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EFFICIENT ALGORITHMS FOR OPTIMIZATION AND
SELECTION ON SERIES-PARALLEL GRAPHS*

R. HASSINt aAND A. TAMIR?

Abstract. It is well known that a series-parallel multigraph G can be constructed recursively from its
edges. This construction is represented by a binary decomposition tree. This is a rooted binary tree T in
which cach vertex g corresponds to some series-parallel submultigraph of G, denoted by G(gq), obtained
as follows. Each leaf (tip) of T represents a distinct edge of G. If g is not a leaf then it is either of a series
or parallel type. If g, and g, are the two sons of g on T, G(q) is the submultigraph obtained from G(q,)
and G(q,) by the respective series or parallel composition.

In this paper we use this tree to develop cfficient algorithms for several optimization and sclccuon
problems defined on graphs with no K, homeomorph. In particular, we provide a linear time algorithm to
find the shortest simple paths from a given vertex to all other vertices. We also construct an O(n*) algorithm
to solve the uncapacitated plant location problem, where n is the number of vertices.

We prove that graphs with no K, homeomorph contain a 2-separator, and then use it to show that the
kth longest path in the set of all intervertex distances can be selected in O(n log® n) time.

Key words. series-parallel graphs, graph decomposition, selccuon algorithms, uncapacitated plant loca-
tion problem
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1. Introduction. It is well known that various optimization problems that are -
NP-hard on general graphs can be solved efficiently on trees, by polynomial algorithms.
Some of these algorithms (e.g. [KH], [KT], [MTZC]) are of the dynamic programming
nature. They represent the given tree as a rooted tree, and then recursively solve
subproblems associated with a sequence of subtrees, (while starting with the tips of
the rooted tree). In other words, these algorithms rely heavily upon the existence of
an efficient construction that recursively generates larger components from previous
ones, and terminate with the given tree, T. The key property of this construction is
that each component T}, generated in the process, is associated with some distinguished
vertex, say v, such that, every simple path connecting a vertex in T; with a vertex in
T — T; must contain v,

Another property of trees which is useful in designing efficient divide-and-conquer
algorithms, is the existence of a 1-separator (e.g. [GOL], [KH]). A l -separator of an
n-vertex tree T=(V, E) is a vertex v for which there exists a partition of V—{v}
consisting of V; and V, with,

1) vinv,=0,

(2) |Vi|=(2/3)n,i=1,2, and

(3) no edge in E connects a vertex in V; with a vertex in V..

Another class of graphs for which an efficient construction (or decomposition)
scheme is available is the class of series-parallel graphs [VTL]. Such a construction is
represented by a binary decomposition tree that can be found in linear time [VTL].
Here, each component. G; of the underlying graph G, generated in the process is
associated with two vertices, say {u;, v;} such that every simple path connecting a vertex
in G, with a vertex in G — G, must contain either u; or v;

In this paper we focus on graphs, not necessarily biconnected, that contain no
K, homeomorph. (Note that this class of graphs contains all trees.) Our main goal is
to extend some of the results mentined above with respect to trees. We will use the
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above binary decomposition tree to design efficient recursive algorithms for several
optimization problems. We will deal mainly with problems which are not affected by
adding to a graph edges with infinite length, (e.g. shortest paths problems). (This will
enable us to convert a graph with no K, homeomorph into an equivalent series parallel
graph.) In particular, we produce a linear time algorithm to find the shortest simple
paths from a given vertex to all other vertices. We also construct an O(n*) algorithm
to solve the simple plant location problem on an n-vertex graph with no K, homeo-
morph. (The latter is NP-hard for general graphs.)

We also use the binary decomposition tree to prove the existence and find, in
linear time, a 2-separator of a graph with no K, homeomorph. (A 2-separator of an
n-vertex graph G=(V, E) is a pair of vertices {u, v} associated with a partition of
V—{u, v} to sets V; and V; satisfying (1)-(3) above.)

We mentioned above that the l-separator of a tree has been used in designing
efficient divide and conquer algorithms on trees. We claim that the 2-separator is useful
for these purposes on graphs with no K, homeomorph. This is demonstrated in § 7,
where we study the selection of the kth longest simple path in the set of intervertex
distances. This set is of O(n?) cardinality. However, we will show that the kth largest
element in this set can be found in O(n log? n) time (i.e., without explicitly generating
the entire set). This result generalizes similar results for tree graphs, [FJ2],
[MTZC]. w e

At this point it is worth mcnuomng the seminal works of Robertson and Seymour,
[RS1], [RS2] that extend the concept of a binary decomposition tree, described above,
for general graphs. Their results are quite general and therefore are not always most
- efficient when applied to certain classes of graphs. Specifically, when we apply their -
results to graphs with no. K, homeomorph, we get weaker results than those reported
above. In particular, their work implies the existence of a 3-separator, instead of the
2-separator result reported above. This is rather crucial for our purposes, since our
selection algorithm for the kth longest path will fail if 2-separators are replaced by
3-separators. Also, their general work does not yield linear time algorithms for finding
the separators and the binary decomposition tree.

2. Graph-theoretic definitions. A multigraph G = (V, E) consists of a finite set of
vertices V and a finite multiset of edges E. Each edge is a pair (u, v) of distinct vertices.
If all the edges of G are ordered pairs G is called a directed multigraph, and if all its
edges are unordered pairs G is an undirected multigraph. If E is a set, G is a graph,
i.t. G contains no parallel edges.

A vertex v is a cut vertex of G if the removal of v, and all the edges incident to
v, from G results in a disconnected graph. G is biconnected if it has no cut vertex. A
biconnected component of G is a maximal submultigraph of G which is biconnected.
A multigraph G contains a subgraph homeomorphic to a graph H, if H can be obtained
from G by a sequence of the following operations:

(a) remove an edge,

(b) remove an isolated vertex

(c) if a vertex v has degree two, remove v and replace the two distinct edges
(u, v) and (v, w) incident to v by an edge (u, w).

This paper focuses on a class of multigraphs, called series-parallel, which are
defined as follows:

We say that edges e; and e, are in series if they have a single common vertex
which is of degree two. The edges e, and e, are parallel if they have the same set of
end vertices. By a series construction of an edge e =(u, v) we mean the replacement
of e by two edges in.series, i.e., by (u, w) and (w, v), such that w is a new vertex. By
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a parallel construction of an edge e =(u, v) we mean the replacement of e by two
parallel edges e, and e,, having u and v as their end vertices. By a series reduction of
two edges in series ¢, =(w, w) and e,=(w, v) we mean the replacement of e; and e,
by a new edge e =(u, v). By a parallel reduction of two parallel edges e, =(u v) and
e; we mean the replacement of e, and e, by a new edge e =(y, v).

A series-parallel multigraph (SPM) is a multigraph that can be obtained by a
sequence of series and parallel constructions of edges starting from a single edge.
Alternatively, G is SPM if it can be reduced to a single edge by a sequence of series
and parallel reductions.

3. Basic results on series-parallel multigraphs, The basic theorem on a SPM is due
to Dirac [DIR] and Duffin [DUF].

THEOREM 3.1. Let G be a multigraph. Then each biconnected component of G is
series-parallel if and only if G does not contain a subgraph homeomorph to K,, the
‘complete graph on four vertices.

The nextresult shows that a multigraph that does not contain K ;as a homeomorph
can be augmented by edges to obtain a biconnected SPM.

THEOREM 3.2. Let G be a connected multigraph that does not contain K, as a
homeomorph. If G has k biconnected components, then G can be augmented by at most
k —1 edges such that the resulting multigraph is a biconnected SPM.

Proof. The proof is by induction on k, the number of biconnected components.
Let Gy, - -+, Gy, k=2, be the biconnected components of G. Each pair of biconnected
components has at most one vertex in common. Suppose without loss of generality
that G, and G, have a vertex in common, say u. Let y; be a vertex in G, i =1, 2, which
- is adjacent.to u (i.e., (4, ;) is an edge of G;). Connect u, and u, by an edge, and call
the new multigraph G'. Clearly G, and G,, with the augmented edge, form a biconnected
submultigraph which we denote by G, ,. The biconnected components of G’ are G, ,
G;, - - -, G A multigraph does not contain a K, homeomorph if and only if none of
its blconncctcd components does- Thus, it suffices to show that G, ; does not contain
a K, homeomorph.

Suppose that G, , contains a K, homeomorph, H, and let x, y, z and v be the
four vertices of H of degree 3. Assume first that none of G, and G, contains all of
these four vertices. Thus, without loss of generality, let x be in G,, y be in G,, and
x# u, y # w Since x and y are of degree 3, there exist in H three (intermediate) vertex
disjoint paths connecting x and y. But, this is clearly not possible since the connection
in G' between G, and G, is only via u and or u,. Next assume without loss of generality
that x, y, z and v are all vertices o_f G,. Since G, has no K, homeomorph, it follows
(without loss of generality) that there is a path, P(x,y), in H connecting x and y,
which contains a subpath P(u, u,), consisting of no edges of G,. Replacing P(y, u,)
by the edge (yu, u,) of G, we obtain from H a K, homeomorph H’, which is contained
in G,. This is impossible since G, has no K, homeomorph.

Remark 3.3. Since the biconnected components of a graph can be obtained in
linear time, [TAR], the augmentation process described in the proof of Theorem 3.2
can also be performed in linear time.

SPM'’s can be constructed recursively as follows. Each is associated with two
vertices called terminals.

(1) A single edge is SPM. Its end vertices are the two terminals.

(2) If G, and G, are SPM’s with terminals x, y and z, w respectively, so are the
multigraphs obtained by each of the following compositions.

(2.1.) Series composition. 1dentify a terminal of G, say x, with a terminal of G,,
say z The terminals of the new multigraph are y and w. .
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(2.2.) Parallel composition. Identify one terminal of G,, say x, with one terminal
of G,, say z, and the second terminal of G,, y, with w. The terminals of the new
multigraph are the two vertices where the identifications occur.

The above recursive construction of an SPM G is represented by a binary decompo-
sition tree [VTL]. This is a rooted binary tree T in which each vertex q corresponds
to some series-parallel submultigraph of G, denoted by G(q), obtained as follows.
Each leaf (tip) of T represents a distinct edge of G. If q is not a leaf then it is either
of a series (S) or parallel (P) type. Let g, and ¢, be its two sons. G(q) is the
submultigraph obtained from G(q,) and G(q.) by the respective series or parallel
composition. In particular, if r is the root of T G(r) is the multigraph G. Figure 5 of
[VTL] illustrates a binary decomposition tree of an SPM. We note that a linear time
algorithm that finds the binary decmposition tree of a given SPM is presented in [VTL].

~Remark 3.4. Given a SPM G, a binary decomposition tree associates two terminals
with G. Suppose that G is also biconnected. If (u, v) is an edge of G it follows [DUF,
Corollary 4] that there exists a binary decomposition trée of G that induces the vertices
u and v as the two terminals of G. (This tree can be found in linear time by the
algorithm of [VTL] that constructs a binary decomposition tree for a directed series-
parall€l multigraph.)

In the following sections we will utilize the binary decomposition tree representa-
tion of a SPM to produce efficient algorithms for several combinatorial problems
defined on series-parallel graphs.

4, Finding a 2-separator of a graph with no K, homeomorph. In this section we
.assume that G=(V, E) is a graph, i.e., it has no parallel edges. Suppose that G has
n vertices and n>2. A set of vertices X <€ V is a k-separaror of G if the following
_conditions are met: There exist subsets of vertices V; and V; such that V;, V3, X are
pairwise disjoint, V;U V,U X =V, there is no edge (4, v) € E such that u€ V; and
ve Vs, and |X|=k, |Vi|sin, i=1,2.

- It is well known [KH] that if G is a tree it has a 1-separator. (For example, the
centroid of a tree, [GOL], [KH], is a 1-separator.) We will extend this result and prove
that a graph that does not contain a K, homeomorph has a 2-separator. We will also
exhibit a linear time algorithm for finding a 2-separator.

Using Theorem 3.2 we restrict our analysis to biconnected series-parallel graphs.
These graphs are planar and have at most 3n —6 edges. Given such a graph let T be
its binary decomposition tree. As noted above each leaf of T corresponds to a distinct
edge of T. Thus, T has m =3n-6leaves and m—1 vertices which are of degree greater
than one.

Since G is biconnected and n> 2, there exists a one-to-one mapping of the vertices
of G to the set of edges. Such a mapping can be constructed, for example, by considering
some spanning tree of G, say T(G). Then, root T(G) at a leaf of T(G), make it an
out-tree, and map each vertex to the edge directed into it and the root into an incident
edge not included in T(G). Therefore, we now suppose that each vertex of G corre-
sponds to a distinct leaf of T. (Note that when m>n certain leaves of T are not
assigned a vertex of G). Each leaf of T which is assigned a vertex of G is given a
unit weight while all other vertices of T have zero weight. Call the leaves with unit
weight weighted leaves. In linear time, [GOL], [KH], we can find a vertex of T (called
a weighted centroid), say gq, such that each of the (at most 3) connnected components
of T, obtained by removing ¢ from T, contains at most n/2 weighted leaves. Since
n>2 q itself is not a leaf and it corresponds to a series-parallel subgraph of G, say

G(q). See Fig. 1.
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Let q, and g, be the two sons of g on T corresponding to the SP subgraphs G(q,)
and G(q;) respectively. Let u, v; denote the two terminals of G(g;), i=1,2. Let V,
denote the vertex set of G(g;), i=1, 2.

Denote by T;, i =1, 2, the connected component of T which is obtained by removing
g, and contains g. T; contains at most n/2 weighted leaves, and T, U T, contains at
least n/2 weighted leaves. Since each weighted leaf in T, U T, corresponds to a distinct
vertex in VU V;, it follows that |V, U V,| = n/2. Also, each vertex in V,, i =1, 2, which
is not a terminal corresponds to a distinct weighted leafin T. Thus | Vi =n/2+2,i=1, 2.

Define V;=V—=(V,U V;). Then |V;|=n/2.

Suppose first that | V3] =max {|V;], | V2|, | V3|}. Then from lV|+le|+|V,|> n we
obtain n/3 =|V;|= n/2. There is no edge of G connecting a vertex in V; with a vertex

92

FiG. 1

. of G(q) which is not one of the two terminals of G(q). (Recall that G(q) is the

-composition of G(q,) and G(q,).) Thus, the two terminals of G(q) constitute a
2- separator of G. It separates V; from the remaining vertices of V, i.e., V— V3. Clearly -
|V— Vsl =3nsince |V3|=n/3.

Next assume, without loss of* generality, that ]V,I—max {itvil, 14, |Vsl}. Then
n/3=|V,|=n/2+2. There is no edge of G that connects a vertex which is not a terminal
of G(q,) with a vertex.in V — V;, Therefore the two terminals of G(q,) separate the
nonterminal vertices of G, from V- V,. We have |V — V;|=%n since |V,| = n/3. Also
the number of nonterminal vertices of G, is | V|| ~2=n/2. ‘ :

The complexity of the above scheme for locating the 2-separator is governed by
the complexity of constructing T, the binary decomposition tree of G, and finding a
weighted centroid on it. As mentioned above both take linear time.

We have proved the following. -

THeOREM 4.1. Let G=(V, E) be an n-vertex graph that does not contain K, as a
homeomorph. There exist two vertices u, v in V and two subsets V,, V,c V, |Vi|=3n,
i=1,2, such that V,U V,U{u, v} =V, and there is no edge of G connecting a vertex in
V, with a vertex in Vz Furthermore, the vertices, u, v and the sets V; and V, can be
found in linear time.

Remark 4.2. The above theorem can easily be extended to the weighted version
where each vertex v in V is associated with a positive weight w, In this case the
condition | V;|=3n is replaced by ¥, v o S3T v W

Remark 4.3. From the above discussion it follows that the 2-separators which we
find consist of a pair of vertices {u, v} that are terminals of some series-parallel subgraph.
Therefore if we add the edge (u, v) to the underlying graph G =(V, E) the resulting
graph will also not contain K, as a homeomorph.

5. Linear time algorithms for finding shortest paths on series-parallel graphs. We
have already noted above that a binary decomposition tree of a series-parallel graph
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can be generated in linear time [VTL]. With the aid of this tree one can design efficient
algorithms for solving a variety of combinatorial problems defined on the underlying
series-parallel graph. For example, linear time algorithms for finding a minimal vertex
cover, a minimal dominating set or a Hamiltonian cycle can easily be constructed,
utilizing the decomposition tree. :

In this section we demonstrate the use of the decomposition tree to solve edge-
weighted problems on graphs that do not contain K, as a homeomorph. Although we
will focus on the problem of finding shortest (simple) paths, the approach can easily
be modified to solve other problems like the matching problem and the travelling
salesman problem. In particular, since the dual of a series-parallel graph is also
series-parallel, the method described in [HAS] combined with the algorithm of this
section yields a linear time algorithm for the maximum flow problem on series-parallel
graphs.

To this end let G=(V, E) be a connected directed grapn with IVI n, that does
not contain K, as a homeomorph. Each (directed) edge e in E has a “length” (weight)
w, (which is not necessarily nonnegative). For each pair of vertices u and v define
d(u, v) to be length of a shortest simple directed path from u to v. Given a vertex s
in V, we wish to find the distances from s to all vertices v in V. This problem is
recognized as the single source shortest paths problem.

If the graph may contain negative cycles (we do not exclude this possibility), the

problem is NP-hard for general planar graphs. If w, Z 0 for each edge, then this problem..
is solvable for any n-vertex planar graph in O(nvlog n) time, [FRED]. (In particular,
this bound is applicable to our class of graphs, since these graphs are planar.) However,
we will show that the single source shortest paths problem is solvable in linear time
- for graphs with no X, homeomorph.
) Without loss of generality we assume that G is biconnected and series-parallel,
since otherwise we may apply the procedure described in the proof of Theorem 3.2,
and add to G edges with infinite length. We consider (as noted in Remark 3.4), a
decomposition tree T, that induces the vertex s (from. whlch the distances d(s, v),
ve V, are sought for) as one of the terminals of G.

We now give a brief overview of the algorithm, which consists of two phases. In
the first phase we start with the leaves of T and recursively compute for each subgraph
of G, G(q), (that corresponds to a vertex g of T), the distances, restricted to G(q),
d(q,i(q),j(q)) and d(gq,j(q),i(q)) between its two terminals i(q) and j(q). The
recursive equations are rather straightforward and therefore they are omitted.

In the second phase we start with the root of the tree (¢corresponding to the graph
G), and recursively compute the distances in G from s to the terminals of each subgraph
G(q). Note that each vertex of G is a terminal of at least some subgraph G(q).
Therefore, at the end of the second phase we will have the distances d(s, v) for all
vertices in V. The second phase uses the following auxiliary distance function. If x is
a terminal of G(q), let 4'(gq, s, x) denote the length of a directed shortest simple path
from s to x that does not contain any edge of G(q). Starting with the root of T, we
recursively compute d’(q, s, x) and d(s, x). The recursive formulae are again quite
" clear. For example, suppose that G(q) is generated from G(q,) and G(q;) by a series
composition with, say, i(g) = i(q,) and j(q) =j(q3), (i.e., j(q:) = i(q2)). Then,

d'(qy, s, i(q,)=4d'(q,s, i(q)),
d'(qu, 5,j(q)=d'(q, 5,j(q)) +d(42,J(q2), i(q2)),
d(s, i(q))=d(s, i(q)),
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and
d(s,j(q1)) =Min [(d'(q, s, i(q)) +d(q,, i(q), j(q)))),
(d'(q,5,j(q))+d(q2, j(q2), i(q2)))].

For the benefit of brevity we omit the recursive equations for the other cases.

We claim that the above algorithm solves the single source shortest paths problem
in linear time. The linear complexity follows from the facts that the decomposition
tree has O(n) vertices, and that each recursive equation used in either one of the two
phases can be computed in constant time.

6. The uncapacitated plaat location problem. The uncapacitated (or simple) plant
location problem is defined on a n-vertex undirected graph G=(V, E). Each edge e
in E is assumed to have a positive length w. Each vertex v in V is associated with a
fixed cost ¢, (the set up cost of a facility at v), and a transportation cost function f,(-),
which is a nondecreasing function of its argument. Each vertex is viewed as both a
potential site for a service center (facility) as well as a customer. The uncapacitated
plant location problem is to locate facilities at vertices so as tg minimize the sum of
the setup costs and the transportation costs. Since the transportation cost functions
are nondecreasing each customer will use the closest facility to him. Formally the

problem is to find a subset of vertices S < V that minimizes

Lo+ I f(d(v,9),

vES veV

where
d(v, S)=Min d(v, u).
; ues

This problem is NP-hard on general planar graphs. However, O(n?) algorithms
are given in [KT], for the case when G is a tree. In this section we will present an
O(n*) algorithm solving the problem for graphs containing no K, as a homeomorph.

As in the previous section, the procedure will be based on a recursive approach
on the corresponding binary decomposition tree.

Since we can add to G edges with infinite length, we use Theorem 3.2 and assume
without loss of generality that G is a biconnected series-parallel graph and T is its
binary decomposition tree. We will use the terminology that customer v is served by
facility u if u is the closest established facility to v. '

Let g be a vertex of T, G(q) its respective series-parallel subgraph of G and i(q)
and j(q) the two terminals of G(g). For each pair of vertices u, v in V we define
h(q, u, v) to be the solution value of the uncapacitated plant location problem restricted
to the subgraph G(q), with the constraint that i(q) is served by u and j(q) is served
by v. u and v are not restricted to be in G(q). Formally, if we let V(q) denote the
vertex set of G(q), h(q, u, v) is defined by

h(q,u,u)=g\4;i3{zsc;+ ) f,.(d(w,S))}

we V(q)

s.t. i(q) is served by u and j(q) is served by v.

The solution to the uncapacitated plant location problem on G is, therefore, given by
Min,.cv h(r, 4, v), where ris the root of the decomposition tree. The functions h(q, -, *)
will be evaluated, recursively, starting with the leaves of T. Suppose that G(q) is a
composition of G(q,) and G(g,). For a series composition with, say, i(q) = i(q,),
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J(q) =Jj(q2), (i.e.,i(q,) = i(q,)) we obtain
h(g,u, v)=__ Min {h(q:, u w)+h(gs, w, ) = fiao(d(i(q), w)) = . — c.8(y, v, w)},

we V(q)U{wu}

where 8(u, v, w) is equal to 1if u= v =w and 0 otherwise. For a parallel composition
with i(q) = i(q,) = i(q.) and j(q) = j(q,) =j(q.) we have h(q, u, v) = h(q,, u, v)+h(q,
1, v) = fig(d(i(q), u)) = fia(d(j(q), v)) — c. — c,e(y, v), where £(y, v) is equal to 1 if
u# v and 0 otherwise. : '

To compute the complexity of this recursive procedure, we assume that it takes
a constant time to compute any cost function f,(x) at a given value of x. To compute
these functions we need the distances between all pairs of vertices in G. If we use the
algorithm given in § 5, this task can be performed in O(n?) time. It follows from the
above recursive formulae that the complexity bound of the proecure is O(kn?), where
k=1 is the number of vertices of the decomposition tree of the series type.

. 7. Finding the kth longest distance on series parallel graphs. Let G=(V, E) be an
n-vertex directed graph with nonnegative edge-lengths w, =0, e € E, and consider the
(multi) set of intervertex distances

S={d(u,v)|uyveV, u# v},

(d(u, v) is the length of a shortest simple directed path from u to v.)

The cardinality of S is O(n?), and therefore if S is given explicitly, the kth largest
element in S can be found in O(a?) time by a standard algorithm [AHU]. For general
graphs no algorithm is known for finding even the largest element in S in time which
is of a lower order than the time required to compute S explicitly. (The best time
bound known is O(n*(log log n/log n)"/?) [FRE].) When G is a tree, S can be given
a succinct representation that requires only O(n log n) space. The construction of this
representation takes O(n log n) time, and it enables the selection of the kth largest
element in S in O(nlog n) time, [FJ2], [MTZC), i.e., the time is sublinear in the
size of S. (We note that for trees the largest element in S can be found in linear time,
[(HAN])

As discussed in [FJ2], [MTZC], the ability to select efficiently in the set S gives
rise to efficient algorithms for a variety of center location problems.

In this section we extend the results of [FJ2], [MTZC] and show that if G does
not contain K, as a homeomorph, the kth largest element in S can be selected in
O(n log® n) time, using O(n log n) space. .

The algorithm is a divide-and-conquer scheme, which is based extensively on the
linear time algorithms of §§ 4 and 5 to compute 2-separators and distances.

The first phase of the algorithm deals with the succinct representation of S. We
partition S into 71 = O(n log n) subsets such that the k;th largest element in the jth
subset, for all j=1,- -+, 1, can be found in a total time of O(si1 log n) = O(n log® n).

The partitioning phase starts by finding a 2-separator of G consisting of a pair
of vertices u, v. Let V;, V; be the two subsets of V separated by u, v (Theorem 4.1).
Without loss of generality we assume that the three sets V, and V; and {u, v} are
mutually disjoint. ‘

At this stage we partition only the subsets of S corresponding to distances from
vertices in V, to vertices in V; and from vertices in V, to vertices in V,. (We then
proceed recursively by decomposing V, U {, v} and V,U {y, v}.)

For any pair of vertices x€ V, and ye V;, any simple path connecting the two
must contain at least one of the separators u and v. Moreover, since all edge lengths
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are nonnegative, we have
d(x, y)=Min {d(x, u) +d(yy), d(x, v)+d(v, )},
d(y, x) =Min {d(y, u)+d(yu, x), d(y, v) +d(v, x)}.
For any disjoint subsets of vertices X, Y= V we will define
S(X,Y)={d(x,y):xe X, ye Y}.
Focusing first on S(V,, V,) we partitién itto S™(V,, V1) and S*(V,, V,), where
S™(Vi, Vi) ={d(x, u) +d(u, y)lxe V\, y € V3, d(x, u)—d(x, v)+d(u, y)—d(v, y) S0},
S*(Vy, Vi) ={d(x, v)+d(v, y)|xe V,, ye V,, d(x, u) —d(x, v)+d(u, y)—d(v, y)>0}.

Defining a,=d(x, u), =d(qu)-d(x,v), xeV, and b,=d(uy), d,=
d(u,y)—d(v, y), ye V,, we note that S7(V;, V2) (and similarly $* (Vl, V,)) are both
of the nature of the sets described in Appendix 1. The sequences {a,}, {c.}, x€ V;,
and {b,}, {d,}, y€ V; can be constructed in linear time if we find the 2-separator {u, v}
by the algorithm in § 4 and the distances from (and to) u and v by the algorithm in § 5.
' Using Appendix 1 and noting that | V;| = O(n), i =1, 2, we conclude that S(V;, V;)
can be partmoned into m' = O(n) lists and stored in a data structure (of O(n) space)
. on which we can select the k;th largest element in the jth list for all j=1, ,m’in
. a total time of O(n log n).
Clearly the same partitioning will be apphed to the set S( Va2, V1). From Appendix
1 we see that the complexity bound of this stage of the recursion is O(n log n).
We now have to proceed with the distances within the set of vertices VU {y, v} .
(and similarly the distances within V,U {4, v}).

_ Let G, i=1,2 denote the subgraph of G induced by the vertices V;U{y, v}. To
compute the distances within, say, V;U {u, v}, we may not restrict our discusion to
G,, since the shortest path connecting u to v (or v to u) may not be included in G;.
However, this difficulty can easily be resolved by adding to G,, i =1, 2, the (directed)
edges (u, v) and (v, u) with edge-lengths d(u, v) and d(v, u) respectively. (Note that
d(u, v) and d(v, u) have already been computed earlier). To proceed recursively with
G, i=1,2, we need the property that G, i=1, 2, with the above augmented edges

“does not contain K, as a homeomorph. Indeed, this is guaranteed by Remark 4.3. To
make sure that each pair of vertices is taken into account precisely once, when we
deal with the set of distances within VoU{y, v} we wxll not record the distances between
u and v.

We now estimate the total number of lists created during the entire partitioning
process. Let f(n), denote the maximum number of such lists created in such a partition
of a graph with n vertices. Then

Sn)=eyn+f(n))+f(ny),
where n =|V,u{y,v}{=3n+2, i=1,2, and n,+n,=n+2. Therefore, f(n)=

O(nlog n).
To estimate the total space needed for the process, g(n), we note that g(n) satisfies

g(n)=cn+g(n))+g(ny)
with n; as above, and thus g(n) = O(n log n). Finally, the running time, T(n), of the
partitioning phase satisfies

T(n)=cnlog n+ T(n,)+ T(ny)
where n,=3n+2 i=1,2, and n,+n,=n+2. It thus follows that T(n)= O(n log* n).
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Next we turn to the selection phase. At this point S is represented by i = O(n log n)
lists (subsets), say, Sy, - - -, S« These lists are maintained in a data structure on which
“thetotal time to select the k;th largest element from S forall j=1, - - -, i is O(rf log n),
(Appendix 1). Since each list is of cardinality O(n), we can use the algorithm of [FJ1]
to select the k-th largest element (i.e., kth longest distance) in S in O(n log’ n) time.
(Note that the time bound O(r log n) mentioned in [FJ1] is based on the assumption
that the total time to select the kjth largest element from §; for all j=1,---,m is
‘O(st). Since in our case the latter is replaced by O(s#t log n1), our total time bound is
O(r log? n) = O(n log® n).)
Finally we note that if we only wish to find the largest element in S, i.e., the
" diameter of the graph, we do not need the first phase. In fact, the diameter can be
found recursively by finding at each iteration, the largest element in S(V,, V;)U
S(V,, V). The latter can be found in O(n) time, thus yielding an O(n log n) total time
for the scheme that finds the diameter.

Appendix 1. Representanon of and selection in the set R= {a.+b lc;+d,-§0, i=
1,--+,n, j=1,-++, m}. Suppose that we are given four sequences of real numbers,
{a;}, i=l,---,n, {a}, i=1,---,n{b}, j=1,---,m, {d}, j=1,---, m Define the
(multi-) set R by

Al .. R={a+bla+ds0,i=1,- -, nj=1,-,m}

Our goal is to provide a partition of the multiset R, (whose cardinality is O(mn))
into m lists R{,- -+, R.,, and a data structure (requiring a total space of O(m+n)),

.. for storing these lists, on which the following operations can be implemented: Given

_integers ky, - - -, k., select the kjth largest element in Rj for all j=1, , m, in
O((m+ n) log n) total time. (The total time consumed in constructing thls data structure
will be shown to be O(m log m+n log n).)

For each j, j=1,---, m, define the set R; ={a,~|c,-+dj-<_=0, i=1,---,n}. Sort the
sequences {¢;}, i=1,--+,n,and {d4;},j=1, - -, m and assume without loss of general-
ity that c;=c¢,---=¢,, and d,=d,=---=d,. Next, define I(j)={ilc+d;=0}, j=

1,---, m, to note that

a2 I(1)21@)2- -2 I(m).

Rewriting R, j=1,---,m, as R;={a]ie I())}, define h, j=1,---,m, to be the
difference between adjacent sets, i.e.,

by =)= 1(G+ D

The subset R;,, is obtained from R, by deletion of k; elements. Thus using a 2-3
tree data structure, [AHU], we can delete the respective elements, and find the k;th
largest elementin R, forallj=1,- - -, m,in atotal time of O((Z,-, h;)log n+ mlog n).

By (A.2) this bound is O((m+n) log n).
The total effort to construct this data structure is dominated by the sorting of the

sequences, {¢}, i=1,---,n and {d;}, j=1, -, m, ie., O(nlog n+mlog m).
The multiset R, deﬁned by (A.1), can now be represented as the union of the
following m subsets, R}, - -, Rl,, where Rj={b}+R;, j=1,- - -, m. Using the above

we conclude that the k;th largest element in R for all j=1,---,m, can be found- in
O((m + n) log n) total time by selecting the elements in R, j=1,---, m and adding
the appropriate b; value.
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