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ON SHORTEST PATHS IN GRAPHS WITH RANDOM
WEIGHTS*+

REFAEL HASSINi anp EITAN ZEMELS§

We consider the shortest paths between all pairs of nodes in a directed or undirected
complete graph with edge lengths which are uniformly and independently distributed in [0, 1].
We show that the longest of these paths is bounded by c log n/n almost surely, where ¢ is a
constant and n is the number of nodes. Our bound is the best possible up to a constant. We
apply this result to some well-known problems and obtain several algorithmic improvements
over existing results. Our results hold with obvious modifications to random (as opposed to
complete) graphs and to any distribution of weights whose density is positive and bounded
from below at a neighborhood of zero. As a corollary of our proof we get a new result
concerning the diameter of random graphs.

1. Introduction. There has been a growing interest in recent years in probabilistic
analysis of optimization problems and algorithms. These include both “easy” prob-
lems, for which polynomial algorithms are available (e.g., Bloniarz 1983; Karp 1980;
Rohlf 1978; Spira 1973; Walkup 1979; Weide 1980) and “hard” ones, for which such
an algorithm is unlikely to exist (e.g., Cornuejols et al. 1980; Fischer and Hochbaum
1980; Hochbaum 1979; Karp 1977, 1979; Lueker 1981; Marchetti-Spaccamela et al.
1982; Papadimitriou 1981; Zemel 1982).

In this paper, we analyze the problem of finding the shortest paths between pairs of
nodes in a directed or undirected complete graph whose edge lengths are uniformly
and independently distributed in [0, 1]. Our main theorem states that there exists a
constant ¢ such that the distance between each pair of nodes is bounded by clogn/n
almost surely. We also show that the order of magnitude of this bound cannot be
improved. The result is then applied to a variety of situations to yield some improve-
ments in the algorithmic performance. These include shortest path problems, minimum
ratio problems, location problems, etc.

We devote the next section to the statement and proof of our main theorem.
Subsequent sections consider some of the applications.

2. Main theorem. Consider a complete graph G, = (V,E) with node set V =
{v),...,v,} and edge lengths d(v;,v) = d;. We consider here the undirected case
d; = d;;. However, all our results apply without any modification for the directed case
as well. Let D;; denote the length of the shortest path between a given pair of nodes v;
and v;. We are interested in the size of D,,,, the maximum, over all pairs, of D, when
the individual edge lengths, d;;, are uniformly and independently distributed in the
interval [0, 1]. Our main result is the following:

THEOREM. There exists a constant ¢ such that D,,, < ¢ <logn/n almost surely.
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The technical meaning of the statement “almost surely” (a.s.) is the following. For
each graph size, n, let p, denote the probability that a certain assertion (such as the one
expressed in the theorem) does not hold. We say that the assertion holds almost surely
if 3r-1p, < co. Obviously, this condition is stronger than the requirement that p,
tends to zero for large n. When only the latter condition holds, we say that the
assertion holds in probability. On the difference between the two concepts and the
relevance of the stronger one to optimization problems, see Rényi (1970) and Steele
(1981).

We include in this section also a proof that the order of magnitude claimed by our
theorem cannot be improved, i.e., we exhibit a constant ¢, such that Pr[D,, >
c,logn/n] is considerable. As will be apparent to the reader, we do not derive the
sharpest possible values for ¢ and c¢,, and thus there is a considerable gap between
them. This gap, however, does not affect the applications we discuss here.

For every two functions f(n), g(n), we use the standard asymptotic notation g(n)
= o(f(n)) if Lim,_g(n)/f(n)=0, g(n)=Q(f(n)) if f(n)=o0(g(n)) and g(n)=
O(f(n)) if lim g(n)/f(n) = c for some constant c.

Proor oF THE THEOREM. The general thrust of the proof is as follows. Let b6 > 0 be
a constant to be specified later. For each node v; € V, we construct a set H; C V such
that almost surely |H,| > (nlogn)!/?, and D, < blogn/n for each v, € H,. Clearly, if
H; N H; # @, then D; < 2blogn/n. Otherwise, we show that there almost surely exists
an edge (k, 1) such that v, € H;, v, € H; and

D;< Dy + Dy +dy < clogn/n

for a constant ¢ which is essentially equal to 25.

We first examine the construction of H;. Our construction is sequential; that is, we
generate a nested sequence of subsets H°C H!C I'-I,-2 C --- C H = H; and demon-
strate that H; = H; has the required properties.

We open with a useful approximation to the Binomial distribution. It is based on
Bernstein’s inequality, and its proof can be found in Rényi (1970, p. 210).

LeMMA 1. Let 0<p<l,g=1-p, x<3ivyn/pq. Then

> ('r’)p’q”"’< 2exp(—x?*/4).
|r—np|>x‘fn;;

Let « be a given constant, ¢ = (a — 1)*/4a. Define H® = {v; € V|d; < alogn/n}.
Then it follows from Lemma 1 that p, = Pr[|H’| < logn] < 2n~ " For g > 2, which can
be achieved by a > 10, we get p;, = o(1/n?). Thus we have shown:

LEMMA 2. For a > 10, the n inequalities ]H,.°| >logn, i=1,...,n, hold simulta-
neously almost surely.

Pick a particular vertex v, € ¥ and let H? be the set of Lemma 2. We now show
how H'*! can be constructed from H/ for /=0,...,r — 1 until we obtain the set
H, = H/ with the desired properties. Spec1flcally, let H'*'= H! U F/*! where F/*' N
H'= ! — @. For convenience we define F° = H?.

Let ,[)’ be a constant to be specmed later and let r,=alogn/n+ (- 1)8/n,
=1, , r with ry =0.

We assume that for m=0, ..., ., F™ is such that for each v, € F/", a particular
path exists from v, to v, of length D" which satisfies r,, < D* < r,,, ;. This assumption
clearly holds for m = 0 since by construction, for each v, € H®, 0< d, < alogn/n
= r, and thus we can take D} = d;. To see how this property can be extended to



SHORTEST PATHS IN GRAPHS WITH RANDOM WEIGHTS 559

m = [+ 1, let, for each v, € H,-’,
Bl =(re1— Df,riyy— Dik]'
Now let
F'*'= (v & H/|d, € A}, for some v, € H] }.

In words, f/*' consists of those nodes v; currently not in H; but which can be reached
from some node v, € H/ by an edge whose length d; € A . This makes for a path
from v, to u; (via v;) of total length D/ = D} + dk Wthh satisfies the required
condition: r,+| < D!/ < r;,,. The reader may recall that, as per Lemma 2, the size of
HY is at least logn almost surely. Similarly, Lemma 3 below indicates that F/*! (and
hence H/*') cannot be “too small” in relation to H/:

LEMMA 3. Let y‘ be a positive constant such that vy < B. Set

t=[B—v—h(B>+2)/2n]’/4B and h=|H]|.
If h < (nlogn)'/?, then Pr{|F/*'| < yh] < 2n~".

Proor. First note that & = |H/| > |H/| > logn. Next, for each pair v, € H/, v; &
H/ let P,; denote the probability of the event “dy; € i conditioned on v, € H/,
v & H;. ! Clearly, these events are mutually mdependent for the various choices of j
and k. Also, for each such pair, we have p,; > B/n. This is due to the fact that A, has
length B8/n and that A}, is disjoint from any of the intervals A}, m < |/, which may

= >

have been examined before. Thus, the number of elements of F/*' is a binomial
random variable with probability of “success” at least 1 — (1 — 8/ n)" and the number
of trials is n — A = n(1 — h/n). The expected value of the number of elements in F;/*!
is at least
B\ h\ Bh 1 Bh B
(n h)[l (1 7) } > n(l -’;)T(l ! —n-) > Bh(l - (-2— + 1) )
and the required result now follows directly from Lemma 1.

Note that for large values of n, ¢ is essentially equal to (8 — v)?/48.

Call an iteration, /, a “success” if |H'*'| > (1 + y)|H'| or if H'*' > (nlogn)'/2.
Clearly, after at most logn/(2log(1 + y)) = r* successes, H/*' achieves the desired
size of (nlogn)'/2. By Lemma 3, the probability of success at each iteration is at least
1 —2n7". Let § be a positive constant to be specified later and let

= (1+ &8)logn/(2log(1 + v)), 5= [8 - —%(1 + 8)]2/8(1 + 8)log(1 + 7).
n

LEMMA 4. Let r be an integer, r > ry, then p = Pr{|H/| < (nlogn)'/?] < 2n~*"",

PROOF. p is bounded from above by the probability that » independent trials with
probability of success 1 —2n 7' each yield less than r* successes. The desired result
follows directly from Lemma 1 by substitution.

We have thus shown that the n inequalities |H,| = |H/| > (nlogn)'/?, i=1,...,n,
hold simultaneously almost surely. By our construction method

Dy < D} < alogn/n+rB/n=blogn/n

for every v, € H;. We now show that if H, N H; =0, we can find a sufficiently short
edge connecting H; and H; which makes for a path from v; to v; of length clogn/n.
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. I:or each pair v, € H,, v, € H;, let &y, = min{d},D/"}. Clearly a,,, < blogn/n.
e

wm =(blogn/n — &y, ,blogn/n~ ay,, + p/n]

where y > 0 is a constant to be specified later. Note that the length of A, is p /n. Also
Akm is disjoint from any of the intervals A},,A/,, /=0, ..., r, examined throughout
the construction of H; and H; since the largest number contained in any of these
intervals is blogn/n — «a,,. Thus the events d, EAkm, conditioned on v, € H,,
v, € H;, H;N H;=0, are mutually independent and each has a probability of
occurrence at least p/n. There are nlogn events of this type (one for each edge
connecting H; and H)) so that the probability that none of these actually occurs is at
most n~*. For pu > 3 this implies that for all pairs v;,v;, such that H; N H =0
simultaneously, an appropriate edge can be found almost surely Thus, the n(n — l) /2
inequalities D, < (2b + p/logn)logn/n hold simultaneously almost surely. This
proves the theorem since for large values of n, 2b + u/logn is essentially equal to 25
and in any case can be bounded by a constant c.

The constant ¢ of our theorem is rather large. For instance, by choosing a = 10,
B=2,vy=1/2,8 =1, we get that b is roughly equal to 13.33 so that c can be taken as
27. A sharper analysis can reduce this constant dramatically, perhaps by a factor of 10.
Nevertheless, the order of magnitude cannot be improved:

LemMa 6. Pr{D,, » logn/n]> e~!

PrROOF. A random graph with probability of each edge p =logn/n is not con-
nected with probability e ™' (see Erdés and Spencer 1974, Chapter 16).

In the following sections, we proceed to examine some of the algorithmic implica-
tions of our theorem.

3. Shortest paths and spanning tree problems. Here and in the following sections
we consider a complete (directed or undirected) graph G = (E, V') with n nodes and a
function 4 which assigns a length 0 < 4; < 1.to every edge (v;,v;) € E. The values of
d; are assumed to be independent uniform random variables. The main idea is that
since all distances D, are a.s. bounded by clogn/n, then in many problems edges
which are larger than k logn/n for some constant k, will almost surely not be used in
an optimal solution. Thus, in O(n?) preprocessing time, these edges can be deleted and
be excluded from further consideration. This operation leaves us with a random graph
G =(V,E) such that for every (v;,v) € E, Pri(v;,0) € E] klogn/n, and |E|
= O(nlogn) almost surely. Then a standard algonthm can be applied to G to find an
optimal algorithm in reduced effort.

We note that by examining the solution obtained on G, it should be possible to
check whether the exclusion of the “long” edges was, in fact, justified. If not, the
procedure failed, and the standard method must be applied to G in order to obtain the
correct optimal solution. Thus, the worst case bound is identical with that of the
standard method, but the algorithm’s worst case (or average) performance time is
almost surely very close to its worst case (or average) performance time on G.

Since O(n?) is required just to scan the edges of G to obtain G, there is no point in
applying this method to problems which already have an O(n?) algorithm such as
finding the shortest path between a given pair of nodes or the minimum length
spanning tree. However, the method can be used to expedite algorithms whose running
time is longer. :

A case in point are shortest paths problems when more than one pair is involved.
Note that our method requires O(n?) processing time after which, using Fredman and
Tarjan (1984), all the shortest paths from a given node v, to the other vertices of G can
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be computed in O(nlogn) almost surely. An alternative procedure which can be used
here is Bloniarz (1983), which is based on Spira’s (1973) method and which can find all
shortest paths leaving v, in O(nlognlog*n)' expected time (O(n*) worst case time),
after a preprocessing phase which requires O(n’logn). Thus, the order of running time
of our algorithm almost surely is better than Bloniarz’s order of expected time. Note,
however, that the latter method is valid under less restrictive probabilistic assumptions
than ours.

Suppose next that we are interested in finding a shortest v, — v, path for some given
v,,v, € V, containing at most P edges. The problem can be solved in O(mP) time for a
graph with m edges using dynamic programming. Since the restriction on the number
of edges makes the shortest allowed path larger, it is not always possible to restrict our
search to G. However, examination of the proof in §2 shows that for any pair v,, vyEV
the number of edges required to construct the v; — v; path is almost surely less than
(1 + 8)logn/log(1l + y) + 3 which can be very generously bounded by 4 logn. Thus,
the shortest v, — v, path containing no more than P edges for P > 4logn can be found
almost surely in O(Pnlogn + n?) as opposed to O(n*P) which is the regular bound.

As we have already mentioned, application of our theorem to the minimum
spanning tree problem does not improve the complexity bound since this problem
already has O(n?) algorithms. However, our method may be useful when a sequence of
minimum spanning trees is to be computed. One example is a generalization of the
minimum spanning tree problem, called the Steiner network problem. Another will be
given in §5. Let the number of nodes of the graph be n, and suppose that a specified
set of n — s nodes is to be spanned by a tree of minimum weight. While this problem is
known to be NP complete, Lawler (1976) presents an algorithm which for a fixed value
of s is polynomial in n. The algorithm requires first the solution of all-pair shortest
paths and then computes O(2°) solutions of minimum spanning trees on sub-
graphs with no more than 2(n — s — 1) nodes. Thus, its worst case complexity is
O(n — 5)22° + n).

By our theorem, almost surely all distances between nodes in the graph are shorter
than clogn/n. In O(n?) preprocessing, all edges larger than this value can be deleted
and the algorithm can be restricted to the resulting graph which almost surely has
O(nlogn) edges. Using any O(mloglogn) algorithm for the minimum spanning tree
(e.g., Yao 1975, Cheriton and Tarjan 1976), we obtain a bound of

O(nlognloglog(n — 5)2° + n*lognlog*n)

almost surely.

4. Absolute P-center. For a set of points X on G and v, € V, let D(i,X)
=min{D, | x € X}. The problem is to find the “weighted absolute p-center”, X
={xy,...,x,} and the “p-radius” r, for which r, = minjy,_,{max,c,w,D(i, X)},
where w; are given weights.

By our theorem, r, < clogn/n almost surely. Thus, if d; > 2clogn/n, then edge
(v, v;) almost surely contams no points in the optimal set X This reduces the set of
candjldate edges to the O(nlogn) edges which are shorter than 2clogn/n.

Kariv and Hakimi (1979) showed that the p-center problem on a general network is
NP-hard. However, for p = 1, they give an algorithm which requires O(n’logn) time
on complete graphs (and O(n?) time if w; = 1 for all v, € V). The algorithm computes
in O(nlogn) time the best point on a given edge and this step is repeated n? times. This
dominates the O(n®) time required by the algorithm to compute all-pair shortest
distances in the graph.

'log*n = min{illog’ < 1) and log’ denotes the ith iterate of the logarithm function.
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It follows from our theorem that only O(nlogn) best points need to be found, and
thus the overall time of this step is O(n?log?n). The same amount of time is required to
compute the all-pair shortest distances. Thus, for graphs with random edge lengths, the
weighted one-center problem can be solved in just O(n?log?n) time, almost surely.

5. Minimum ratio problems. For any given feasible set D C R" consider:

Problem A: minimize Z = 3 gc;x; s.t. x = (x;: (v, 1)) € E) € D.

Problem B: minimize R = (3 ga;x;)/ (X gb;x;) s.t. x € D.

Suppose that a function g(n) is known such that when ¢; are uniform independent
r.v.’s on the unit interval, then an optimal solution to 4 almost surely does not use
edges with c; > g(n). Suppose also that q;; i and b;, (v, 1)) E E, are all independent
uniform random variables, on the unit interval. Let R* denote the optimal value of R.

LEMMA. For every € >0, 0 < R* < (1 + €)’g(n) almost surely. In particular R* <
4g(n) almost surely.

PrOOF. We generate a solution x € D as follows: Let G be the graph obtained

from G after deleting all edges with either a>(1+egn)orb<(l+e " Then the

probability that a given (v;,v;) € E is in Gis g(n). By our assumption, this probability
a.s. guarantees the existence of a feasible solution. Such a solution has however

r<LF9g(m _
(1+¢7"

It is a standard trick to solve ratio problems such as Problem B by solving a
parametric series of problems of type A with costs ¢; = a; — tb;. The search termi-
nates when Z = 0, in which case ¢ = R*. Obviously, if a bound on R* is known, the
values of ¢ can be restricted to obey this bound. Clearly, when costs ¢; = a; — tb; are
considered a better solution is found than if c; = e Thus, edges with a; — th; > g(n)
can be deleted. In particular, edges with g; > 5g(n) can be deleted smce a — tb;
>a;—t>a;—4g(n) > g(n) Thus, a.s. only O(nlogn) edges must be cons1dered
For example, consider the minimum ratio spanning tree problem which can be solved
in O(mlogkloglogn) time for a graph with m edges (Megiddo 1981) and in O(m-
log(nd)loglogn) where d is the maximal edge length, expressed as integer (Zemel
1981). It follows from our main Theorem that g(n)= cnlogn also for the MST
Problem. If we replace m by O(nlogn) we obtain O(nlog’nloglogn) which is
dominated by the O(n?) preprocessing time. Thus the resulting algorithm requires
O(n?) time almost surely.

(1+ ¢’ g(n).

6. Concluding remarks. Throughout the paper, we assumed that the edge weights
are uniformly distributed. However, examination of our proof in §2 shows that the
only important property of this distribution is that its density is positive and bounded
from below at a neighborhood of zero. Thus, it is possible to extend our main theorem
to other probability distributions as well.

Consider next a random graph G. = (E,, V) such that for each e € E, Prle € E|]
= p,, and these events are independent. Then a proof parallel to that of §2 shows that
D,,. < clogn/np, almost surely. The applications of §§3-5 apply also in this case
where edges larger than clogn/np, can be excluded. Since |E,| = O(n’p,) it follows
that the resulting graphs have almost surely O(nlogn) edges. The complexity of the
proposed algorithm is thus unchanged except that the preprocessing effort is bounded
by O(m) = O(n’p,), almost surely.

For example, the problem of finding a minimum spanning tree can be solved in
O(mloglogn) time (see Yao 1975). After removing the “long” edges from G,, we have
m = O(nlogn) edges and the problem can be solved on the resulting graph in
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O(nlognloglogn) time. If P, = Q(lognloglogn/n) then m = Q(nlognloglogn) almost
surely, and the preprocessing time is dominating, so that we obtain an O(m) algorithm.

Another example concerns finding a shortest v, — v, path. This can be done in
o(m log n) time. After removing long edges we can thus solve the problem in
O(nlog’n). If p, = Q(log’n/n), then m = Q(nlog?n) a.s., and the preprocessing, which
requires O(m) time, dominates the overall complexity of the algorithm. We note that
for graphs with m = Q(n'*¢) there already exist O(m) algorithms for both the mini-
mum spanning tree and shortest path (with nonnegative weights) problems (see
Johnson 1975, 1977, Cheriton and Tarjan 1976).

A final result concerns the diameter of random graphs. Its proof follows easily from

the proof of our theorem. Let b and r be as in §2.

COROLLARY. Let G = (E, V) be a random graph with p,= Pr[(v,v) € E]>
blogn/n, then the diameter of G is almost surely less than or equal to 2r + 3.

Note that 2r < 4logn so that p, > blogn/n suffices to guarantee dlm(é) =
O(logn). Very strong theorems concerning the diameter of random graphs appear in
Bollobas (1980). However, they apply to different domains of p, and dim(G).
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