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Scheduling arrivals to queues: a model with no-shows

1 Abstract

Queueing systems with scheduled arrivals, i.e. appointment systems, are typical for many
frontal service systems, e.g. health clinics. When considering the optimal schedule to this
class of queueing systems, two competing interests must be considered: if arrivals are sched-
uled too closely together, long waiting times develop for customer; if they are scheduled too

far apart then the server is underutilized.

We consider the problem of obtaining an optimal schedule of n arrivals of independent
customers to a single server system with exponential service times, when each customer shows
up with probability p € (0,1]. Our objective is to determine the schedule that minimizes

the sum of the expected customers’ and server’s costs.

Based on a model presented by Pegden and Rosenshine [8], we consider this variation
with no-shows. We develop a recursive formulation for computing the value of the expected
customers’ waiting and server’s availability times in the general case of n arrivals. We then
use numeric optimization methods to determine an optimal schedule. Following the work of
Stein and Cote [10] we also compare this optimal solution to the optimal solution obtained

when constraining the schedule to equally spaced arrivals.




2 Introduction and literature review

Queueing systems with scheduled arrivals are known as appointment systems. Appointment
systems are typical for many frontal service system, of which the most studied are outpa-
tient health clinics and services. National health services all over the world are a target of
criticism due to mal operation of outpatient clinies. Not only NHS are under such focus,
nowadays when many health services have turned into somewhat economical highly compet-
itive markets, various health care providers are under a great deal of pressure on the one
hand to improve the quality of service and on the other hand to reduce costs. Better de-
signed appointment system can reduce waiting time for patients and increase the utilization

of expensive personnel and and other medical rescurces.

Studies concerning appointment scheduling of outpatient services exist for over 50 years.
The first to present an extensive work dealing with this problem was Bailey [1] in 1952.
Bailey was among the first to state the importance of a well designed appointment policy
and presented quantitative tools to improve the performance of appointment-based systems

in terms of controlling both customer waiting time and server idle time.

Following his work came many others, approaching the topic from different points of
view. Different appointment policies have been studied under different scenarios, e.g. differ-
ent service time distributions, patterns of customer behavior toward appointments etc’. A
literature on appointment policies, focusing on the objective function used and the assump-
tions made regarding the behavior of the customers, can be found in the work of Mondschein
and Wientraub [7] from 2003.

The studies in this field can be classified into three main groups according to the research
methodology used: analytical, simulation-based and case study. Cayirli and Veral {2] provide
in their paper from 2003 a comprehensive survey of research on appointment scheduling in
outpatient services, including the general problem formulation and modeling condition of
each research. They do so while classifying the reviewed works by the research methodology

used,

A more general bibliography of quenes in health care was provided by Preater [9] in 2001.
This bibliography listed dozens of papers, all dealing with applications of queueing theory

to health care.

One aspect of behavior of customers that influences the overall efficiency of such systems
is the phenomenon of no-shows. Despite the extensive work done on appointment systems
in health care, the issue of no-shows has been studied very little. The first to address the

subject in an analytic approach wes Mercer [5] in 1960 and then again in 1973 [6]. In his




paper from 1960 he studies the non-equilibrium distribution of the queune length and gives
also the results for the equilibrium distribution. He assumes that customers are scheduled
to arrive at a queue on a equally spaced schedule, but may arrive at any time after the start
of the interval on which they are scheduled, or not arrive at all. In his later work from
1973 he also studies the distribution of the queue length for other models differing in the
arrival process and service process, i.e., batch scheduling and general service time. More
recent is the work of Kandrop and Koole [4] from 2006. In this work they define a local
search scheduling algorithm and prove that it converges to the optimal schedule in respect
to their defined objective function - a weighted sum of the average expected waiting times
of customers, idle time of server and tardiness in schedule. The algorithm is flexible and can

incorporate no-shows.

As a bage point for are study we use an analytical model presented by Pegden and
Rosenshine [8] in 1990 and add to it the assumption that no-shows are allowed. A summary
of our results is presented in Section 3. Full descriptions of Pegden and Rosenshine’s model
and of our variation allowing no-shows can be found in Section 4. Section 5 details our study
of small systems designed for two and three customers. In Section 6 we present the optimal
schedule for larger systems with no-shows, including an analysis of the results. Others
who based their study on this work of Pegden and Rosenshine are Stein and Cote [10] in
1994. They use the base model to study larger systems designed for more customers than
Pegden and Rosenshine did, and also study and compare the results obtained when adding
a constraint of equally spaced scheduled appointments. The study of the optimal equally

spaced schedule with no-shows is presented in Section 7.

When presenting the results of the study, we focus on the range of no-show probabilities
found in outpatient services. Empirical studies of no-shows cited in {2] indicate that in many
clinics the volume of the phenomenon of no-shows is in the range of 5% - 30% of the scheduled
appointments. Some medical web-sites such as http://www.medicalnewstoday.com quote
figures of about 40% of no-shows. Hence when discussing and analyzing specific cases of

no-shows we give a closer attention to this range of no-show probabilities.




3 Summary of results

Our study indicates that no-shows affects the optimal schedule and should be taken into

account when designing an appointment system., We study two main types of appointment

systems:

1. Systems in which the inter-arrival times between scheduled arrivais are not necessarily
equal. L.e, a customer can be scheduled to arrive at any time after, or even at the same

time, as the customer scheduled to arrive before her.

2. Systems with equal inter-arrival times between scheduled arrivals.

We study each type of system separately, and also compare the optimal results obtained for
each type. The objective we use in our study minimizes the sum of expected customers’
waiting cost and server’s availability cost. The main results of the study, in a nutshell, are

presented below in Secticns 3.1 to 3.3:

3.1 Optimal schedule

e The time between consecutive arrivals has an exponential pattern as a function of the
relative cost between the server’s availability cost and the customers’ waiting cost. (See
Sections 5.1, 5.2).

o The optimal schedule schedules the first few customers close together, then the infer-
arrival time between scheduled arrival increases, but is nearly constant for the latter
scheduled customers, and then again, the inter-arrival time between scheduled arrivals
decreases and the last few customers are scheduled to arrive closer together. (See
Section 6.2).

o As the showing up probability decreases, the optimal schedule is to schedule appoint-
ments closer together. From a certain no-show probability some customers, at the
beginning of the schedule, are scheduled to arrive at the same time. As the probability
of showing up further decreases, customers at the end of the schedule are also scheduled

to arrive together. (See Section 6.2).

e The inter-arrival time between scheduled arrivals in the equally spaced model is ap-
proximately the average of the inter-arrival times of the equivalent unrestricted model
(a model with the same parameters but with no constraints on the size of the infervals
between the scheduled arrivals). {See Section 7.2.1). This inter-arrival time and the

showing up probability are somewhat linear dependent. (See Section 7.2.2).
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o The optimal equal spacing decreases as the showing probability decreases, i.e. if all
the customers who de not show up would have notified in advanced that they are not
going to show up, an optimal schedule could have been designed only for those who

show up, resulting with a more spacious schedule. (See Section 7.2.3).

3.2 Customers’ waiting times

o The expected waiting time for customers who show up can be of order of magnitude
higher than the expected service time. The expected waiting time is monotonously in-
creasing from the first scheduled customer to the last. Thus of all scheduled customers,
the customer scheduled last has the maximal expected waiting time of all custemers,
if he shows up. (See Sections 6.2.1, 6.2.2).

e The expected waiting time of customers who show up is affected by the phenomenon

of no-shows. As more customers are expecied not to show up the expected waiting
time for customers who show up decreages.
Nevertheless these customers are waiting much longer than they would have waited if
they were served by a system that serves the same expected number of customers and
is designed and operates as an appointment system where all customers show up. (See
Sections 6.2.2, 6.2.3).

o The expected waiting times in the equally spaced model behaves in a similar manner

to the expected waiting times in the unrestricted model. (See Sections 7.2.4, 7.2.5).

3.3 Costs

o The expected costs for an appointment system with equally spaced arrivals are not
significantly different from the costs of an equivalent unrestricted appointment system.
(See Section 7.2.6).

e The operating cost of the system when the server’s availability is significantly higher
than the customers’ waiting cost, is lower when some of the customers do no show up

than when all customers show up. (See Section 6.2.4).

e The operating cost per customer who shows up varies as a function of the probability
of showing up. If the customers’ waiting cost is significantly higher than the servers’
availability cost, the operating cost per customer when all customers show up is lower
than the operating cost per customer who shows up when some of the customers do

not show up. {See Section 6.2.5).




e The no-shows phenomenon increases the operating cost. Operating a system with no
shows costs more than operating a system that serves the same expected number of
customers, but is designed and operates ag an appointment system where all customers

show up. The effect of no-shows increases as the portion of no-shows increases. (See
Section 6.2.6).




4 Formulation of the scheduling problem objective

4.1 Base Model

We study scheduling arrivals to queues with no-shows based on the work of Pegden and
Rosenshine [8] and the work of Stein and Cote [10]; in this section we present this base
model. The objective is to determine the schedule for a fixed number of customers, that
minimizes the sum of the expected customers’ waiting costs and the expected server’s avail-
ability cost. It is assumed that customers show up on time and that the server provides a
Markovian service and cannot take a vacation; i.e., the server remains available all time, till

the last customer leaves the system.

Notation 1

n Number of customers to be scheduled.

¢, Customer’s waiting cost per unit of time.

¢, Server’s availability cost per unit of time.

1/ Mean service time (service exponentially distributed).

z; Time interval between the scheduled arrival times of the ith and the (i + 1)st customers.

t; Time of the ith scheduled arrival, obviously {; = 1 + Z“;ll T

1
w; Expected waiting time of the ith7 scheduled customer in the queue.

N{t;) Number of customers in the system just prior to the time of the ith scheduled arrival;
thus, Pr{N(t;) = j} is the probability for j customers in the system just prior to the

time of the ith scheduled arrival.

The objective is to determine ¢,, time of first arrival, and a vector z* = (21, za, . . -, Tpet)
of intervals between scheduled arrivals, that minimizes the sum of the expected customer
waiting cost and the expected server availability cost. Thus the objective is to minimize the
function:

m n—1
1
B(T) = e Y wi 6 {tl +) s wa + E} (4.1)

t=1 i=1
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It is obvious that in any optimal solution ¢; = 0 and that w; = 0. AMoreover, cﬁ is a

constant term, and so may be omitted. Hence (4.1) can be written as:

O (z) %Zwﬁ—csZwZ (s + cw)w (4.2)

Defining the relative server’s availability cost:

¢
= . 4.3
1= e (4.3)
Dividing (4.2) by (¢, + ¢w), the objective function $Y(Z) to be minimized is :
—1
PO 1—7)Zw1+ﬁ/2mm—l—wﬂ (4.4)

i=2

Pegden and Rosenshine give an explicit, optimal solution for two and for three customers,
and develop a recursive algorithm, for computing the value of (4.4) in the general case of
n € N arrivals, They do not manage to give a proof that (4.4) is convex for a any general
n € N, but if for a specific n it is convex, the algorithm guarantees that the global minimum

can be found using a gradient search.

Stein and Cote formulate the algorithm defined by Pegden and Rosenshine in a matrix
form using transition matrixes. They assume the function is convex for every n € N and
obtain the optimal spacing for various n number of arrivals using optimization software that
implements reduced-gradient search, They also compare the optimal solution for {(4.4) to the
optimal solution obtained for equally spaced arrivals and to the solution obtained using a

D/M/1 queue model where the deterministic inter-arrival time is the optimization variable.

4.2 'The model with no-shows

We consider a variation where the customers do not necessarily show up, but only a propor-
tion p € (0, 1] of the customers show up. Le., assuming that customers are independent, each
customer has a probability of p of showing up. If a customer shows up he does so exactly at

his scheduled arrival time.

The server does not have any prior knowledge which of the customers will ghow up, hence

he has to remain available at least till £,, when the last customer is scheduled to arrive.

Customers are served in the order of their scheduled appointments. Since we aliow
customers to be scheduled to arrive together we define a queue discipline. If a few customers
are scheduled to arrive at the same time, the one with the lower scheduled place in line is
served first if he arrives. If ¢; = t; and ¢ < j, if they both show up, customer ¢ is served

hefore customer j.

11




Notation 2
p Probability of a customer to show up.

S(n,p)/M/1 A modified form of Kendall’s queueing notation, based on the notation used
by Pegden and Rosenshine. Noting a queueing system with n scheduled independent
customers, each showing up with probability p € (0, 1] according to a specified schedule

S(n,p}, to a Markovian service process provided by one server.
w; Expected waiting time in the queue of the ith customer if he shows up.
The model with no-shows

Rewriting (4.1) to reflect the required modifications from the model presented by Pegden
and Rosenshine to this variation:

) n—1
@l(i‘) = Cy Z W; + Cq (tl + Z T3 + F [server's time after tn]) . (4.5)
=1 i=1

In order to later obtain the optimal solution for (4.5) we first compute w; and F[server’s time after ¢,]

for this model:

w; = p - Fith customer’s waiting time in quete | customer % shows up] = p - wj. (1.6)

Elserver’s time after £,,| = - Fllserver's time after 4, | last customer shows up
n r

4 {1 — p) - Flserver’s time after £,, | last customer does not show up)

s 1
p- wé+ﬁ

+ (1 — p) -E [server"s time after £, | last customer does not show up].

If the last customer does not show up the server still has to stay in the system and serve
all the customers who showed up before ¢, and are still in the system at ,. The amount
of time after ¢,, that would take the server to do so, is equal to the amount of time the last

customer would have waited if he had showed up. Thus the expected server’'s time after ¢,

is:
1
Eserver’s time after ¢,,] = p - (w; + -};) +(1—p) w =w+ % (4.7)
Substituting (4.7) and (4.6) in (4.5) we obtain:
n n—1
%(z) = cprw,f + ¢ {61 + Zm“ + w;, + %:\ (4.8)
i=1 i=1

12




The objective function as presented in (4.8) can be simplified, since CL‘ 2 is a constant
term, and so may be omitted. Also in any optimal solution ¢ = 0 and w{ = 0, hence (4.8}

canl be rewritten as:
n—1 n—1
Z) = cul P W+ Co D T+ (G + Cup)ud, (4.9)
=2 i=1

We redefine the relative server’s availability cost for this model as:

Cs

E;jliizg. (4.10)

':5/:

Nevertheless, when describing a specific case of the system it is more intuitive to evaluate the
relative cost as defined in (4.3). As mentioned by Stein and Cote, the ratio v is & measure of
the relative importance of the two costs. As «y increases the cost of the server is considered
more important whereas as v decreases more emphasis is placed on minimizing the cost of

customer waiting. Note that 4 can be obtained from - and p by:

v

y+p-(1-7) )

;5/ =
By dividing (4.9) by (e, + cwp), the objective function ®(Z) to be minimized can be

written as:

O(7) = Zw +f}/2mz+w (4.12)

4.2.1 Recursive Expression for w;!

Our objective is to determine z* = {x7, Za, ..., Z,—1) that minimizes {4.12}. Hence we develop
a general expression for wf, the expected waiting time of the ith customer if he shows up,

as a function of z*,

Since the service is Markovian, the expected waiting time in the queue for a customer
who shows up depends upon the number of customers he encounters when arriving at the

system, i.e.,
i1

wi=Y" (i - Pr{N(t;) = j}) : (4.13)
i1\
The probability that there are j customers in the system at ?; depends upon whether or
not the {1 — 1)th customer shows up:
PriN({;) =4} = p-Pr{N{) = jl(i — 1)th customer shows up}
+ (1~ P?"{N(i ) = 7|(i — 1)th customer does not show up}. (4.14)

13




The probability that there are 0 < j < 7 customers in the system just prior fo #; can be
computed from the state probabilities at time t;_;. Thus, for 1 < j < { and ¢ > 2 (4.14) can
be obtained by:

imj—1
Pr{N{t) =4} = p- Z (Pr{N{t;_1) = j + k — 1} - Pr{k departures between ?;_; and i)
k=0
1—F—2
+ {1-— Z (Pr{N(t;—1) = j + k} - Pr{k departures between t; 1 and f; i)
k=0

Since the service is Markovian the probability of k departures between the (i — 1)st and the
ith scheduled arrivals (assuming there are at least k customers in the syatem at ;_1), is the

probability of exactly k events in a Poisson process with the rate of . Thus:

- .
' ; Ti-1)" sy
PT{N(t@)ZJ} = P %PT{N(tz—]l):j“Jr"k—l}('u kll) 6’“"
) (s
+ Z Pr{N{t;1)=j+k}- ““1 o HTi-1
N (p; 1);@
— p . kz PT{N(tz_l) - j —|— k —_ 1} . _;—I_e_“mi_l
0
j—j—1 ( . ,)k—-l
+ Vo ST Pr{N{ta) = j 1 k- 1) BT e
h1 {(k —1)!
f—i—1 B
= ) =7 M —pwie1 [ PHTi-1 .
= ;PW{N(tz—l)jﬂ-k 1} To 1 e ( p +1 )
+ pPriN({i) = — -7 1 <5<, 122 (4.15)

The last term in (4.15) drives from k=0,

Similarly, the probability that the system is empty just prior to £;, depends upon whether
or not the (¢ — 1)st customer shows up. Suppose that the (i — 1)st customer shows up and
finds k& — I customers in the system. For the system to be empty prior to i;, the service
times of these k& > 0 customers must be such that their sum is less than the time between
the (i — 1)st and ith scheduled arrivals. If the (i — 1)st customer does not show up, for the
system to be empty prior to ¢;, either the service times of £ > 0 customers that are in the
system prior to #;_; is such that their sum is less than the time between the {(1—1)st and ith

scheduled arrivals, or the system is empty already prior to ¢;_1. Thus the probability that

14




the system is empty just prior to ¢;, where 2 < 4, can be obtained by:

i1
PriN(t) =0} = p- Y Pr{N{ti1)=k-1}
X};’b?":{ltime between £,_1 and 1 is sufficient for at least k departures}
i—2
+ (1-p) Y Pr{N{tia) =k}
XPT{timZzbOetween t;_1 and ¥; is sufficient for at least k departures}.

Using the Markovian attribute of the service for ¢ > 2 we obtain:

(Jumi—l )E g HTi-1
il

PrNG)=0) = -3 PriN(i)=k—1}
k=1

00
=k

i

+ (1=p)- iPT{N(tﬂ;—ﬂ =k} Z (pziz1) e HTi—1
k=0 :

i1 k-1 (i) s
= p'ZPT‘{N(ti_l):k—l}‘ 1- T e M
k=1 '

i—2 =2_1 N
b 1=p) 3 PN = K (1 -y )
k=0 s
=2 ()
= ZPT{N(twl) =k} (1 - Z (p ;'” ) 8—#weu1>
k=0 I=0 '
i—2 k-1 oy
+ (1 —p) - ZPT{N(tiﬁl) =k} |1- (ﬂfw;;l) e—pwi_l)
k=0 =0

=2 4
] —pL— mi‘- —HT{—
= E:PT‘{N(tiél)zk}'(lmg T e“”—p-—-—(”k!1)e“ 1)
k=0
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5 Sln,p)/M/1 n=23

We now consider S{n,p)/M/1 for n = 2,3. In order to form the expected waiting time in

these relatively small appointment systems, we do not need o use the somewhat cumberscme

recursive formulation presented in Section 4.2.1. We rather define the expected waiting time

using straightforward, closed form, expressions.

5.1 S(2,p)/M/1

Consider two independent arrivals, such that each occurs with probability p € (0, 1].

Based on {4.13) and (4.15) the expected waiting time is:
1 p
wh = —Pr{N(ty) = 1} = —e #*.
2T ) ;
Hance the objective (4.12) becomes:
®(T) = Az + %eﬁ*ml.

The value of z; that minimizes (5.1) must satisfy:

de(z) o
=& — =0,
dz Y —pe
Hence: L
L1 = —— In 1
Hop

Since 1 = 0 and p > 0, the probability p that a customer shows up, must satisly:

pz7.
By substituting 4 as defined in (4.11) we obtain:
L Y+ =)
B 2(1-7)

Or in terms of costs, by substituting % as defined in (4.10):

> —Cs + v Cs% + desCu

- 2¢e,,

P

(5.1)

(5.3)

(5.4)

If the condition in {5.3) is not satisfied, the two customers are scheduled to arrive together

on time #; = t5 = 0, we denote this critical value of v as 7. Intuitively, this condition is

not satisfied when p, the showing up probability, is relatively low. So scheduling the two

16




customers to arrive together will ensure zero server’s availability cost due to server’s waiting
times for customers; and yet we are able to schedule the two customers to arrive together
without significantly increasing the expected customers’ waiting cost, since the probability

of customers actually showing up is relatively low.

Obvicusly, for the case of p = 1 we get to the same solution as Pegden and Roshenshine
did. The schedule for j = 1 for various values of p and vy is presented in Figures 1 and 2.
In these graphs, the relative server’s availability cost is stated on the X-axis, denoted by v,

and the scheduled arrivals on the Y-axis, denoted by T

52 S(3,p)/M/1

Another case that can be formed directly without using the recursive formulation presented in
Section 4.2.1, is of three independent customers, each showing up with probability p € (0, 1].
Based on (4.13) the expected waiting times are:

1 p
wé = ZPr{N(ty) =1} = £ g1,
2= {N{t2) =1} "

wh = ;Pr{N(tg,) — 1)+ %P;«{N(@,) 9. (5.5)

To obtain wé we compute the probabilities Pr{N(i3) = k} where k = 1,2 based or {4.15):

Pr{N(ts) = 1} Pr{N(t3) = 1|N(t2) = 0}.Pr{N(t,) = 0}
4+ Pr{N{t3) = 1|N{tz) = 1} Pr{N(ts) = 1}

pe” 2 [(1 = p) +p(1 — ™)

+ [ppzae™® + (1 — ple #¥2]pe™ . (5.6)

Pr{N{t;)=2} = p - pemitas) = 2o —pleiiag) {5.7)

- -
H \\‘ 2
1 \_‘_ 1 i —
S . R
n ol 02 Lk L2 lz;: oe 0.7 0.e oa 1 o iR} oz 03 0.4 D'Y:’) 08 aQr 0.8 ae
Figure 1: S(2,0.90)/M/1 Schedule Figure 2: 5(2,0.70}/M/1 Schedule
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After substituting (5.6) and (5.7) in (5.5):

_ peH2 +p@—#(31+m2) +p26ﬁ.u($1+m2)‘u3;2
7 '

]
Wy

Thus (4.12) becomes:

pe_*#ml 8_#372

+ 4y + ) + 2

®(z) = (1-7%) (14 e + pumge™), (5.8)

Again, for the case of p = 1 we arrive, as expected, to the same result as Pegden and Roshen-
shine did.

The values of z; and z; which minimize (5.8) must satisfy agf) =0 4=1,2. Taking

the partial derivatives of ®{Z) with respect to z; and z yields:

a® (%
8@(«:6) = —(L—)pe # +4 —pe "2 (e™" + pumpe™H) = 0. (5.9)
1
oDz - —ur . —HT —z
6352) = F—pe (1 | e 4 puzge™ T — pe M) = 0. (5.10)

Rewriting Equations (5.9) and (5.10) we obtain:

F)‘/ = p [(1 — ’?)87”""1 + B—M(z1+z2)(1 _|_pu$2n . (5'11)
¥ = p [eﬂumz + e“#(w1+w2}(1 + plze — [D)] . (5'12)

Equating the two right-hand side expressions of (5.11) and (5.12} we obtain:

(L—F)e# 47T m (1 4 puzsy) = €72+ e HO (L pumy — )
(1 —Fle ¥ = e #™ — pe““”(“’”'“)

e —HE

e = (1 —7) = Alzy). (5.13)

Thus
1 THE 1
Ty = —;ln (1 —f?)m = —ElnA(a:l). {5.14)
In order to find the optimal z*, we substitute 2; as defined in (5.14) in either (5.11) or (5.12),
and solve the resulting equation for z;.

The solution obtained is a global minimum since the objective function {5.8) is convex.

By substituting for 25 in (5.12) we obtain:

= p [l A | gmrt A1 pln Ader) - p)]
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That is:
Flz1) = pAz) [L + e (1 — pln A(z¢) — p)] =5 =0. (5.15)

We must constrain our solution by z; > 0 ¢ = 1,2. Hence if we obtain x; < 0 we force

the feasible optimal solution z; = 0 and obtain 25 by substituting z; = 0 in (5.8}

—x2

flws) = Blzy = 0,m5) = (1— »7)13 A + P (2 + ppiaz). (5.16)
The value of zo that minimizes (5.16) must satisfy:
dffze) . perhe
A7 ~p). .
i, @) (5.17)

In the same manner applied for zy, if we obtain 23 < 0 we force the feasible optimal solution

$2:O.

The equations for z; and z3 can be simplified by normalizing, without lost of generality,
¢ = 1. The solution found for this simplified case, is actually the solution for pr; and px.
in the general case; hence z; and zs can be found for any value of i, based on the solution

for the simplified case of p = 1.

Apparently a closed-form solution does not exist, thus the solution must be obtained
numerically. We obtain the solution numerically for various values of p € (0,1] and v € (0,1]
by using the Newton-Raphson method, for finding approximations to the zeros of a real-
valued function. For details see Appendix 7.2.6. The z; and zo found define the optimal
schedule by using the definition of #; from Notation 1.

The results for various values of p and v are presented in Figures 3 and 4. As before, in
these graphs the relative server’s availability cost is stated on the X-axis, denoted by «, and

the scheduled arrivals on the Y-axis, denoted by T

Figure 3: 5(3,0.90)/M/1 Schedules Figure 4: $(3,0.70)/M /1 Schedules
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We observe that if «, the relative server’s availability cost, is low, the three customers
are scheduled to arrive on distinet times. As + increases, the inter-arrival time between
the first and the second customer decreases till 2y = 0 and so 0 = ¢; = ¢y and the first
two customers are scheduled to arrive together. We denote this critical value of « as ~§;.
Finally, for high values of v also 2; = 0, and all three customers are scheduled to arrive
together at 0 = ¢ = ¢, = #5. We denote this critical value of v as v§,. This behavior of the
optimal solution is somewhat intuitive. All three scheduled customers have a probability of
not showing up, and they make their decision independently. By scheduling the first two
customers closer together we reduce the server’s idle time in case one of them, or more, does
not show up; even if they both do show up, there is a chance the last one would not show
up at t3 as scheduled, but by then, or scon after, the server will finish serving them both
and be ”dismissed”. Since the last customer is not scheduled so cloge to the first two, even
if all three show up this schedule reduces his waiting. If we would set the last two customers
closer together (in oppose to setting the first two together), we would risk the server waiting
long idle for them to show up in case the first customer does not show up, and then if both

of these last customers show up, the server will have to stay long after 3 to serve them both.

Comparing the results of S(3,p)/M/1 with those of S(2,p)/M/1, for v > ~3,, i.e. an-
alyzing whether from that point the three customers model behaves like a two customers

model and zq follows (5.2), reveals that this is not the case.

Figure 5 presents, for various showing up probability p the critical values of the relative
server’s availability cost «v for S(3,p/M/1) and for 5(2,p/M/1). Examining Figure 5 we note

1 T T T p——
"f"'
-
0.0t g
0.8p
el o \ T
0.8 1, >0 n=2,3 B
Ta »0 n=3
=05
0dr
0.2F
2
0.2
1, =0 n=8
,// 3
0.0 -
e
e e
o e ! L I J I 1 1 1
4] 0.1 02 0.2 0.4 05 0.6 0.7 0.8 0.8 1

p
Figure 5: Critical v values
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that 42 < v5, <3, Vp, i.e. in a system of two customers, the two are scheduled to arrive
together for server's relative availability costs for which in & system of three customers all
three are scheduled in distinguished times. This can be explained intuitively by the fact, that
in S(3,p}/M/1 we need to be more careful before scheduling customers to arrive together,

because by doing so we potentially cause waiting times for two customers and not one as in

S(2,p)/M/1.
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6 Sn,p)/M/1 n>4
6.1 General solution method

We next consider queueing systems where there are at least four independent customers to
schedule. To form the expected waiting time of a customer who shows up, to be substituted

in the objective function (4.12), we use the recursive formulation presented in Section 4.2.1.

To form the objective function for a given number of customers n, we produce & proba-
bility matrix P(Z) of the size of n x n where P(z);; = Pr{N{t;) = j|z} Y0<j<i<mn,
i.e. the probability for 7 customers in the system just prior to the time of the sth scheduled

arrival, for a given solution Z.

As in S(3,p), we must obtain the optimal solution numerically using an approximation
algorithm. To obtain the optimal solution for a given n € N we agsume that {4.12) is convex.
As stated by Pegden and Rosenshine the objective function (4.4) is believed to be convex
despite the appearance of non-convex terms. However a general, most likely inductive, proof
to this assumption, has not been found, even though looked by them and by others. Showing
the convexity for a given number of customers n > 5 is somewhat preposterous, since the
number of terms in wf grows very rapidly with the dimension of the solution space, and
the additional terms become more unwieldy as well. Bach member in the sum that forms
the no-shows model objective function (4.12) is a linear combination of a member of (4.4).
Hence (4.4} is convex if and only if (4.12} is convex. Based on this assumption we obtain
the optimal solution by applying a gradient search on the objective function, using Matlab

opfimization toolbox. For further details see Appendix 7.2.6.

6.2 Analysis of the optimal solution

The optimal solutions found for n > 4 conform with the findings of Stein and Cote. Forp =1
they find that ingtead of a continued trend of wider intervals between successive scheduled
arrivals which may have been inferred from Pegden and Rosenshine, the optimal interval
width increases for the first few customers, then stays almost constants till it decreases for
the last few customers. We find that in the model with no-shows this phenomenon expands,
and ag the probability of showing up decreases and the relative server's availability cost
increases, not only the first few customers are scheduled to arrive together but also so do
the last few customers. The latter phencmenon, of the last customers scheduled to arrive
together, occurs for relatively low showing up probabilities. For example, in a system with

ten customers we begin to observe this pattern only for p < 0.30 and ~ > 0.90. IMigures
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6 to 9 present the optimal spacing between scheduled arrivals for various values of v in a
systemn of ten customers. In these graphs the interval numbers are noted on the X-axis and
the spacing between scheduled arrivals are noted on the Y-axis. Point (4,z;) on a certain
~ graph in these figures is the optimal value of z; in the relevant model, i.e., the scheduled
inter-arrival time between customer 7 and customer i + 1 for a system of S{10,p)/M/1 with

p and -y as stated in the figure.

The intuitive explanation to these spacings is similar to the one given by Stein and
Cote. In the probabilistic steady state approximately equally spaced arrivals are scheduled,
however the lagt few customers are scheduled to arrive closer, or even together, to avoid the
server being idle while only a few customers remain to arrive. The scheduling of the first
few customers to arrive close or even together fits what is known as Bailey’s Low [1] which
recommends to schedule the first customers together in order to later reduce the server’s idle

time.

For instance, examining the optimal spacing between scheduled arrivals for v = 0.70 in
Figure 9 where n = 10 and p = 0.30, we note that the first four customers are scheduled to

arrive together since z; = zy = 13, then the 6th, 7th and 8th customers are scheduled to

wTa
" : | i
Figure 6: Spacings S(10,0.90}/M/1 Figure 7: Spacings S{10,0.70)/M/1
‘ i 10 uﬂ i 10
Figure 8: Spacings S(10,0.50}/M /1 Figure 9: Spacings S(10,0.30)/M/1
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arrive on more or less equal inter-arrival times as x5 = z &= z7 , and then again the inter-
arrival time between the scheduled arrivals of the 8th, 9th and [0th customers decrease:
Ty > Ty > Xg. For v = 0.90 on the same figure, there are only two appointment times,
the first seven customers are scheduled to arrive together at {q and then later at £, > 0 are

scheduled the last three customers.

6.2.1 Resulting customers’ expected waiting times

Though our objective function (4.12) is a combination of both customers’ expected waiting
times and server’s expected availability time, it could be, for practical reasons, of special
interest to note the resulting customers’ expected waiting times. If the expected customers
waiting times are too high, the system’s management may consider reevaluating the relative

cost, so greater consideration would be given to customers’ waiting cost.

Figures 10 to 13 present expected waliting times of customers who show up for five and
ten custorers for various showing up probabilities. In these graphs the relative server’s
availability cost is stated on the X-axis, noted by -, and the expected waiting times are
stated on the Y-axis.

We note that variance of the expected waiting times of customers who show up, is quite
high, and that the expected waiting time of a customer who shows up increases as his
scheduled place in line increases, ie. wj,; > w] Vi=1,..,n— 1. This could be explained
by the queue’s discipline as defined in Section 4.2. If {; =1; and ¢ < j, customer 7 is served
first if he arrives. In this case, if customer 4 arrives as well he waits with probability of 1.00.
As more customers are scheduled to arrive together the more they wait if more than one of

them arrives.

We also note that the expected waiting time for customers who show up decreases as the

probability of no-shows increages, i.e. for a given n and ~, w!

;7 Wi=1,..,n decreases as p

decreases. This indicates that the optimal schedule exploits the no-shows phenomenon to
decreage the expected waiting time of customers who do show up. Since less customers are
expected to arrive, the customers who show up are less likely to wait due to long service

times of earlier customers.

6.2.2 Average and maximal customers’ expected waiting times

Figures 14 to 17 present the average and the maximal expected waiting time of a customer
who shows up, for five and ten customers for various showing up probabilities. In these

figures, Wnean vefers to = 577 w?, and Wy, refers to max{wf},. As mentioned in Section
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Figure 10: Waitings S(5,0.90)/M/1
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Figure 12: Waitings S(10,0.80)/M/1 Figure 13: Waitings 5(10,0.60)/M/1

6.2.1 the maximum expected waiting time of a customer who shows up is obtained by the
last customer as max{w{}? ; = ws. We note that for large values of vy, i.e., low relative
customers’ waiting time cost, the maximum expected waiting time of a customer who shows
up is up to twice the average expected waiting time and more than five times the average

service time (which is in our model considered to be ﬁ =1).

In Section 6.2.1 we note a decrease in wf, Vi =1,..,n, as p decreases. Here we note,
as expected, that the average and maximal expected waiting time for customers who show

up, decreases as the probability of no-shows increases.

6.2.3 Quantifying the impact of no-shows on customers’ expected waiting times

Studying the impact of the no-shows phenomenon we compare the expected average and
maximum waiting times of systems where all customers show up to systems with no-shows
with the same expected number of customers who show up. We compare the expected waiting
times for customers who show up of S(n, p < 1.0)/M/1 models to the ones of S(n’, 1.0}/M/1

models where np = n'. If all the customers who do not show up would have notified in
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Figure 16: Waitings 5(10,0.90)/M/1 Figure 17: Waitings $(10,0.70)/M/1

advanced that they are not going to show up, an optimal schedule could have been designed
only for those who show up, resulting with smaller expected waiting times for the custoimners

who show up.

Each of the Figures 18 to 21 presents a comparison between the expected waiting times
for customers who show up of & S(n,p < 1.00)/M/1 model and the same expected waiting
times of the equivalent S{n’,1.00)/M/1 model where np = n'. In these graphs the relative
server’s availability cost is stated on the X-axis, noted by -, and the expected waiting times
measures of customers who show up are stated on the Y-axis. The waiting times of the
models with no-shows are drawn in continues lines, whereas the ones of the models where

all customers show up are drawn in a dashed lines.

We note that as p decreases, i.e the probability of customers’ not showing up increases,
the impact of the no-shows increases. If a large portion of customers do not show up, the
expected waiting time of the customers who do show up, is much higher than the expected

waiting time they would have had if the scheduled was designed only for them originally.

Measuring the differences between the expected waiting time measures of the models
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with no-shows to those of models where all customers show up, we note that the influence of
the no-shows phenomenon is greater for smaller relative server’s availability cost. Meaning
that the impact of no-shows is more severe when the importance given fo customers waiting

times, in order to minimize them, is higher.

Table 1 presents by how many percents the average expected waiting time of customers
who show up in a model with no-shows is greater than the same measure of an equivalent
model where all customers show up. We see that for a system designed for 10 customers when
90% of the customers are expected not to show up, ie. n =np =8, the average expected
waiting time for customers who show up increases by 15% already for relative customers’
waiting cost of 0,05 {y = 0.95) and goes up to 95% when 1 —« = 0.95 (y = 0.05). When the
expected number of customers is three, for a system designed for 3 customers of which 60%
show up, the impact on the average expected waiting time varies from 20% to 85%. When
70% of ten customers are expected not to show up the average expected waiting time doubles
when the relative cost of customers’ exceeds 0.35 and the impact increases as 1 —y increases
(v decreases). The impact of no-shows on the maximal expected waiting time measured in

the same manner is nearly equivalent, thus not detailed.
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np =23 np=>5 np=38 |
¥ S(5,0.6)/M/1 | S(S,O.STS)/M/l ‘ S(l0,0.B)/M/l 8(8,0.625)/M/1 S(l0,0.S)/M/l S(l0,0.S)/M/l
0.05 84.69% 187.50% 241.25% 63.37% 100.80% 25.31%
0.10 77.55% 163.27% 2014.40% 58.25% 90.72% 23.47%
0.15 73.28% 14R.64% 182.78% 54.60% 83.59% 22.11%
0.20 69.91% 138.41% 167.96% 51.66% 78.14% 21.39%
0.25 67.55% 130.42% 154.31% 49.60% 74.13% 20.49%
0.30 65.50% 124.11% 143.11% 47.74% 70.59% 19.79%
0.35 63.87% 117.25% 134.29%  46.04% 67.53% 19.21%
0.40 62.50% 110.88% 127.25% 44.61% 64.98% 18.73%
0.45 61.32% 105.54% 121.35% 43.36% 62.69% 18.23%
.50 60.40% 101.17% 115.68% 42.28% 60.72% 17.80%
0.55 59.59% 07.41% 110.14% 41.33% 58.15% 17.43%
0.60 58.96% 94.16% ~105.39% 40.45% 55.65% 17.06%
(.65 57.37% 89.77% 101.27% 39.69% 53.45% 16.69%
0.70 54.80% 85.68% 06.27% 38.51% 51.46% 16.37%
0.75 52.52% 22.10% 91.51% 36.93% 49,79% 16.14%
0.80 50.55% 77.44% 86.05% 35.56% 48.22% 15.94%
0.85 18.86% 72.41% 79.79% 34.41% 45.65% 15.78%
0.90 44.56% 65.28% 71.44% 33.30% 43.38% 15.27%
0.95 38.62% 52.40% 56.76% 30.70% 39.42% 14.87%
1.00 20.00% 31.25% 35.00% 9.38% 12.50% 2.86%

Table 1: Increase in the average expected waiting time due to no-shows

6.2.4 Objective function’s value and cost of waiting times

Studying the optimal values of the objective function, we note that for high ~y, the minimum
value of the objective function for p = 1, where all customers show up, is higher than for
some other showing up probabilities. If p < 1 the expected number of customers is smaller,
hence for some p < 1, the optimal schedule, determined according to the expected number
of customers, results in a smaller operating cost than p = 1 . This is not always true
and for small values of ~ the cost is higher for p < 1 than for p = 1. This is because
the phenomenon of no-shows increases the uncertainty, so when the customers’ relative cost
is high the optimal schedule with no-shows has to leave enough space between scheduled
arrivals to reduce waiting time if customers do show up, increasing the expected idle time
of the server, if they end up not showing up. Thus from a practical point of view, assuming
that the relative cost «y is given and that the system’s operating costs are all represented in
(4.12), the operating costs can be brought to the lowest expected value by manipulating a
specific p portion of the customers to show up. Nevertheless this is not always possible nor

desirable in systems serving people, especially people coming to see a dector.
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Definition 3 We define Q*(%) as the expected total cost of waiting in the system. It consists
of the sum of the expected cost of customers waiting in the queue and the expected cost of

jdle time of the server.

O*(z) differs from the original objective function ®'(z) only in the expected service iime,
which is a constant that does not depend on the schedule. Hence Q*(z) can be obtained

from the objective function {4.5) by:

O (z) = ®(Z) — Eltotal service time) (6.1)
where:
Etosal service time|] = Csﬁnl {6.2)
Substituting (6.2) in (6.1) and rewriting and simplifying the equation as in Section 4.2 we
obtain:
g -1
0(7) = (z) - IP%__)_ (6.3)

The motivation for defining 2, which differs from the objective function only by a con-
stant, is the following. We assume that the expected service time ig inevitable, hence when
analyzing the results we are interested in studying the specific effect of no-shows on control-

lable parameters, i.e. waiting cost of customers and idleness cost of the server.

Figures 22 to 25 present the optimal values of ®(z) and Q(Z) as a function of the showing
up probability, for five and ten customers for various values of v. The figures reveal that for &
specific relative cost, these graphs have a similar pattern, for different numbers of customers.
Though not presented, this same pattern was noted also for all other sizes of systems studied
for all v € {0.10,0.20,...,0.80,0.90}. Also verified is the expected fact that for all studied
n and p, for v = 1, when only the server’s cost is taken into account for determining the
schedule, () = 0. This is a result of all customers being scheduled to arrive together at
t; =ty = 0, so the server never waits idle for customers to show up, and there is no waiting

cost of customers since the relative cost of customers is 1 —v = 0.

We note that for small values v the maximal values of the cost functions are obtained

for p < 0.50. Thus there is & "price” to no-shows. We study this issue in Section 6.2.6.

6.2.5 Operational costs per customer

We define and study now two other measures of the system, concerning operational costs per

customer. These measures are defined in respect to ®(Z} and Q(z) by dividing them by 7ip.

AN .- D(F .
%g—) is a measure for system’s waiting costs per customer, whereas )TE;) takes into account

29




a L N L . L L ' i . . L ' L 2 '
1] Xl [E] a3 ad [ 08 07 as [X] 1 ¢ o1 a2 23 04 [ [X] o7 (Y] ©B 1

p P

Figure 22: S(5,p)/M/1, ~=0.80 Figure 23: S(5,p)/M/1, =020
1 7| T “

I ——
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also the service costs. Figures 26 to 29 present the values of these measures based on the
optimal values of (4.12) and (6.3) as a function of the showing up probability, for five and

ten customers for various values of .

We note that these measures behave like the expected cost function they originate from,
®(%) and Q{F) respectively, in the sense that the maximum value they obtain at optimum
is not necessarily when all customers show up. The measures differ from their origin in
the range of « for which this phenomenon is noted; as mentioned before, for the original
functions this is true for small values of -y, while for these operational measures this holds

true for a much wider range, even up to about v = 0.80.

Another dlﬂerence noted when comparing the graphs of P& with those of ®(Z) and the
graphs of $@) with those of Q(ZF) is that their picks are not obtamed at the same showing
probabﬂlty, and moreover the picks of the operational measures graphs are obtained for a
lower p. This may imply that customers who show up "pay” more if many of the scheduled

customers do not show up.
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Figure 28: S(10,p)/M/1, ~=0.70 Figure 29: S(10,p)/M/1, ~=10.30

6.2.6 Cost of no-shows

Tn order to evaluate the cost of no-shows, we compare the costs of systems where all customers
show up to systems with no-shows with the same expected number of customers who show

up. We compare the costs of S(n, p < 1.0)/M/1 models to the costs of S(n', 1.0}/ M/1 models

where np = /.

Each of the Figures 30 to 33 presents a comparison between the costs of a S(n,p <
1.00}/M/1 model and the costs of the equivalent S(n’,1.00)/M/1 model where np = n'. In
these graphs the relative server’s availability cost is stated on the X-axis, noted by v, and
the costs are stated on the Y-axis. The costs of the models with no-shows are drawn in

continues lines, whereas the costs of the models where all customers show up are drawn in
a dashed lines.

We note that as p decreases, i.e., the probability of customers’ not showing up increases,
the cost of no-shows increases. We measure by how much the cost increases when there
are no-shows, in comparison with the cost when all customer show up. We find that for

np = 3, when the system is designed for five custorrers of which 40% do not show up,
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Figure 32: p Costs S(5,0.60) Figure 33: p Costs S(10,0.30)

the phenomenon of no-shows increases the cost ®(Z) by 20% — 150% and the cost Qz) by
35% — 170%. When 70% of ten customers do not show up, the phenomenon increases (%)
by 35% - 572% and Q(Z) by 53% — 660%. The influence of the phenomenon on the costs is

greater on smaller relative server’s availability cost.

These findings conform with the findings detailed in Section 6.2.3 for the expected waiting
times. Nevertheless the impact of no-shows on the expected waiting times, measured in

percentages, is not so high. Thus the no-shows increase also the server’s idle time.

Also noted on these fignres is the phenomenon mentioned in Section 6.2.4, that Q(z) = 0
for v = 1. Since all customers are scheduled to arrive together at ¢; = ¢, = 0 so the server
never waits idle for customers to show up, and there is no waiting cost of customers since

the relative cost of customers is 1 — v = 0.
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7 The equally spaced model

Following the work of Stein and Cote, we consider also the case where the customers are
scheduled to arrive at the system at equally spaced times, i.e. 1 =3 = -+ = Tn—1. We

add to their model the attribute that each customer shows up with a probability p € (0,1].

As stated by Stein and Cote, the equally spaced model is of interest as it provides
o realistic Testriction to the scheduling problem, since in most appointment systems the

appointments are scheduled using a fixed interval between scheduled arrivals.

7.1 General solution method

The equations representing the model remain the same, with the exception that z; = T V1.
Thus based on (4.12) our objective is to minimize:

n—1

Boy(Teg) = (L—A) Y wi -+ A1 = 1Teg + W} (7.1)

i=2
The solution methods are similar to those used in the unequally spaced model. lven
though we are now looking for the value of a single variable z., that optimizes the objective
function (7.1) (in opposed to a vector of values) we tackle equations that do not have a

closed form solution.

For instance, for three customers, affer substituting o; = Teq ¥4 in (5.8) we obtain:

pe*.'-‘«’?eq @ H¥eq

VA ey

®., (2eq) = (i— ) []_ A g H¥ea +p,u:L‘eqef“we"]

g HEed

— 0, L 19— 7 4 €450 (1 + ppieg)| - (7.2)

The value of ., that minimizes (7.2) must satisfy:

AP eq(2eq) 27 — peHaen [2 — F e e (1 4 Pﬂxeq)]
AT eq
g Hleq o T
+ : [ [—pe™ %0 (1 + ppmeg) + 7" pp) =0
— 25— pehees [2 = | ¢ (24 Qppaeg — )] = 0. (73)

For n > 4 we substitute ©; = &, Vi in (4.15) and (4.16) and use the results to form
w? according to (4.13) and sef it to the objective fanction (7.1). For the optimal solution
the derivative of this function must equal zero. Yet the obtained equation has no close
form. Hence, as in the unequally spaced interval widths model, we obtain the solution nu-

merically for the simplified case of = 1. The solution can be obtained by modeling the
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Newton-Raphson approximation method in Matlab in a similar manner performed for the
5(3,p)/M/1 unequally spaced model as detailed in Appendix 7.2.6, or by using approx-
imation methods already embedded in Matlab optimization toolbox as defails Appendix
7.9.6. We obtain the optimal solution by the approximation methods embedded in Matlab

optimization toolbox.

7.2 Analysis of the equally spaced optimal solution

We find that Stein and Cote’s conclusions for the basic model, where all customers arrive
on an equally spaced schedule, go also for the S(n,p)/M/1 model constrained to equally
spaced arrivals. The effect of adding a constraint to force equally spaced intervals does not
materially change the value of the objective function for any combination of p and v and
determines an optimal interval which is almost an average of the unequally spaced interval
widths.

7.2.1 Optimal equal interval between scheduled arrivals

As stated above the optimal equal intetval between scheduled arrivals is approximately the

average of the optimal non-equal intervals,

A comparison between the optimal interval for this model and the optimal unequally
spaced interval widths, for three and five independent customers for various values of p
and -, is presented in Figures 34 to 37. Each of these graphs presents the optimal inter-
arrival times for a unique combination of n, p and 7 for the equally and unequally spaced
S{n,p)/M/1 models. In these graphs the relative server’s availability cost is stated on the
X-axis, denoted by 7, and the inter-arrival spacing is stated on the Y-axis, denoted by ;.
Graphs of systems designed for n > 5 customers are not presented since due to the density
of the resulting graphs it is difficult to note the details. Nevertheless the results follow the

same pattern as in the presented graphs.

799 Relation between the equal spacing and the showing up probability

From a practical point of view it is of interest to study the relation between the optimal
equal spacing and the showing up probability. Assuming a given server’s availability relative
cost, the optimal equal spacing depends upon the showing up probability. Figures 38 to 41
present for three, five, eight and ten customers, the optimal equal spacing solution, for given

relative costs, as a function of the showing up probabilities. From these graphs we note that
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Figure 34: Spacing 5(3,0.90)/M/1 Figure 35: Spacing 5(3,0.70)/M/1

|

Figure 36: Spacing S(5,0.80)/M/1 Figure 37: Spacing 5(5,0.60)/M/1

for a wide range of relative cost values there seems to be almost a linear relation between

the optimal equal spacing and the showing up probability.

7.2.3 No-shows impact on the optimal equal spacing

Studying the impact of no-shows on the optimal equal spacing between scheduled arrivals,
we compare the optimal equal spacing of systems where all customers show up to systerns
with no-shows with the same expected number of customers who show up. We compare
the optimal spacing between scheduled arrivals of S(n,p < 1.0}/M/1 models to the ones of
S(n’,1.0)/M/1 models where np = n'.

Each of the Figures 42 to 44 presents a comparison between the optimal equal spacing
of S(n,p < 1.00)/M/1 models and the optimal equal spacing between scheduled arrivals of
the equivalent S(n/,1.00)/M/1 model where np = n'. In these graphs the relative server’s
availability cost is stated on the X-axis, noted by 1, and the optimal spacings are stated on
the Y-axis. The spacings of the models with no-shows are drawn in continues lines, whereas

these of the models where all customers show up are drawn in a dashed lines.
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Figure 38: Equal S(3,p)/M/1 Figure 39: Equal S(5,p)/M/1
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Figure 40: Equal S(8,p)/M/1 Figure 41: Equal S(10,p)/M/1

The comparison reviles that the optimal spacing for systems with no-shows is smaller than
the spacing when all customers show up. Moreover, the optimal spacing decreases as the
showing probability decreases. If the customers who do not show up would have notified in
advanced that they are not going to show up, an optimal schedule could have been designed
only for those who show up, resulting with a more spacious schedule. This aligns with the
impact of no-shows on the expected waiting times and costs, as detailed in Sections 6.2.3,
6.2.6, 7.2.4 and 7.2.6. Due to expected no-show, the optimal schedule is more condensed,
resulting in longer expected waiting times leading to higher costs than there would have been

if the system was designed only for the customers who do show up eventually.

We also note that the impact of no-shows on the optimal spacing is smaller for extreme
relative service availability costs. Le., the impact when -y is very small or very large is not
as notable as it is for intermediate values of . In these extreme cases the optimal schedule

is highly influenced by the relative cost, hence the impact of no-shows is not as significant.
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7.2.4 Resulting customers’ expected waiting times

As in the unequally spaced model, the resulting expected waiting times of customers who
show up have a increasing pattern as the scheduled place in line increases, le. Wi, >

w} ¥i=1,..,n—1, and they are distributed with considerable variance.

Comparing the average and the maximum expected waiting times for a customer who
shows up in the equally spaced and in the unequally spaced models reveals that for a wide
range of v the average expected wailing time of a customer who shows up obtained by
the equally spaced model equals to the one obtained by the unequally spaced model. Such
comparisons are presented for three and ten customers for various values of p and v in
Figures 45 to 48. In these graphs the relative server’s availability cost is denoted on the
X-axig, nofed by 7, and the expected waiting times of a customer who shows up for both
models are denoted on the Y-axis. The waiting times resulting from the equally spaced
inter-arrival model are drawn by dashed lines, while the resulis of the non-equal model are

drawn by continuous lines.

Studying the impact of the no-shows phenomenon in the same manner performed for the

37




o
"
o
.
“
N
\\

Shows Weiting Tim
®
Shows Waiting Time
K
z
N

',
%
N
AN
N
\\

kY
A
4

Figure 45: Waitings S(5,0.90)/M/1 Figure 46: Waitings 9(5,0.70)/M/1

T T v r T T T T 7
4
451 ‘l 48[

Shows Watling Time
Shows Weiting Time
- o w
5 om_ ot ow @

Figure 47: Waitings S(10, 0.80)/M/1 Figure 48; Waitings S(10,0.60)/M/1

unequally spaced model, i.e., comparing the expected waiting times for customers who show
up of S(n, p < 1.0)/M/1 models to the ones of S(n, 1.0}/M/1 models where np = n', reveals

gimilar results.

7.2.5 Minimal average expected waiting time

Another subject of interest concerning the average expected waiting time is related to The-
orem 1.1 of Hajek [3]. According to this theorem the average waiting time of a customer,
in a system with one exponential server, is at minimum for constant inter-arrival fimes.
Comparisons between the average expected waiting times for a customer who shows up in
the equally spaced and in the unequally spaced models can be seen in Figures 45 to 48. As
mentioned before we note that for a wide range of v the average expected waiting times of
a customer who show up obtained by the equally spaced model equals to the one obtained
by the unequally spaced model. Furthermore, for high server’s availability cost the average
expected waiting time in the equally space model is higher than the one expected in the
unequally spaced model. The threshold value of v from which the S(n,p)/M/1 model does

not follow Hajek’s Theorem decreases as the showing up probability decreases. The fact that
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the Hajel’s Theorem does not always hold in a system with no-shows can be explained by
the fact that the defined objective function ® includes other factors that may contradict the
minimization of the average customers expected waiting time. In a S(n, p/M/1) model with
the stated objective function ®, reducing the customers’ expected waiting times leads to
increasing the server’s idle time. The minimum of the objective function (4.12) is somewhat
a balance between those expected waiting times and the average expected waiting times.
The range for which Hajek’s Theorem does hold depend on the weight given in the objective
function to the customers, i.e., the lower is the value of v the higher is their impoertance.
Moreover, as more customers arrive the range of -y in which the theorem holds is wider since

their weight in the objective function is higher.

7.2.6 Objective function’s value and cost of waiting times

As mentioned above, the constraint of equally spaced intervals does not have a significant
effect on the objective function for any combination of p and 7. We also study the effect
of equelly spaced scheduled inter-arrival times on the value of the expected total cost of
waiting in the system. Comparisons between the objective function values of the equally
and unequally spaced models and befween the cost of waiting times of the same models,
are presenied in Figures 49 to 52. In these graphs the relative server’s availability cost is
denoted on the X-axis and the cost functions’ values are denoted on the Y-axis. These graphs
demonstrate the minor differences between the objective functions’ values of the equally and

unequally spaced models. Also the affect on the expected cost of waiting is minor.
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Appendices

Numerical solution for S(3,p)/M/1

As stated in Section 5.2, the optimal schedule for the S(3,p)/M/1 model, is obtained by
using the Newton-Raphson method, which is known to be an efficient algorithm for finding

approximations to the zeros of a real-valued function.

The idea of the method is as follows: one starts with a value which is reasonably close
to the true zero, then replaces the function by its tangent and compusies the zero of this
tangent which will typically e a better approximation to the function’s zero. The method
can be iterated:

Suppose f : [a,b] — R is a differentiable function, we start with an arbitrary value &g, in
the nth step of the algorithm %, is defines as follows :

- ~ f(iﬁn-l)

If f'is continuous, and if the unknown zero z is isolated, then there exists a neighborhood

(4)

of z such that for all starting values Z¢ in that neighborhood, the sequence (£5,) converges
towards z. Furthermore, if f/(z) # 0, then the convergence is quadratic (which means that

the number of correct digits roughly doubles in every step).

We start the solution process by applying the Newton-Raphson approximation to find
the zero value of f(z1) as defined in (5.15). Rewriting the function in terms of 3 = @

f(z) = pA@) [1+ e (1 —p—pnAl2))] — 7. (:5)
The derivative of this function {required for the Newton-Raphson algorithm) is:

flz) = pd—ﬁgﬂ [1 +e#(1l—-p —plnA(m))] -

- A [—e_m(l -p—ploAlz) + e*w(—pm_(lx—)%] -
- [%“*pe‘ﬂ ver—p p A —Aﬂ. (6)

Where 22 is (for the definition of A see (5.13)):

dA{z) _ (7 —1)e®
dx (1 _p€,$)2.

We use the algorithm by implementing it in Matlab. The stopping condition for the im-

plemented algorithm , is defined by the difference between two sequential steps, that is if
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|&,, — &n-1| < € the approximation for z1 is: z1 = #,. The obtained £, may be negative, in

which case the feasible solution 21 = 0 is forced.

If z; > 0, zy is then obtained simply by substituting z; in (5.14). Otherwise, if z; = 0, we
obtain zz by applying the algorithm to find the zero value function of {6.16) using Matlab.

In any of these cases, if the obtained z, < 0 we force the feasible solution x5 = 0.

Using the above method, we find the optimal inter-arrival times for three customers for

various values of p € (0,1] and v € (0, 1].

Numerical solution for S(n,p)/M/1 n >4

As mentioned in Sections 6.1 and 7.1 we use Matlab optimization toolbox for computing
the optimal solution. From this toolbox we use the function fmincon which implements
a sequential quadratic programming (SQP) nonlinear programming method. SQP mim-
ics Newton’s method for constrained optimization just as is done for unconstrained opti-
mization. At each major iteration, an approximafion is made of the Hessian of the La-
grangian function using a quasi-Newton updating method. This is then used to generate a
quadratic programming (QP) subproblem whose solution is used to form a search direction
for a line search procedure. Full details about the algorithm can be found on the web at
http://www.mathworks. com/access/helpdesk/help/toolbox/optim/ug/126684 . html.
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