suppose thatC′ = (v10, �1, v

2
0, �2, . . . , v

t
0, �t , v

1
0) where paths

�1, . . . , �t contain only vertices fromV (G′)\V0. ThenM will contain t cycles(0, �1,0), (0, �2,0), . . . , (0, �t ,0) that have the
same weight asC′. �

We suggest the following algorithm. W.l.o.g., we suppose that the current cycle is(0,1, . . . , m,0).
Algo _Differential VRP

1. ComputeLB the weight of a minimum weight binary 2-matchingM ′ in G′;
2. TransformM ′ intoM = {C1, . . . , Cp}, using Lemma 3;
3. For every cycleCi = (1, . . . , mi,1) ofM do

3.1. Ifmi ≡ 0mod 2 then
3.1.1. soli,1 : ={(0,1,2,0), (0,3,4,0), . . . , (0,mi − 1,mi,0)};
3.1.2. soli,2 : ={(0,mi,1,0), (0,2,3,0), . . . , (0,mi − 2,mi − 1,0)};

3.2. Ifmi ≡ 1mod 2 then
3.2.1. soli,1 : ={(0,1,2,0), (0,3,4,0), . . . , (0,mi − 4,mi − 3,0)} ∪ {(0,mi − 2,mi − 1,mi,0)};
3.2.2. soli,2 : ={(0,mi,1,0), (0,2,3,0), . . . , (0,mi − 3,mi − 2,0)} ∪ {(0,mi − 1,0)};

4. For every cycleCi = (0,1, . . . , mi,0) ofM with mi >k do
4.1. Ifmi ≡ 0mod 2 then
4.1.1. Constructsoli,1 = {(0,2,3,0), . . . , (0,mi − 2,mi − 1,0)} ∪ {(0,1,0), (0,mi,0)};
4.1.2. Constructsoli,2 = {(0,1,2,0), . . . , (0,mi − 1,mi,0)};

4.2. Ifmi ≡ 1mod 2 then
4.2.1. Constructsoli,1 = {(0,2,3,0), . . . , (0,mi − 1,mi,0)} ∪ {(0,1,0)};
4.2.2. Constructsoli,2 = {(0,1,2,0), . . . , (0,mi − 2,mi − 1,0)} ∪ {(0,mi,0)};

5. For every cycleCi = (0,1, . . . , mi,0) ofM with mi �k do soli,1 = soli,2 = Ci ;
6. OutputAPX = ⋃p

i=1 arg min{d(soli,1), d(soli,2)};

Theorem 4. Algo _Differential VRP is a 1
2 differential approximation algorithm for kVRP,with k�3.

Proof. Consider an arbitrary cycleCi of M and letaddi,j denote the added weight ofsoli,j for j = 1,2 with respect to the
length ofCi . Note that sinceM was computed to have a minimum weight,addi,j �0 and we haved(soli,j )= d(Ci)+ addi,j
for j = 1,2.
On the other hand, letbadi be the weight of the feasible solutionsoli,3 defined byCi if 0 ∈ Ci and |Ci |�k + 1 and by

{(0,1,0), . . . , (0,mi,0)} otherwise; in any case, we havebadi = d(Ci) + addi,1 + addi,2.
Figs. 1and2give an illustration of these solutions whenCi = (1, . . . , mi,1) andmi =6 and, respectively,mi =3. Sum these

inequality overi and let�1 = ∑p
i=1min{addi,1, addi,2} and�2 = ∑p

i=1(addi,1 + addi,2). We have�2�2�1, LB = d(M)=∑p
i=1d(Ci) andwor�

∑p
i=1badi . So, the theorem is proved by (1).�
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Fig. 2.m = 3.

When we usebounded metrics(i.e., when the maximum weightdmax is not very far from the minimum weightdmin),
we are able to give some relations between differential and standard ratios. Bounded metric variants of TSP were studied by
Papadimitriou andYannakakis[24] and more recently by Papadimitriou and Vempala[23], and Engebretsen and Karpinski[8].
In the following, we denote bykVRP[t] the version ofkVRP satisfyingdmax/dmin� t for somet >1.

Theorem 5. A � differential approximation algorithm forkVRP[t] is also a� + (1− �) 2tk
k+1 standard approximation algorithm

for kVRP[t].

Proof. LetG= (V ,E) be a graph whereV = {0, . . . , n} anddmax/dmin� t for somet >1. An optimal solution forG contains
at leastn + �n/k� edges since it has at least�n/k� cycles, and then we have:

opt� ndmin(1+ k)

k
. (2)

On the other hand, any solution ofG contains at most 2n edges and then, we deduce the following upper bound for the worst
solution:

wor�2dmaxn. (3)

Finally, regrouping inequalities (2) and (3) and since we havedmax� tdmin, we obtain the inequality:wor�2tk/(k + 1)opt .
Let apxbe a� differential approximation forkVRP[t]. Using the previous inequality we deduce:

apx��opt + (1− �)wor��opt + (1− �)2t
k

k + 1
opt. � (4)

Using the previous theorems we deduce some new standard results forkVRP[t]. More exactly, we obtain a72 − 3/(k + 1)

standard approximation forkVRP [3] and a92 − 4/(k + 1) standard approximation forkVRP [4].

3.2. METRIC kVRP

The first part of this section starts with some positive differential approximation results and ends with a negative result. In the
second part, we present an improvement of the best known approximation algorithm for 3VRP.

3.2.1. Differential approximation results
Whend is a metric, computing a worst solution becomes easy as shown by the next lemma:

Lemma 6. wor = 2
∑n

i=1d0,i .

Proof. Letsolbe a feasible solution and denote by(0,1, . . . , mi,0) one of these cycles.We replace it by(0,1,0), . . . , (0,mi,0)
and by the triangle inequality, this change does not increase the value of the solution. So, we can repeat it on each cycle and
finally obtain the solution(0,1,0), . . . , (0, n,0). �

In Theorem 4 we have shown thatkVRP is 12 differential approximable.We now show that in the metric case, the same bound
can be achieved by a simpler algorithm.
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We compute a minimum weight perfect matchingM on the subgraph induced by{1, . . . , n}, if n is even, or by{0,1, . . . , n}
if n is odd. We link each endpoint different of 0 ofM to the depot. We claim that

opt�2d(M). (5)

Indeed, consider an optimum solution forkVRP. Walk around it and shortcut in order to obtain a Hamiltonian cycleC on
{0,1, . . . , n} if n is odd and a Hamiltonian cycleC on {1, . . . , n} if n is even.We haveopt�d(C) by the triangle inequality and
this cycle is the sum of two perfect matchings which are greater than or equal toM.
Using (5), Lemma 6 and the construction of the approximate solution, we obtain:

apx = d(M) +
n∑

i=1

d0,i �
1

2
opt + 1

2
wor, (6)

proving that the result is a12 differential approximation.

Theorem 7. METRICkVRPis�·(k−1)/k differential approximable,where� is the differential approximation ratio forMETRIC
TSP.

Proof. Our algorithm modifies theOptimal Tour Partitioningheuristic of Haimovich et al.[12]: first construct a tourT of value
val(T ) onVusing the� differential approximation algorithm for TSP.W.l.o.g., assume that this tour is described by the sequence
(0,1, . . . , n,0). We producek solutionssoli for i = 1, . . . , k and we select the best solution. The first cycle ofsoli is formed by
the sequence(0,1, . . . , i,0) and then each other cycle (except possibly the last) ofsoli has exactlyk consecutive vertices (for
instance, the second cycle is(0, i + 1, . . . , i + k,0)) and finally, the last cycle is formed by the unvisited vertices (connectingn
to the depot 0). Denote byapxi for i = 1, . . . , k the values of the solutionsoli and byapxthe value of the best one.
In the union of solutionssol1, . . . , solk each edge ofT \{(0,1), (0, n)} appear exactly(k − 1) times and each edge(0, j) for

j 
= 1, n appears exactly twice. Finally, edges(0,1) and(0, n) appear exactly(k + 1) times. SinceworVRP = 2
∑n

i=1d0,i by
Lemma 6, we deduce:

apx� 1

k

k∑
i=1

apxi �
(k − 1)

k
val(T ) + 1

k
worVRP. (7)

SinceT is a� differential approximation then

val(T )�(1− �)worTSP+ �optTSP. (8)

Since it is possible to construct from an optimum solution of VRP a solution of TSP with a smaller value (using the triangle
inequality), it follows that

optTSP�optVRP. (9)

Also, by connecting the depot twice with each customer, we can construct from a solution of TSP a solution of VRP with a
greater value, and therefore

worTSP�worVRP. (10)

Using (7)–(10) we obtain that

apx��
k − 1

k
optVRP+

(
1− �

k − 1

k

)
worVRP. �

Since the best known differential approximation algorithm for TSP is2
3 [15,20] then the algorithm of Theorem 7 is an

2
3 · (k − 1)/k differential approximation algorithm for METRIC kVRP. Fork >4 this is an improvement over the bound of1

2
given by Theorem 4 for the GENERAL (NON-METRIC) kVRP.
We will proceed now to improve the bound given in Theorem 7 by using a generic algorithm. When we deal with a cycle of

sizemwe consider the vertices modulom.
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Algo _Differential Metric kVRP

1. Find a partition ofV \{0} by cyclesM = {C1, . . . , Cp} using aPreprocessing algorithm;
2. For every cycleCi = (1, . . . , mi,1) ofM with mi = kq + r, 0�r < k do

2.1. Forj = 1 tomi do
2.1.1. Let(�1, . . . , ��mi/k�) = Ci\[{(j, j + 1)} ∪ {(j + r + �k, j + r + 1+ �k) : 0��<q}];
2.1.2. Constructsoli,j = ⋃�mi/k�

�=1 {(0, ��,0)};
2.2. Letsoli = arg min{d(soli,1), . . . , d(soli,mi

)}
3. OutputAPX = ⋃p

i=1soli ;

By using the construction of solutionssoli,1, . . . , soli,mi
, we easily deduce the following lemma:

Lemma 8. Consider a cycleCi = (1, . . . , mi,1) of M withmi = kq + r, 0�r < k.We have:

(i)
∑mi

j=1d(soli,j ) = (mi − q)d(Ci) + 2q
∑mi

j=1d(0, j) if r = 0.

(ii)
∑mi

j=1d(soli,j ) = (mi − q − 1)d(Ci) + 2(q + 1)
∑mi

j=1d(0, j) if r 
= 0.

Proof. (i) soli,j contains�mi/k� = q cycles for everyj = 1, . . . , mi . Thus, in
⋃mi

j=1soli,j , each edge ofCi appears exactly
mi − q times and each edge(0, j) appears exactly 2q times.
(ii) soli,j contains�mi/k�= q +1 cycles for everyj =1, . . . , mi . So, the same argument as previously shows that each edge

of Ci appears exactlymi − (q + 1) times and each edge(0, j) appears exactly 2(q + 1) times in
⋃mi

j=1soli,j . �

Theorem 9. METRIC4VRP is 3
5 differential approximable andMETRIC kVRP is 2

3 differential approximable with5�k�8.

Proof. Our preprocessing algorithm works as follows: we compute a minimum weight binary 2-matchingM = (C1, . . . , Cp)

on the subgraph induced byV \{0}. Consider a cycleCi = (1, . . . , mi,1) ofM with mi = kq + r and letwori = 2
∑mi

j=1d0,j .
Assumeq = 0. Since the best solution (i.e.,soli ) is better than the average one, we obtain using Lemma 8:

d(soli )�
r − 1

r
d(Ci) + 1

r
wori = 1

r
(wori − d(Ci)) + d(Ci). (11)

Sincewori �d(Ci) by the triangle inequality andr�3 (Ci contains at least 3 vertices), we deduce:

d(soli )�
2

3
d(Ci) + 1

3
wori . (12)

Now, assumeq�1. If r = 0, then we deduce:

d(soli )�
k − 1

k
d(Ci) + 1

k
wori �

2

3
d(Ci) + 1

3
wori (13)

sincek�3. Otherwise, we haver�1 and we obtain:

d(soli )�
q + 1

kq + r
(wori − d(Ci)) + d(Ci)

and we deduce sincer, q�1:

d(soli )�
k − 1

k + 1
d(Ci) + 2

k + 1
wori . (14)

On the one hand, it is possible to construct from an optimum solution of METRICVRP a feasible solution of TSP on the
subgraph induced byV \{0} (by shortcutting) with a smaller value and we deduced(M)= ∑p

i=1d(Ci)�optTSP�optVRP. On

the other handwor = ∑q
i=1wori . Finally, by summing overi inequalities (12), (13) and (14) and by distinguishing the case

k = 4 andk >4 we obtain the expected result.�
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The algorithm of Theorem 9 works for anyk�3 and it gives the ratio12 for METRIC3VRP and23 for k�9.We now improve
the previous bound fork = 3 andk�9 using another preprocessing algorithm. But surprisingly, this algorithm computes an
approximate TSP with maximum weight.

Remark 10. The differential and standard approximation ratios for MAX WEIGHTED ATMOSTkPP coincide. Indeed, we have
wor = 0 since{Pi}i∈V wherePi = {i} is a feasible solution.

This problem is very close to METRIC kVRP when we deal with differential ratio:

Theorem 11. For anyk�3, MAXWEIGHTEDATMOSTkPPandMETRIC kVRPare differential equivalent.

Proof. In order to reduce METRIC kVRP to MAX WEIGHTED ATMOSTkPP, consider an instanceG of METRIC kVRP with n
customers.We construct an instanceI ′ of MAXWEIGHTEDATMOSTkPP as follows: we delete the depot 0 and consider the graph
Kn and setd ′

x,y = d0,x + d0,y − dx,y for any verticesx, y ∈ V \{0}. By the triangle inequality,d ′
x,y �0.d ′

x,y denotes the saving
gained with respect to the worst solution, by joiningxandy in a cycle rather then reaching each of them from the depot.We have
a one to one correspondence between a pathP = (1, . . . , j) using at mostk vertices inI ′ and the cycleC = (0,1, . . . , j,0) with

at mostk customers inG. Moreover,d ′(P ) = 2
∑j

i=1d0,i − d(C). Finally, we also have a one to one correspondence between
feasible solutions of these two problems, and sincewor = 2

∑n
i=1d0,i , for any solution ofG of valuevalwe have

val′ = worVRP− val. (15)

Conversely we reduce MAX WEIGHTED ATMOSTkPP to METRIC kVRP. LetG andd be an instance of MAX WEIGHTED
ATMOSTkPP.We add a depot 0 and we set:d ′

0,i =maxe∈E de,∀i ∈ V andd ′
i,j

= 2maxe∈E de − di,j ,∀i, j ∈ V . The rest of the
proof is similar. �

Let� be the standard approximation ratio for MAX TSP. The current best value for� is 25
33 obtained by a randomized algorithm

in [17].

Theorem 12.METRIC kVRP is (2533(k − 1)/k − �) differential randomized approximable fork�3 and any�>0.

Proof. Let G be an instance of METRIC kVRP with n customers and let�>0. In order to obtain a good solution forG, we
apply algorithmAlgo _Differential Metric kVRPwhere the preprocessing is a tourT = C1. This tour is produced by
the algorithm from[17] applied on the instanceI ′ = (Kn, d

′) with n = kq + r obtained fromG as in Theorem 11, that is a2533
randomized approximation. Using the definition of weightd ′ and the Lemma 8, we obtain:

worVRP− apx = max
1� j �n

d ′(sol1,j )�
∑n

j=1d
′(sol1,j )
n

�
(
k − 1

k
− �

)
d ′(C1),

whenq�(k − 1)/�k2 − 1/k. Otherwise, we exhaustively solve the problem.
On the other hand, an optimal solution of MAX WEIGHTED ATMOSTkPP onI ′ can be used to construct a feasible solu-

tion of MAX TSP onI ′ by joining the endpoints of the paths. HenceoptMax TSP�optMax weighted atmostkPP. Finally, by

using the2533 standard approximation algorithm for MAX TSP for obtaining the tourT, we haved ′(C1)� 25
33optMax TSPand

optMax weighted atmostkPP= worVRP− optVRP since (15). �

In particular, we obtain a(5099 − �) differential randomized approximation for METRIC 3VRP, that is better than the12
differential approximation given in Theorem 4. It also improves the result of Theorem 9 fork�9 since we obtain the differential
ratio� = 25(k − 1)/33k − �> 2

3 for METRIC kVRP. For instance, this ratio is200297 � 0.67 fork = 9.
We summarize in the following the differential results that we obtain for METRIC kVRP:

• METRIC3VRP is(5099 − �) differential randomized approximable for any�>0.

• METRIC4VRP is 35 differential approximable.

• METRIC kVRP is 23 differential approximable for 5�k�8.

• METRIC kVRP is(2533(k − 1)/k − �) differential randomized approximable for anyk�9 and for any�>0.

Finally, note the similarity between the results given in Theorem 7 and the one given in Theorem 12. They both deal with the
reduction in approximation from METRIC kVRP to MAX TSP (MAX TSP and MIN METRIC TSP are equivalent with respect
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to the differential ratio[20]) and the expansion is very similar�(k − 1)/k for Theorem 7 and�(k − 1)/k − � for Theorem 12.
The only difference is on the measure used: the first reduction considers the differential ratio for the two problems whereas the
second one considers the standard ratio for MAX TSP. Actually, the standard ratio� = 25

33 is better than differential ratio� = 2
3

for MAX TSP and more generally the best standard ratio�bestfor MAX TSP will be always better than the best differential ratio
�best (i.e.,�best��best) since we have a trivial reduction from any maximization problem to itself transforming a differential
result into a standard result (see Lemma 1.3 in Monnot[20]), leading to the conclusion that the reduction of Theorem 12 is better.
Nevertheless, if the optimal result is�best= �best then the reduction of Theorem 7 will be better.
SincenVRP and TSP are standard equivalent, from the result of Papadimitriou andYannakakis[24] we deduce immediately

thatnVRP(1,2) has no standard approximation scheme unless P= NP.Also TSP(1,2) has no differential approximation scheme
[22] but we cannot deduce immediately thatnVRP(1,2) has no differential approximation scheme sincewornVRP andworTSP
may be very far. However, we prove in the following a lower bound for the differential approximation ofnVRP(1,2).

Theorem 13. nVRP(1,2) is not(22192220+ �) differential approximable, for any constant�>0,unlessP= NP.

Proof. SincewornVRP�4n�4optnVRP, a� differential approximation fornVRP(1,2) gives a� + 4(1− �) standard approx-
imation fornVRP(1,2). Using the negative result given in[8] that TSP(1,2) is not741740 − � standard approximable, we obtain
the expected result.�

3.2.2. Some standard approximation results
Despite these observations, by using Theorem 9 for METRICkVRP and Theorem 5we establish better standard approximation

ratio than Haimovich, Rinnooy Kan and Stougie (i.e.,(52 −3/2k) standard approximation) when we deal with bounded metrics,

i.e.,dmax� tdmin. More exactly, METRIC 4VRP [2] is 47
25 standard approximable and METRIC kVRP [2] is (2− 4/3(k + 1))

standard approximable fork�5.
We now describe some results concerning the standard approximability of METRIC kVRP. In [12], a (52 − 3/2k) standard

approximation for METRIC kVRP is obtained by reduction to METRICTSP and using Christofides’ algorithm.
The following theorem gives a reduction transforming a standard polynomial time approximation scheme into a differential

one, even if we deal with unbounded metrics (dmax/dmin is not upper bounded).

Theorem 14. A � differential approximation algorithm forMETRIC kVRP is also ak − �(k − 1) standard approximation
algorithm.

Proof. Consider an optimal solution for an instanceG of METRIC kVRP and w.l.o.g. denote by(0,1, . . . , mi,0) one of its
cycles. Using the triangle inequality, the length of this cycle is at least 2 max{d0,i : i = 1, . . . , mi}� 2

k

∑mi

i=1d0,i . Summing
over each cycle, we obtain using Lemma 6:

opt� 2

k

n∑
i=1

d0,i = wor

k
. (16)

Let apxbe a� differential approximation forG. Using inequality (16) we deduce:

apx��opt + (1− �)wor��opt + k(1− �)opt. � (17)

Using Theorem 14, Remark 10 and Theorem 12 we obtain:

Corollary 15. METRIC3VRPis (3− 4
3� + �) standard approximable for all�>0where� is the standard approximation ratio

for MAX TSP.

More exactly, since� = 25
33 [17] we obtain the bound

197
99 � 1.99 that is an improvement of the 2 standard approximation of

Haimovich et al.[12].

4. EDGECOSTVRP

We assume now that a cost� satisfying the triangle inequality is associated with any edge, and the solution must satisfy that
the total cost on each cycle does not exceed�.
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Note that if we do not assume that� is a metric then even deciding whether the problem has any feasible solution is NP-
complete. For a proof seeTheorem27 below. Therefore, we assume that� satisfies the triangle inequality, and to ensure feasibility
we also assume that 2�0,i �� for i = 1, . . . , n.

Theorem 16. EDGECOSTVRP is 13 differential approximable.

Proof. We start with a binary 2-matching as described in Lemma 2 except that the initial graph is not a complete undirected
graphGbut a partial graphG′ of it built by deleting the edges(i, j) for i 
= 0 andj 
= 0 such that�0,i +�i,j +�j,0> �. Observe
thatM is still a lower bound of an optimal solution of EDGECOSTVRP. Then, we apply the algorithmAlgo _Differential
VRPexcept that we change steps 3.2, 4, 5 and 6. The step 3.2 becomes the following: we producemi solutionssoli,1, . . . , soli,mi

wheresoli,j = {(0, j + 1, j + 2,0), . . . , (0, j − 2, j − 1,0)} ∪ {(0, j,0)} for j = 1, . . . , mi .
Thesteps4and5become, respectively: “foreverycycleCi=(0,1, . . . , mi,0)ofMwith

∑
e∈E(Ci)

�e > � (resp.
∑

e∈E(Ci)
�e��)

do ...”, whereas the step 6 becomes: the solutionAPX is the solution obtained by concatenating the shortest ofsoli,j for each
cycleCi .
Observe that in step 3.2, each edge ofCi appears exactly�mi/2� times in (

⋃
j �mi

soli,j ) and each edge(0, j) appears

exactlymi +1 times. Thus, sincemi �2, the same arguments as in Theorem 4 proved thatAPXis a 13 differential approximation.
�

In [12], the authors consider two versions ofkVRP with additional constraint on the length of each cycle. In the first problem
that we will call here VERTEXCOSTVRP, each customer has a cost and we want to find a solution such that the total customer
cost on each cycle does not exceed a given bound�. In the second, called in[19] MIN METRIC DISTANCE, we want to find
a solution such that the total cost on each cycle does not exceed a given bound�. For each of these two problems, we give a
reduction preserving differential approximation scheme from EDGECOSTVRP.

Lemma 17. A � differential approximation solution forEDGE COSTVRP (respectively, metric case) is also a� differential
approximation forVERTEXCOSTVRP (respectively,metric case).

Proof. LetG= (V ,E)with d, cand�>0 be an instance of VERTEXCOSTVRP.We construct an instance of EDGECOSTVRP
as follows. The graph and the functiond are the same whereas the function� is defined by:�i,j = (ci + cj )/2 where we assume
thatc0 = 0. This function satisfies the triangle inequality. Moreover, letC be a cycle linking the depot to a subset of customers.
We have

∑
i∈V (C)ci �� iff

∑
e∈E(C)�e��. �

Corollary 18. VERTEXCOSTVRP is 1
3 differential approximable.

MIN METRICDISTANCE is a particular case of EDGECOSTVRP where the function� is exactly the functiond. Thus, from
Theorem 16 we deduce the corollary:

Corollary 19. MIN METRICDISTANCE is 1
3 differential approximable.

EDGECOSTVRP andVERTEXCOSTVRP have neither standard nor differential approximation scheme unless P= NP since
these two problems containnVRP.

5. MIN–MAX kTSP

The metric case of the problem was studied by Fredrickson et al.[9] where they give a52 − 1/k standard approximation
algorithm by constructing a reduction from this problem to METRICTSP and using Christofides’ algorithm[4].

Theorem 20.MIN–MAX rTSPis not2p(n) standard approximable for any polynomial p andr�1,unlessP= NP.

Proof. We reduce HAMILTONIAN PATH problem to MIN–MAX rTSP.We start with the reduction described in Theorem 1 with
k = n− 1 andq = 1 and the weightn2p(n) is replaced by(n+ 3)2p(n) (recall that the(n− 1)PP problem is the HAMILTONIAN
PATH problem) and we applyr times this reduction (so, the final graph consists of depot andr copies ofG and setA of 2r
vertices). Thus, a 2p(n) standard approximation for MIN–MAX rTSP could decide HAMILTONIAN PATH, that is proved NP-hard
in [10]. �
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We now turn to the metric case. We give a12 differential approximation algorithm for METRICMIN–MAX kTSP,k�2 and
we show that the problem has neither standard nor differential approximation scheme unless P= NP.

Theorem 21.METRICMIN–MAX 2TSPis 1
2 differential approximable.

Proof. Consider a tourT = (0, . . . , n,0) of G. Let i be the smallest index such that
∑i

j=0dj,j+1�d(T )/2. We consider the
solutionC1 = (0,1, . . . , i,0) andC2 = (0, i + 1, . . . , n,0).
Note that

d(C1) − d0,i =
i−1∑
j=0

dj,j+1� d(T )

2

and

d(C2) − d0,i+1 = d(T ) −
i∑

j=0

dj,j+1�d(T ) − d(T )

2
= d(T )

2
.

So, max{d(C1), d(C2)}�d(T )/2+ max{d0,i , d0,i+1} �worTSP/2+ opt2TSP/2. Since a worst tour onV with the value
worTSP is a feasible solution for 2TSP thenwor2TSP�worTSP. Thus, max{d(C1), d(C2)}�wor2TSP/2+ opt2TSP/2. �

Corollary 22. METRICMIN–MAX kTSP is12 differential approximable.

Proof. The previous algorithm is a12 differential approximation for generalk�3 since we have alsoworkTSP�worTSPand
max{d0,i , d0,i+1} �optkTSP/2. �

Theorem 23.MIN–MAX kTSP(1,2),k�2,has neither standard nor differential polynomial time approximation scheme, unless
P= NP.

Proof. Assume that MIN–MAX kTSP(1,2) has a standard polynomial time approximation scheme calledA�. We prove that MIN
TSP(1,2) on instances when the subgraph restricted to the edges of length 1 is Hamiltonian, has a standard polynomial time
approximation scheme. This is a contradiction with the result of Bazgan[2, p. 99].
Let 0< �<1 and letG be a complete graph onn = q · k + r, 0<r�k vertices, with edges of length 1 and 2, an instance of

MIN TSP(1,2) such that the subgraph restricted to the edges of length 1 is Hamiltonian.W.l.o.g., we assumeq�12/� (otherwise,
an exhaustive search solves the problem); thus 4�q · �/3.We construct an instanceG′ of MIN–MAX kTSP adding toG a depot,
the vertex 0, and we set the distance between 0 and a vertexi of G to 2. It is easy to see thatopt(G) = optTSP(G) = n and
opt(G′)= optMin–Max kTSP(G

′)= q + 4 since the optimum ofG′ is obtained when the Hamiltonian cycle is divided ink paths
where the difference of sizes is at most 1.
In order to obtain an(1+ �) approximation forG, we apply algorithmA�/3 which finds a solution ofG′ with valueval′ �(1+

�
3)opt

′. From this solution, we construct a solution inGputting together the paths induced by the solution inGand linking these
paths by edges of length at most 2. This solution has the valueval�k(val′ − 4) + 2k�k · val′. So,

val�k
(
1+ �

3

)
(q + 4) = k · q + 4k + �

3
· 4k + �

3
· k · q�k · q + � · k · q�(1+ �)opt.

In order to see that MIN–MAX kTSP has no differential approximation scheme, we show that if it was the case thenMIN–MAX
kTSP on the particular instances that we consider above would have a standard approximation scheme. Suppose that MIN–MAX
kTSPhasadifferential approximation schemeA�,∀�,0< �<1.So,A� gives a solution forG

′ with a valueval��opt(G′)+(1−
�)wor(G′). For the above instancesG′ of MIN–MAX kTSP,opt(G′)= (n− r)/k+4 andwor(G′)�2(n−1)+4�2kopt(G′).
Thus,val� [� + 2k(1− �)]opt(G′), and for an(1+ �) standard approximation solution for an instance of MIN–MAX kTSP,
∀�>0, we applyA� with � = 1− �/(2k − 1). �

For certain cases we can give inapproximability gaps, for examples, when we have�n/6� vehicles we can prove that the
problem is not76 approximable and more generally we obtain:

Theorem 24.MIN–MAX �n/k�TSP(1,2),k�6 is not(k + 1)/k − � standard approximable for any�>0,unlessP= NP.
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Fig. 3.M andsol.

Proof. We use a reduction from(k − 4)PP withk�6. We use the reduction described in Theorem 1 except that we replace
the distancesn2p(n) by distances 2. Then, ifG contains a decomposition in paths of lengthk − 4 thenopt(G′) = k, otherwise
opt(G′)�k+1. So, a(k+1)/k−� standard approximation forMIN–MAX �n/k�TSP(1,2) could decide(k−4)PP in polynomial
time. �

6. MIN–SUM EkTSP

Bellmore andHong[3] showed that when the constraintp=k is replaced byp�k, thenMIN–SUM kTSP is standard equivalent
to TSP on an extended graph. This is true even for the directed version of the problem and when there is a cost associated with
activating a salesman. For our case the transformation simply involves replacing the depot vertex 0 bykvertices of zero distance.
Also, the metric case of thep�k version is not of interest since the solution is just a single cycle (thus, we deal with the case
p = k and MIN–SUM EkTSP denote this problem).
MIN–SUM EkTSP is differential equivalent to METRICMIN–SUM EkTSP. This observation follows since the number of edges

in every solution is the same (like in the TSP case). Hence, we add a constant to all the edge lengths and achieve the triangle
inequality without affecting the best and worst solutions.
Similarly, MIN–SUM EkTSP is differential equivalent to MAX–SUM EkTSP.
Theorem 20 can be adapted in order to prove that MIN–SUM EkTSP is not 2p(n) standard approximable, for any polynomial

p, unless P= NP.
We now give the main results of this section.

Theorem 25.METRICMIN–SUM EkTSPis 2
3 differential approximable, ∀k�1.

Proof. Let G andd be an instance of METRICMIN–SUM EkTSP. Add to every edge incident with the depot a parallel copy.
Compute a minimum binaryf-matchingM = {C1, . . . , Cp} (C1, . . . , Ck denote the cycles ofM containing the depot 0) onG
wheref (0) = 2k andf (v) = 2 for v ∈ V \{0}. Compute by using a23 differential approximation algorithm of[15] or [20]

a solutionC′ for TSP on the subgraphG′ of G induced byV ′ = V \(⋃k−1
i=1 V (Ci)) ∪ {0}. The approximate solutionsol for

METRICMIN–SUM EkTSP is composed ofC′ and the cyclesC1, . . . , Ck−1. SeeFig. 3. SinceM is aminimumbinaryf-matching
M onG thenM ′ = M\(⋃k−1

i=1Ci) is an optimum binary 2-matching onG′. Let r = ∑k−1
i=1d(Ci). It is proved in[15] or [20]

that the TSP algorithm gives a solution satisfyingval� 2
3d(M

′) + 1
3worTSP(G

′). SinceworkTSP(G)�worTSP(G
′) + r and

optkTSP(G)�d(M ′) + r, we deduce that the value ofsolsatisfies:

apx = val + r� 2

3
[d(M ′) + r] + 1

3
[worTSP(G

′) + r]� 2

3
optkTSP(G) + 1

3
workTSP(G). �

Theorem 26. UnlessP= NP, MIN–SUM EkTSP(1,2)has no standard and differential approximation scheme for anyk�2.

Proof. We reduce MIN TSP PATH (1,2) on instances where the subgraphG1 with edges of length 1 is cubic and Hamiltonian to
MIN–SUM E2TSP(1,2). From a graphG= (V ,E) onn vertices, we construct a graphG′ instance of MIN–SUM E2TSP(1,2).G′
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consists of two copies ofGand a vertex 0 (the depot).Within a copy, the edges have the same distance as inG; d0,i =1, for each
vertexi in one of the two copies;di,j =2 if i andj are vertices in different copies. Using the equalitiesopt(G)=n−1=wor(G)/2
(we know by the Dirac’s theorem that the subgraphG2 with edges of length 2 is Hamiltonian since∀v ∈ V , dG2(v)�n/2) and
opt(G′)=2n+2,wor(G′)=4n, we haveopt(G′)=2opt(G)+4 andwor(G′)=2wor(G)+4.Given a solutionSofG′ with
two cycles, we can transform it in another oneS′ that contains exactly two cycles(0, P1,0), (0, P2,0), each of these two paths
are contained in a copy ofGand with a better value. The idea for doing this is to remove the edges between the two copies in the
solutionSand in each copy, we arbitrarily connect the resulting paths. We consider as solution forG the path with the smallest
value among the two. So,val = min{val(P1), val(P2)}�(val(P1) + val(P2))/2= (val(S′) − 4)/2�(val(S) − 4)/2. Since
opt(G) = opt(G′)/2− 2 andwor(G) = wor(G′)/2− 2 then a� differential approximation of MIN–SUM E2TSP(1,2) gives a
� differentialapproximation for MIN TSP PATH (1,2) on Hamiltonian and cubic graphs. The conclusion follows for MIN–SUM
E2TSP(1,2) since MIN TSP PATH (1,2) on Hamiltonian and cubic graphs has no differential approximation scheme ([2,21]). It
is easy to see that ifS is a (1+ �/2) standard approximation of MIN–SUM E2TSP(1,2) then the same solution as above with
valueval is a(1+ �) standard approximation of MIN TSP PATH (1,2). The proof fork�3 is similar. �

7. MIN VEHICLE

In this problem, the goal is to visit the customers by a minimum number of vehicles, under a constraint on the total distance
traveled by a vehicle.
In [19], it is proved that METRICMIN VEHICLE is not standard 2 approximable, unless P= NP. Indeed even deciding whether

the problem has a feasible solution is NP-complete:

Theorem 27. Deciding the feasibility ofMIN VEHICLE isNP-complete.

Proof. In order to prove the NP-hardness, we reduce HAMILTONIAN PATH problem to MIN VEHICLE. We again apply the
reduction described in Theorem 1 withk = n − 1 andq = 1, except that the distancesn2p(n) are replaced by the distances�.
Trivially there is a feasible solution forG′ only if ��n + 3. It is easy to see that MIN VEHICLE has a feasible solution iffG
contains a Hamiltonian path.�

In the opposite, deciding the feasibility of METRICMIN VEHICLE is trivial, and the condition simply amounts tod(0, i)��/2
for i = 1, . . . , n. The following theorem gives a positive result for this problem:

Theorem 28.METRICMIN VEHICLE is 2
3 differential approximable.

Proof. Consider the collectionC of sets of vertices of feasible cycles (cycles that include the depot and whose length is at most
�). Since we assume thatd is a metric,C is amonotone collection, that is, ifC′ ⊂ C andC ∈ C then alsoC′ ∈ C. This means
that ifG′ is a subgraph ofG that includes the depot, then the optimal solution onG′ is at most that ofG. This allows us to apply
the following “greedy” approach:
Construct feasible cycles with the depot and three vertices, as long as this is possible. LetG′ be the graphGexcept the vertices

of these cycles (the depot is preserved inG′). For an edge(i, j), if d0,i + d0,j + di,j > � then we remove this edge fromG′.
Denote the resulting graph also byG′. Find a maximum size matching inG′. We will show below that a such maximum size
matching inG′ is an optimum solution onG′. We now show that the union of these cycles is a2

3 differential approximation.
Denotebyk3 thenumberof cycleson threeverticesand thedepot, constructed in thefirst stepof thealgorithm.Denotebyk2 (and

k1) thenumberof edges (and isolatedvertices)obtained inG′whenwesearchamaximumsizematching.So,val(G)=k1+k2+k3.
The value of the solution obtained inG′ in this way isval′ = k1+ k2= |V (G′)| − k2 sincek1+ 2k2= |V (G′)|. Since we want
to minimizeval′ a maximum size matching gives an optimum solution. Sinceopt(G)�opt(G′) andwor = n = |V (G)|, we
obtain thatval(G) = k1 + k2 + k3 = k1 + k2 + (n − k1 − 2k2)/3� 2

3opt(G) + 1
3wor(G). �

ThealgorithmofTheorem28 is similar to theapproach in[16] for obtaining differential approximation forGRAPHCOLORING.
By applying approximation algorithms for 3-SET COVER and following the ideas of Halldórsson[13] for obtaining better
differential approximation for GRAPHCOLORING (see also[15]), the bound can be improved.

Theorem 29.METRICMIN VEHICLE is 289
360 differential approximable.

Proof. Consider the following algorithm: construct feasible cycles with four vertices as long as this is possible. LetG′ be the
graphG except the vertices of these cycles. List all the feasible cycles inG′. Note that such cycles include the depot and at
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most three other vertices, and therefore their number is polynomial. Apply an approximation algorithm for MIN 3-SET EXACT
COVER OFAMONOTONECOLLECTION, such as the algorithm of Halldórsson[13] or Duh and Fürer[7]. This former result is
a 3
4-differential approximation (see Theorem 5.2 in[13]), and the latter gives a bound of289360 (see Theorem 4.2 in[7]). �

Note that the mentioned results were developed to give differential approximations for GRAPHCOLORING, but they apply as
well to any problem of exact covering by sets that correspond to a monotone collection (see Section 4 of[15]).
In [19], it is proved that unless P= NP,MINVEHICLE is not standard 2 approximable and thuswithout standard approximation

scheme when� → ∞. In the following we establish the same result for� constant and for the differential case.

Theorem 30.MIN VEHICLE(1,2)has no standard and differential approximation scheme even if� is constant, unlessP= NP.

Proof. We prove firstly that MIN VEHICLE(1,2) has no standard approximation scheme, if P
= NP by reducing MIN TSP(1,2)
problem on on instances where the subgraphG1 with edges of length 1 is cubic and Hamiltonian to MIN VEHICLE(1,2). MIN
TSP(1,2) problem on cubic Hamiltonian graphs has no standard approximation scheme[2], thus there is a constant�0,0< �0<1,
such that it is not 1+ � standard approximable for���0, if P 
= NP.
Given a graphG= (V ,E) onn vertices, we construct a graphG′ instance of MIN VEHICLE.G′ consists of one copy ofGand

a vertex 0 (the depot) and we define the functiond ′ as follows:d ′
0,i = 1, for i ∈ {1, . . . , n} andd ′

i,j
= di,j if i, j ∈ {1, . . . , n}. It

is easy to see thatopt1 = opt(G) = n andopt2 = opt(G′) = �n/� − 1��n/(� − 1) + 1�n/(� − 2) whenn�(� − 1)(� − 2).
Given a solutionS′ ofG′ with val2 vehicles,S′ =C1, . . . , Cval2, we consider as solutionSforG the restriction of this solution

to the vertices ofG. The value ofS is val1�
∑val2

i=1 d(Ci)��val2 by the triangle inequality.
Suppose that MIN VEHICLE(1,2) would have a standard approximation schemeA�. We prove that this assumption implies

that MIN TSP(1,2) has an approximation scheme, contradiction. In order to obtain an(1+ �) approximation forG, we apply
A�/3 onG′ with � = 3+ 3/�. Thus

val1��
(
1+ �

3

) n

� − 2
= (1+ �)n.

Using this last result we prove that this problem has no differential approximation scheme if P= NP. Suppose that MIN
VEHICLE(1,2) when the graph restricted to edges of weight 1 is Hamiltonian would have a differential� approximation scheme
A�,∀�,0< �<1.Therefore, for each instanceGof the problemonnvertices, with�=3+3/�0, this algorithmgives a solution for
Gwith a valueval(G)��opt(G)+ (1−�)wor(G). Since on these instanceswor(G)=n andopt(G)=�n/(�−1)��n/(�−1)
thenwor(G)�(2+ 3/�0)opt(G) and soval(G)� [� + (2+ 3/�0)(1− �)]opt(G). Thus, in order to obtain a standard(1+ �)
approximation algorithm, 0< �<1, we have to take the solution given byA� with �=1− ��0/(3+ �0). The result follows since
as we prove above MIN VEHICLE(1,2) on these instances has no standard approximation scheme, unless P= NP. �
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