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Abstract

We consider a deterministic pricing and replenishment model in which the retailer advertises

a fixed price and the selling schedule, and customers can advance or delay their time of purchase

incurring holding or shortage costs. We investigate the impact of heterogeneity in the customers’

reservation prices. We show that the resulting optimal solution may be very different from that

obtained when customers are homogeneous. We identify nine types of possible optimal sales

strategies, and compute their profits. In particular, the solution may contain sales at several

discrete points of time between consecutive replenishment epochs with no sales between them.

1 Introduction

Classic inventory models customarily assume that clients who do not find the product on the

shelf upon their arrival, either quit (lost sales) or wait for the next reorder time (backlogging),

see for example §3.3 in Zipkin (2003). Under backlogging, which holds especially for monopolists,

customers, arriving when the product is not available, wait for the next replenishment. The retailer

is then penalized by a shortage cost consisting of the administrative work involved in handling the

shortage and the loss of good will. The shortage cost is often assumed to be proportional to the

amount backlogged and possibly also to the backlogging duration.

In the more recent literature it has been recognized that customers are strategic, in particular

they time their purchase to maximize their welfare, and profit maximizing sellers respond to the

customers’ strategy. Some of this literature is reviewed by Shen and Su (2007). In such models

dynamic pricing, rationing of the amount of product on the shelves, stockpiling, and timing of

sales play cardinal role. For example, short term price promotion may have several effects, like

attracting customers of other brands, an increase of consumption, and stockpiling. The latter
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means that customers may hold inventory at a cost, in order to consume it later when the price

is raised to its regular level. An explanation for the potential benefits of this behavior was given

by Eppen and Liebermann (1984): “Under certain conditions, price deals on nonperishable goods

can benefit both retailer and customer by transferring part of the inventory holding cost from the

former to the latter in return for an unusually low price.”

Early papers on stockpiling are Salop and Stiglitz (1982) and Bucovetsky (1983), and more

recent contributions include Hendel and Nevo (2004), Bell, Iyer and Padmanabhan (2002), and Lai,

Debo and Sycara (2010). Other recent papers also consider forward-looking customers. Su (2007)

considers customers who can buy at the current price or delay their purchase at a cost to purchase

later. Su and Zhang (2008), Aviv and Pazgal (2008), and Mersereau and Zhang (2012) also consider

forward-looking customers who can delay their purchase to enjoy future discounts, but are concerned

about product availability. Liu and van Ryzin (2008), Zhang and Cooper (2009), and Cachon and

Swinney (2009) consider firms that intentionally understock products to create rationing risk which

induces customers to buy earlier than they would otherwise intend. Su and Zhang (2009) consider

strategic sellers who use commitments to a particular quantity and compensations to customers

during stockouts. Bansal and Maglaras (2009) show how sellers can manipulate the timing of

purchase of their customers by dynamic pricing. Mesak, Zhang, and Pullis (2010) discuss demand

manipulation by advance selling. Papanastasiou, Bakshi, and Savva (2012) show that strategic

stock-outs can be used to influence social learning, leading to higher overall product adoption and

increased firm profits. A different line of strategies where consumers’ demand can be manipulated by

an appropriate inventory holding strategy is described by Balakrishnan, Pangburn and Stavrulaki

(2004), where consumers positively react when they observe high levels of inventory.

Our objective is to investigate the effect on the retailer’s optimal strategy when customers are

strategic, willing to pay for advancing or delaying their purchase due to an anticipated shortage.

Examples for such behavior abound and we discuss some of them below. We investigate a basic

deterministic problem in which the time horizon is continuous and infinite, the demand rate is

constant (price dependent), and the information is assumed to be complete, i.e., the retailer knows

the preferences of the customers, and the customers are aware of the price and selling periods.

We assume that the price that the retailer chooses is constant over time. This assumption fits

many real life situations, for example retailers that adopt the common ‘everyday low price’ policy

(EDLP). Another case where this assumption is natural is described below, referring to the market
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consisting of a discount price and customers who only buy at this price.

The model that we consider here is an extension of Glazer and Hassin (1986) where customers

who are willing to buy the product can buy it earlier than the time they most desire it and incur

inventory holding costs, buy the product later than needed and incur shortage costs, or give-up and

leave the system without buying the product. This behavior is not a result of price fluctuations, but

it is rather a strategic response to the retailer’s policy on when to display the product on the shelf. In

other words, the retailer may avoid selling the product in certain periods if this increases its profit.

By doing so, it manipulates some of the customers to advance or postpone their purchase. We

follow Glazer and Hassin (1986) by assuming a stationary and deterministic model where the seller

is restricted to a fixed price. Thus, instead of altering the price dynamically, the seller optimizes

profits by restricting sales to certain instants, and customers respond by timing their purchase. For

the case of homogeneous customers (except for the time they need the good) Glazer and Hassin

(1986) found that the solution may be one of three types: Continuous sales throughout the cycle,

sales only at the time of inventory replenishment, or continuous sales through an interval followed

by a no-stock interval, i.e., an interval in which the firm does not hold stock, that ends with the

next replenishment. This finding adds to classic models by explaining real cases in which sellers do

not hold inventory at all. Glazer and Hassin (1990) solve the same model but with the objective of

maximizing social welfare rather than seller’s profits. It is shown that planned shortages may be

socially desired, and indeed, a profit maximizer generates less shortage than is socially desirable.

In particular, the policy of continuous sales throughout the cycle is never socially optimal.

The assumption of identical customers greatly limits the applicability of these results. For

example, when prices can be varied, Conlisk, Grestner, and Sobel (1984) and Sobel (1984) show

that with heterogeneous customers, by periodically cutting the price sharply the firm can increase

its profits by selling to customers with low reservation price. Our motivating question is: Will

the qualitative results obtained by Glazer and Hassin with homogeneous customers still hold when

customers differ by their reservation prices? We identify optimal integrated pricing, replenishment,

and selling schedule policy for two types of customers, each associated with its own constant arrival

rate and reservation price. We show that the optimal strategy may be significantly different when

having heterogeneous customers. We identify nine possible outcomes, eight of them are variations

of the possible strategies with homogeneous customers, but the last one contains in between two

replenishment epochs, several no-sale intervals, i.e., intervals in which the retailer does not sell the
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product, separated by sale points.

The latter type of policy may explain why in some cases firms limit their sales to discrete points

of time and by doing so they manipulate their customers. We next describe a few examples where

the product is sold at a pre-specified set of time epochs: (i) The Tuesday Morning chain of stores is

known for its unique philosophy: “sell first-quality, famous designer and name-brand merchandise at

extraordinarily discounted prices on an event basis... usually on the first Tuesday of the month”. (ii)

All over the world it is common to have market days, so that goods are not continuously available.

Of course there might be various reasons for regular market days, like resource availability, low

demand, and seasonal demand; our model provides another interesting view. (iii) Many firms offer

periodical discounts which can be interpreted as discrete sales as mostly in between two discount

periods, the sales are low (as the price is high). Such periodic discounting also has been discussed

in the bullwhip effect literature. In between periods, the consumers typically forward buying their

needs for the whole period. Our model could describe such price discount events. The product is

sold continuously, but at certain times the price is vastly reduced. Many customers will try to wait

for those discounts. Our model focuses on those customers who always wait for discounts. The other

customers are outside the model. The special sales may then be repeated for a very short period

(say, a day or a weekend). Since customers are aware of the special sales they will only buy on sales

periods and will carry the inventory for future days when the price is high. (iv) The situation we are

analyzing might occur in some of the home appliances and office equipment retail chains (e.g., Ace,

Home Depot, Office Depot). It is quite common to find in these chains that they sell an item over

a certain period, then it is taken off the shelf only to be returned a few weeks later. Sometimes this

happens because they get bulk shipments in containers (typically from China) and sometimes there

is discontinuity in the shipments of this product. Another explanation for these planned shortages

is given by our results. (v) Many computer games (such as the popular Call of Duty series) have

a new edition released once or twice a year, causing a period of sales of the original game followed

by long no sales intervals. (vi) As our results show it is possible to have an optimal policy where

the product is first sold continuously and then it is sold at a number discrete points until the next

continuous sales interval. An example for such a mixed behavior is the real-estate industry, and in

particular in Hong Kong. The replenishment is the time completion of a project, and the developers

adopt various strategies to sell the apartments (see, Lai, Wang and Zhou (2004) for more examples

and discussion): One-time clear strategy, is when a big real-estate project is finished, the developer
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offers a reasonable price and consumers buy all apartments at the selling date. Usually it just takes

one or several days to sell thousands of apartments. Alternatively, in a continuously selling strategy

the developer offers a pretty high price and consumers come continuously and it may take one year

to sell one thousand apartments. In yet another strategy that is employed, apartments are sold

one year before they are used, resulting in consumers who need wait before moving in bearing a

very high holding cost. (See the new regulation on selling price and quantity in the Hong Kong

real estate market at http://www.info.gov.hk/gia/general/201005/26/P201005260094.htm and in

particular Part (c).)

We note however, that the solution type where there are a number of discrete sales epochs

in between two consecutive replenishments, is less frequently observed relative to the other eight

cases, and one of our goals is to characterize the conditions under which this solution is obtained.

In particular, we show that this solution requires that the consumers shortage costs be higher than

their inventory holding cost, and that the firm’s fixed replenishment cost is high.

The assumption that customers are charged for shortages and for holding inventory, endoge-

nously and indirectly induces a shortage cost for the retailer without necessitating an assessment

of unit shortage/backlogging cost by the firm. The strategic use of no-sale intervals may cause

some of the customers to quit without buying. Indeed, the higher are the holding/shortage costs

faced by the customers, more customers will quit in a no-sales interval, inducing a higher shortage

penalty cost on the retailer. The assessment of the customer’s inventory/shortage costs is simpler

because these are more direct costs than the respective costs of the firm. For example, consider

a car dealer who sells an imported model non-continuously. Customers who are aware that the

product will not be available at the time they desire it can buy it earlier than needed (incurring

financial charges), or wait until it is back in stock, paying the rental cost of an equivalent car. This

example demonstrates that the assessment of shortage/holding cost that the customer incurs can

be more straightforward than the assessment of the indirect shortage costs incurred by the seller

because of loss of reputation.

We consider two customer types, denoted 1-customers and 2-customers, where 1-customers are

associated with a higher reservation price. We identify nine possibilities for an optimal solution.

Three consist of sales at replenishment instants only, to all 1-customers and to a proportion x

of 2-customers, where x = 0, x = 1 or 0 < x < 1. Two consist of continuous sales to either

only 1-customers, or to all customers. We call policies that consist of sales at replenishment
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instances or continuous sales policies - simple. Three more possibilities consist of a continuous

sales interval followed by a no-stock interval. We call such policies semi-continuous. In the three

possible optimal semi-continuous policies, sales are made to all 1-customers, to a proportion x of

2-customers appearing in the continuous sales interval, and to a proportion y of the 2-customers

appearing in the no-sale interval, where x = y = 0, or x = 1 with y = 0 or 0 < y < 1. Finally, we

identify a possible optimal policy that consists of a continuous sales interval followed by at least

two no-sale intervals. The sales at the continuous sales interval are to all customers, and at the

no-sale intervals to 1-customers only. We derive the average rate of profits in each case. We also

give conditions on the input parameters that restrict the possible optimal strategies.

Finally, we mention the extensive literature on inventory replenishment with capacity limits of

the supplier that cause interruptions in the replenishment of the product, see for example, Parlar

and Berkin (1991), Wang and Gerchak (1996), Güllü (1998), and Güllü, Önol and Erkip (1999).

In these models there are periods when supply is not available or is partially available. Customers

are usually uninformed about when these “dry periods” start and end. Closest to our model is the

model of Atasoy, Güllü and Tan (2010) that considers a discrete time three-level supply chain where

a manufacturer orders supply from an external supplier that may stop selling in certain periods.

However, in order to help the manufacturer, the supplier provides him an accurate information

about the availability of the supply in the next given number of periods. The manufacturer is facing

deterministic periodic demands of customers. The paper considers the manufacturer’s problem who

needs to plan its own order quantities from the supplier in order to minimize his total expected

costs that consist of his ordering costs, plus holding and backorder costs, given the available limited

information about the dry periods. In this model, and in ours, the supply is not available at all

times, and the manufacturer (in their model) or the customers (in ours) need to decide when and

if to buy in order to minimize their costs. Though, there are several differences between this model

and ours, and the most crucial one is that in their model the timing and length of supply availability

is not strategically planned but result from external random forces.

The paper is organized as follows: In Section 2 we describe the model and present notation with

preliminary results. In Section 3 we consider simple policies of selling either only at replenishment

instants or continuously through the cycle. In Section 4 we consider semi-continuous policies, where

sales are made continuously through the first part of the cycle, followed by a no-stock interval. In

Section 5 we introduce a lemma that helps to restrict the search for an optimal solution to policies
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with nondecreasing no-sale intervals. In Sections 6-8 we characterize the possible solutions which

are neither simple nor semi-continuous depending on whether the customers’ holding cost is greater

or smaller than their shortage cost. For each policy type we compute the average rate of profit of

the policy of this type which can be a candidate for being optimal if certain conditions on the input

parameters are satisfied. Altogether we identify nine types of policies. The optimal solution for a

given set of input parameters is then the policy with highest value among those whose necessary

conditions are satisfied, provided that this value is positive. The results are summarized in the

concluding section.

2 The model and preliminaries

We consider a deterministic model with a monopolistic firm that sells a single type of a product

at a constant price to two types of customers, i.e., no price discrimination is allowed. The firm

incurs a fixed replenishment cost of size K, and a variable cost c. It also pays a linear holding

cost of hf per unit of the product per unit of time. Customers differ by two parameters, the time

when they most need the product, which we call their demand time, and their reservation price,

which is their valuation of the product at that point of time. We assume that the first type of

customers is characterized by a reservation price w1, and by an arrival rate λ1. The second type

of customers is characterized by a reservation price w2, and by an arrival rate λ2, where w1 > w2

and λ = λ1 + λ2. We assume that each customer needs a single unit of the product. We use the

following terminology: Customers that demand the product at t and whose reservation price is wi

are called (t, wi)-customers. When the time of arrival is not important we simplify the notation

and refer to the customer simply as an i-customer, where i ∈ {1, 2}.

Customers are ready to buy the product earlier or later than their demand time. Such a

deviation comes at a cost. We assume that the costs are linear in the earliness or tardiness duration,

similarly to the EOQ model with backlogging where the customer plays the role of the retailer.

Specifically, for some positive parameters hc and s, a (t, w)-customer is ready to pay for it at most

w − hcτ at time t − τ and at most w − sτ at time t + τ for any τ > 0. This behavior can be

interpreted as follows: By obtaining the product before t, the customer incurs an inventory holding

cost of hc per unit of time; by obtaining the product after t, the customer incurs shortage cost of
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s per unit of time. We also use

Hc =
2

1
s

+ 1
hc

for the harmonic mean of the two holding cost parameters of the customer. It is well known that

the harmonic mean is bounded from above by the arithmetic mean, i.e., Hc ≤ hc+s
2 . We are going

to see in the analysis that Hc plays the role of an adjusted holding cost rate for the customer for

both a positive and negative inventory level. Note that Hc = hc when hc = s. In addition let,

ρ =
s

hc + s
.

The firm wants to maximize its average rate of profits by choosing a price p, a sales schedule, and

a replenishment policy. Like in the EOQ model, there exists an optimal cyclic stationary policy, and

without loss of generality we focus on the first cycle [0, T ]. The Zero-Inventory-Ordering property

holds here and therefore a new order is placed after the stock is depleted. However, unlike in

the EOQ model, the firm is allowed not to sell the product continuously during the cycle if this

increases its average rate of profit. We assume that the policy of the firm is known to the customers

and therefore, a customer whose demand-time is at a no-sale point may decide to buy the product

earlier or later when it is sold, or alternatively, to quit and not buy it at all. As a result, the optimal

policy structure may be such that the stock depletes earlier than at T .

We fully characterize an optimal cyclic solution of our model for two types of customers. We

show that there exists an optimal solution where for some TI ∈ [0, T ], the firm sells continuously up

to TI . If the stock is depleted at TI , then the interval (TI , T ) is a no-stock interval, i.e. an interval

in which the firm does not hold any stock. In such a case, TI = 0 means that the firm never holds

stock and it sells only at replenishment epochs, and TI = T means that the firm sells continuously

through the cycle. We call these two types of extreme policies simple policies:

Definition 1 A policy is simple if the sales are continuous or only at replenishment instants.

A semi-continuous policy is obtained if 0 < TI < T and the stock is depleted at TI , meaning

that (TI , T ) is a no-stock interval:

Definition 2 A policy is semi-continuous-sales, or for short semi-continuous, if sales are continuous

until the stock is depleted.
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The interval (a, a+∆) is said to be a no-sale interval if the firm sells the product only at points

a and a+ ∆, and nowhere else in the interval. In particular, the no-stock interval (TI , T ) in simple

and semi-continuous policies is a no-sale interval. Apart from simple and semi-continuous policies

defined above, other possible candidates for optimal cyclic policies exist. Such policies consist of an

interval [0, TI ] of continuous sales, 0 ≤ TI < T , and thereafter the stock at TI is sold at a number

of discrete points before T . In other words, such a policy consists of a (possibly empty) interval

[0, TI ] of continuous sales, followed by at least two no-sale intervals, where the last one that ends

at T is also a no-stock interval.

We distinguish several cases and solve each case separately. The optimal policy is obtained by

solving all cases and picking up the best one. We denote the average cost per unit of time of a

given policy by V . A policy is profitable if its average rate of profit is positive. If no profitable

policy exists, it is optimal for the firm to do nothing. In such a case the optimal average profit

is 0. We compute nine candidate policies and mark their values as V (1), . . . , V (9). These values

depend on two input parameters, namely, KHc and Khf . It turns out that, as in Glazer and Hassin

(1986), ρ plays a central role in the analysis. If sales are made at the two ends of an interval but

not within it, and all customers who arrive within the interval decide to buy the product, ρ is the

fraction of customers arriving during the interval and buying the product, who prefer advancing

their purchase to its beginning, while the other fraction of 1 − ρ defer their purchase to the end of

the interval. Note that some of the customers arriving during such an interval may quit without

buying the product, however, as we prove, it is never optimal for a profitable policy to contain a

sub-interval such that all customers born in it are lost.

Lemma 3 A profitable optimal policy does not contain a time interval such that all customers born

in it are lost.

Proof: Suppose that the there exists an optimal cyclic profitable policy Π, with price p and cycle

[0, T ) that contains sub-intervals of total length 0 < τ < T in which all customers are lost. Let

V (Π) > 0 denote the average profit of Π. Consider an alternative policy Π′, with a cycle length

of T − τ , that is exactly as Π except that all intervals in which all customers are lost are removed

from the cycle. The number of customers in a cycle that buy the product in Π and Π′ is exactly the

same, and thus the revenue per cycle and the fixed cost per cycle are not affected by this change.

Moreover, the holding cost per cycle of Π′ is bounded from above by the holding cost per cycle of
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Π. Thus, the total profit in a cycle in Π′ is at least as large as that of Π, and as the cycle length

of Π′ is smaller than that of Π, Π′ is a strictly better policy, contradicting the optimality of Π.

As we show, it is most common that the optimal policy is either simple or semi-continuous, i.e.,

it is most likely that inserting no-sale intervals between TI and the no-stock interval is sub-optimal.

However, it turns out that for particular sets of input data this is possible.

We first analyze the behavior of customers who are arriving at a no-sale interval (a, a+∆). For

a fixed price p, define

w(p,∆) = p + 0.5Hc∆, (1)

and

θa,∆ = a + ρ∆.

Figure 1 illustrates θa,∆ and w(p,∆), and a fixed value of w such that p < w < w(p,∆). The

indifference curve of a (t, w)-customer describes how much such a customer is willing to pay for

the product at every instant τ . It raises with slope hc = 0.5Hc

ρ
for τ < t and decreases with

slope s = 0.5 Hc

1−ρ
for τ > t. Given a no-sale interval (a, a + ∆), sales to (t, w)-customers with

a+2ρw−p
Hc

< t < a+∆−2(1−ρ)w−p
Hc

are lost, (t, w)-customers with a ≤ t ≤ min{a+2ρw−p
Hc

, θa,∆}
buy at a, and those with max{a + ∆ − 2(1 − ρ)w−p

Hc
, θa,∆} ≤ t ≤ a + ∆ buy at a + ∆. Observe

that for a reservation price w = w(p,∆), there is no loss of w(p,∆)-customers in a no-sale interval

(a, a + ∆). Moreover, since w(p,∆)− hcρ∆ = w(p,∆) − s(1− ρ)∆ = p, a (θa,∆, w(p,∆))-customer

is indifferent among buying at a, buying at a + ∆, and not buying at all. If ρ > 0.5 then the sales

at a are higher than at a + ∆, and when ρ ≤ 0.5, the sales at a + ∆ are higher than at a.

From now on we focus on two customer types. Let ∆i = wi−p
σ

denote the maximum length of

a no-sale interval without loss of any i-customers, i = 1, 2. In the following we compute the sales

volume at the two extreme points of a no-sale interval (a, a + x) from those customers arriving in

the interval. The sales volume at a from those customers is

λ1ρmin(x,∆1) + λ2ρmin(x,∆2),

The sales volume at a + x from those customers is

λ1(1 − ρ)min(x,∆1) + λ2(1 − ρ)min(x,∆2).

In the following sections we derive nine types of policies that may be candidates for the optimal

solution.
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τ

p p

w w

a + 2
w−p

Hc
ρ a + ∆ − 2

w−p

Hc
(1 − ρ)t = θa,∆

w(p,∆) w(p,∆)

a a + ∆

Figure 1: Indifference curves of a (θa,∆, w)-customer and a (θa,∆, w(p,∆))-customer

3 Simple solutions

Each of the two kinds of simple policies is considered separately.

3.1 Sales at replenishment instants

There are four cases with sales made only at replenishment instants that need to be considered.

Observe that in this case T ∈ [∆2,∆1], because if T > ∆1 there is an interval where both types

of customers are lost, which is impossible by Lemma 3, and if T < ∆2 then p can be increased

without losing sales.

• Sales only to 1-customers

This may happen if the seller chooses p ≥ w2. In this case, T = ∆1 = 2(w1−p)
Hc

, or p =

w1 − 0.5HcT . Thus, V (T ) = λ1[(w1 − c) − 0.5HcT ] − K
T

. It is optimized at T =
√

2K
λ1Hc

. If
√

0.5KHc

λ1
> w1 − w2, then p < w2, implying that this solution can be ignored as selling to

the two types of customers at the replenishment epochs gives a better solution. The resulting

solution is given in Figure 2.

We next proceed to the cases of sales to both types of customers, i.e. p < w2.
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Let p = w1 −
√

KHc

2λ1
;

If p ≥ w2 then

T =
√

2K
λ1Hc

;

V (1) = λ1(w1 − c) −
√

2KHcλ1.

Figure 2: Sales to 1-customers at replenishment instants

• No loss of customers

There is no loss of customers if p < w2 and T ≤ ∆2, but clearly T < ∆2 is suboptimal

since in this case p can be increased without losing sales. Hence, T = ∆2, and V (T ) =

λ[(w2 − c) − 0.5HcT ] − K
T

is optimized at the solution given in Figure 3.

p = w2 −
√

KHc

2λ
;

If p > c then

T =
√

2K
Hcλ

;

V (2) = λ(w2 − c) −
√

2KHcλ.

Figure 3: Sales to all customers at replenishment instants

It is interesting to note the similarity to the EOQ formula: though V (1) and V (2) return the

retailer’s revenue in the case that the retailer does not hold any inventory, yet its revenue

is the same as the revenue of a retailer that sells continuously at price w1 (w2) to a rate of

λ1 (λ2) of customers, and whose holding cost is the adjusted holding cost of the customer,

namely Hc.

• Sales to all 1-customers and some 2-customers with T = ∆1

Here T = ∆1 = 2(w1−p)
Hc

or p = w1 − 0.5HcT. Note that the maximum price at which the

product should be sold in order for all 1-customers to buy it is at most the difference between

w1 and the maximum cost a 1-customer is charged for buying earlier or later than desired.

Thus, ∆2 = 2(w2−p)
Hc

= T − 2(w1−w2)
Hc

. Hence,
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V (T ) =
1

T
{[λ1T + λ2∆2][(w1 − c) − 0.5HcT ] − K}

= −0.5λHcT + [λ(w1 − c) + λ2(w1 − w2)] −
1

T

(

λ2(w1 − c)
2(w1 − w2)

Hc
+ K

)

= α1T + α0 +
α

−1

T
,

where α
−1 = −

(

2λ2(w1 − c) (w1−w2)
Hc

+ K
)

, α0 = λ(w1−c)+λ2(w1−w2), and α1 = −0.5λHc.

The optimal solution has T =
√

α
−1

α1
and the profit rate is α0 − 2

√
α

−1α1 , as both α
−1

and α1 are negative. This solution is feasible if p < w2, or equivalently λ(w1 − w2)
2 <

λ2(w1 − c)(w1 − w2) + 0.5HcK. The solution is given in Figure 4. We do not attempt to

provide an intuitive explanation to the expressing of V (3), but we note that also here the

adjusted holding cost of the customer is induced on the retailer. In fact, if K and Hc are

interchanged then neither the price p nor the average cost V (3) are affected. It is just the

cycle length T that may change.

p = w1 −
√

λ2(w1−c)(w1−w2)+0.5HcK
λ

;

If c < p < w2 then

T = 2(w1−p)
Hc

;

V (3) = λ(w1 − c) + λ2(w1 − w2) − 2
√

λ[0.5KHc + λ2(w1 − c)(w1 − w2)].

Figure 4: Sales to all 1-customers and some 2-customers at replenishment instants

• Sales to all 1-customers and some 2-customers with ∆2 < T < ∆1

Clearly, in this case p < w2. The analysis is as in the previous case but here we also need to

compute the optimal p:

V (T, p) =
1

T
{(λ1T + λ2∆2)(p − c) − K} =

1

T

{(

λ1T + λ2

2(w2 − p)

Hc

)

(p − c) − K

}

.

Equating to 0 the partial derivative with respect to p gives the optimal value p = 1
2

(

0.5λ1
λ2

HcT + w2 + c
)

and ∆2 = 1
2

(

2(w2−c)
Hc

− λ1
λ2

T
)

. p < w2 implies that T < λ2
λ1

2(w2−c)
Hc

. Let γ = λ2
λ1

2(w2−c)
Hc

.

Thus, we consider the range T < γ, where V (T ) = α1T + α0 + α−1

T
, with α1 =

λ2
1Hc

8λ2
,

α0 = 0.5λ1(w2 − c), and α−1 = λ2(w2−c)2

2Hc
− K.
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If α−1 ≤ 0 then V ′(T ) > 0, and T cannot be an internal point in the range (∆2,min{∆1, γ}).

If α−1 > 0 then the function V (T ) is convex and the maximum again cannot be obtained

at an internal point in the range (∆2,min{∆1, γ}). Thus, there is no internal maximum of

V (T ), and this case cannot hold.

3.2 Continuous sales

In a continuous sales policy, customers either buy the product at the time they want it, or they don’t

buy the product. Thus, the customers in this case are not charged for holding stock or shortage.

We observe that continuous sales with price w2 < p < w1 is never optimal because 2-customers do

not buy and an increase in p does not cause loss of 1-customers.

• p = w1: This is the maximum value that the price can assume. An optimal policy with

p = w1 must be a continuous-sales policy. In such a case only 1-customers buy and V (T ) =

λ1(w1 − c) − 0.5hfλ1T − K
T

is optimized at

T =

√

2K

λ1hf
,

giving the solution described in Figure 5.

p = w1;

T =
√

2K
λ1hf

;

V (4) = λ1(w1 − c) −
√

2λ1Khf .

Figure 5: Continuous sales to 1-customers

• p = w2: Here both customer types buy the product and V (T ) = λ(w2 − c) − 0.5hf λT − K
T

implying that T =
√

2K
λhf

. The solution is given in Figure 6.

In V (4) and V (5) the revenue of the retailer consists of its gross earnings minus the optimal

EOQ cost where the holding cost rate is the retailer’s holding cost hf .
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p = w2;

T =
√

2K
λhf

;

V (5) = λ(w2 − c) −
√

2λKhf .

Figure 6: Continuous sales to all customers

4 Semi-continuous solutions

In this section we characterize cases in which the optimal solution is semi-continuous (recall Defi-

nition 2. We deal separately with three cases according to the position of p relative to the interval

[w2, w1). We note that p = w1 implies the continuous sales policy to 1-customers, as in Figure 5,

and if p > w1 no customers buy the product. Thus it is sufficient to consider p < w1.

4.1 p < w2

Note that in an optimal solution T − TI ∈ [∆2,∆1], since a longer no-stock interval causes loss

of 1-customers and a shorter one means that it is possible to raise p without affecting the sales

pattern. The rate of profit is

V (T, TI , p) =
1

T

{

(p − c)[λ1T + λ2(TI + ∆2)] − hf

[

0.5λT 2

I + ρTI [λ1(T − TI) + λ2∆2]
]

− K
}

.

Looking for an internal solution with respect to p, we equate to zero the partial derivative with

respect to p, giving

p =
1

2

{

0.5Hc

(

λ1

λ2
T + TI

)

+ (w2 + c) + hfρTI

}

,

and therefore, ∆2 = 1
Hc

[(w2 − c − 0.5λ1
λ2

THc) − (0.5Hc + hfρ)TI ]. These relations imply that

V (T, TI) = 1
T

[

0.5aHcT
2
I + b(T )TI + d(T )

]

, where

a =
1

4
λ2 +

1

Hc
hfρλ2 +

1

(Hc)2
h2

fρ2λ2 −
1

Hc
hfλ +

0.5

Hc
hfλ1ρ

=
λ2

(Hc)2
(0.5Hc + hfρ)2 − 0.5hf

Hc

(

λ

2
− λ1ρ

)

,

15



b(T ) =
1

2
(0.5Hc − hfρ)

(

λ1T +
2λ2(w2 − c)

Hc

)

,

d(T ) =
Hc

8λ2

(

λ1T +
2λ2(w2 − c)

Hc

)2

− K.

Equating to zero the partial derivative of V (T, TI) with respect to TI gives TI = − b(T )
aHc

and for

an internal solution we need a · b(T ) < 0, T − TI ∈ [∆2,∆1], and c < p < w2.

Substituting TI into V (T, TI) gives

V (T ) =
1

T

(

−b2(T )

2aHc
+ d(T )

)

= 0.5α1HcT + α0 +
α

−1

T

where

α1 =
λ2

1

4

(

−(0.5Hc − hfρ)2

a(Hc)2
+

1

λ2

)

,

α0 = 2α1λ2
w2 − c

λ1
,

α
−1 = 0.5α1Hc

(

2λ2(w2 − c)

λ1Hc

)2

− K.

The sign of b(T ) is determined by the sign of (0.5Hc − hfρ) = ρ(hc − hf ).

We consider three cases: hc = hf ; hc > hf ; and hc < hf .

• hc = hf : In this case b(T ) = TI = 0, implying that an optimal semi-continuous sales policy

does not exist.

• hc > hf : In this case b(T ) > 0, and we must have a < 0 to have an internal optimal solution.

This also implies α1 > 0. Now, TI = − b(T )
aHc

and p are linear increasing functions of T , while

∆2 and ∆1 are linear decreasing functions of T .

V (T ) is convex if α
−1 ≥ 0 and otherwise it is concave. If it is convex, its maximum is obtained

at an extreme point. In this case either T is as large as possible, namely the T that gives

p = w2, which is not the case considered here, or T is as small as possible, i.e., when either

T = TI or TI = 0, resulting in a simple solution considered in Section 3. If α
−1 < 0 then

V (T ) is monotone increasing and concave, meaning again that there is no internal solution.

• hc < hf : In this case b(T ) < 0. For an internal solution for TI to exist, we must have a > 0.

Also in this case TI and p are linear increasing functions of T , while ∆2 is linear decreasing

in T .
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– If α
−1 ≥ 0, V (T ) is convex and therefore, the optimal T is at an extreme value and

either p = w2, which is not the case considered here, or T ∈ {0, TI}, which gives a simple

solution.

– If α
−1 < 0, V (T ) is concave.

∗ If α1 ≥ 0, V (T ) is an increasing function, attaining its maximum at the extreme

value where p = w2.

∗ If α1 < 0 then the maximum of V (T ) is obtained at a value that satisfies T =
√

2α
−1

α1Hc
. This case requires further investigation. Note that α1 < 0 is equivalent

to 0 < a <
λ2(0.5Hc−hfρ)2

(Hc)2
. Substituting a in this inequality, α1 < 0 is equivalent to

ρ < 0.5. Thus, ρ < 0.5 implies that both α1 < 0 and α
−1 < 0.

This internal semi-continuous solution is given in Figure 7.

If ρ < 0.5, hc < hf , and if a > 0, c < p < w2, and T − TI ∈ [2(w2−p)
Hc

, 2(w1−p)
Hc

], where

a = λ2
4

(

1 +
2hf

Hc
ρ
)2

− 2hf

Hc

(

λ
2 − λ1ρ

)

;

α1 =
λ2
1
4

(

− 1
4a

(

1 − 2hf

Hc
ρ
)2

+ 1
λ2

)

;

T =

√

(

2λ2(w2−c)
λ1Hc

)2
− 2K

α1Hc
;

TI = − 1
4a

(0.5Hc − hfρ)
(

λ1T + 2λ2
w2−c
Hc

)

;

p = 1
2

{

0.5
(

λ1
λ2

T + TI

)

Hc + (w2 + c) + hfρTI

}

;

then,

V (6) = 2α1

(

λ2
w2−c

λ1
+

√

(

λ2
w2−c

λ1

)2
− 0.5KHc

α1

)

.

Figure 7: Semi-continuous sales: p < w2

4.2 p = w2

In this case both customer types buy the product during [0, TI ], and only 1-customers buy it during

(TI , T ). As we consider here semi-continuous policies, we restrict ourselves to 0 < TI < T . Clearly,

T − TI ≤ ∆1 in order to avoid loss of 1-customers.
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V (T, TI) = λ1(w2 − c) +
1

T

{

λ2(w2 − c)TI − hf

[

1

2
λT 2

I + TIρλ1(T − TI)

]

− K

}

= λ1(w2 − c) +
1

T

{

T 2
I hf

(

ρλ1 −
1

2
λ

)

+ TI(λ2(w2 − c) − hfλ1ρT ) − K

}

.

Fix T .

• If 2ρλ1 ≤ λ, the function V (TI) is concave, implying a candidate for an internal maximum,

namely TI =
λ2(w2−c)−ρλ1hfT

hf (λ−2ρλ1) . This candidate is relevant (internal) only if 0 < TI < T , and

T − TI < ∆1.

Substituting TI in V (T, TI) gives

V (T ) = λ1(w2 − c) +
1

T

{

2(λ2(w2 − c) − hfρλ1T )2

(λ − 2ρλ1)hf
− K

}

= λ1(w2 − c) +
2

(λ − 2ρλ1)hf

{

α1T + α0 +
α

−1

T

}

,

where α1 = h2
fρ2λ2

1 > 0, and α
−1 = λ2

2(w2 − c)2 − 0.5(λ − 2ρλ1)hfK. If α
−1 ≥ 0 then V (T )

is convex, and if α
−1 < 0 then it is monotone increasing. In both cases the maximum is

obtained at an extreme value of T where TI ∈ {0, T, T − ∆1}. The solutions TI ∈ {0, T} are

simple, and were considered in Section 3. Thus, only TI = T − ∆1 is relevant.

• If 2ρλ1 > λ, the function V (TI) is convex and its maximum is obtained at a boundary value,

TI ∈ {0, T, T − ∆1}. As only semi-continuous policies are considered here, we get also here

that only TI = T − ∆1 is relevant.

Therefore, we continue by substituting TI = T − ∆1 into V (T, TI):

V (T ) = λ1(w2 − c) +
1

T

{

λ2(w2 − c)(T − ∆1) − hf

[

λ

2
(T − ∆1)

2 + (T − ∆1)∆1ρλ1

]

− K

}

≡ α
−1

T
+ α

0
+ α

1
T,

where α
−1 = ∆2

1hf (ρλ1 − 0.5λ) − ∆1λ2(w2 − c) − K ≤ 0, α0 = λ(w2 − c) + hf∆1(λ − ρλ1), and

α1 = −0.5hf λ < 0. If α
−1 = 0, V (T ) is decreasing in T , and therefore the maximum is obtained at

T = ∆1, resulting in a simple solution, see Section 3. If α
−1 < 0, then V (T ) is concave having an

internal maximum with T =
√

α−1

α1
and profit α0 − 2

√
α1α−1, as described in Figure 8.
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p = w2;

∆1 = 2(w1−w2)
Hc

;

T =

√

λ2(w2−c)∆1+0.5hf∆2
1(λ−2ρλ1)+A

0.5hf λ
;

TI = T − ∆1;

If TI > 0 then

V (7) = λ(w2 − c) − hf
2(w1−w2)

Hc
(−λ + ρλ1) −

r

2λhf

h

2(w1−w2)
Hc

“

λ2(w2 − c) + hf
2(w1−w2)

Hc

“

λ
2
− ρλ1

””

+ K
i

.

Figure 8: Semi-continuous sales: p = w2

4.3 w2 < p < w1

Here only 1-customers buy. Again, as in this section we deal with semi-continuous policies, we look

for solutions with 0 < TI < T . In addition, T − TI ≤ ∆1 in order to avoid loss of 1-customers in

some intervals. Thus,

V (T, TI , p) = λ1(p − c) − 1

T

(

0.5λ1hfT 2
I + λ1hfρ(T − TI)TI + K

)

.

In an optimal solution T − TI = ∆1 = 2(w1−p)
Hc

, otherwise p can be increased to increase profits.

Substituting p = w1 − 0.5Hc(T − TI) into the cost function we get:

V (T, TI) = λ1 (w1 − c − 0.5Hc(T − TI)) −
1

T

(

0.5λ1hfT 2
I + λ1hfρ(T − TI)TI + K

)

.

By fixing T we get V (TI) = a(T ) + bTI + c(T )T 2
I , where

a(T ) = λ1 (w1 − c − 0.5HcT ) − K

T
,

b = λ1(0.5Hc − hfρ) > 0,

d(T ) =
λ1hf

T
(ρ − 0.5).

The sign of d(T ) is determined by the sign of ρ − 0.5. If d(T ) ≥ 0 then V (TI) is convex in TI ,

meaning that its maximum is obtained at an extreme value of TI , namely TI ∈ {0, T}, both are

simple solutions that were considered in Section 3. Thus, suppose that d(T ) < 0, or equivalently
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ρ < 0.5. In this case V (TI) is concave in TI and a possible internal maximum is

TI = − b

2c(T )
=

0.5Hc − hfρ

hf (1 − 2ρ)
T.

In order for TI to be positive, and because ρ < 0.5, it must hold that 0.5Hc − hfρ > 0, which

is equivalent to hc > hf . In addition we need TI < T , which holds only if hf > s. The two

conditions hf < hc and hf > s imply that ρ < 0.5. Note also that the condition p > w2 implies

that T − TI < 2(w1−w2)
Hc

.

Substituting the expression for TI into V (T, TI) gives

V (T ) = λ1(w1 − c) − K

T
+

(0.5Hc + hfρ)2 − Hchf

2hf (1 − 2ρ)
λ1T,

which is a concave function of T . If the coefficient of T is nonnegative, V (T ) is increasing meaning

that its maximum is obtained at an extreme point which occurs when p = w2, a case which is not the

case considered here. Otherwise, if the coefficient of T is negative, (that is, (0.5Hc +hfρ)2 < Hchf )

V (T ) is maximized at T =
√

2Khf

λ1

1−2ρ
Hchf−(0.5Hc+hf ρ)2

. The resulting solution is given in Figure 9.

T =

√

2Khf (1−2ρ)

λ1[Hchf−(0.5Hc+hfρ)2]
;

TI =
(0.5Hc−hfρ)

hf (1−2ρ) T ;

p = w1 − 0.5Hc(T − TI);

If s < hf < hc, (0.5Hc + hfρ)2 < Hchf , p > w2, and T − TI ≤ 2(w1−p)
Hc

then

V (8) = λ1(w1 − c) − 2
√

λ1
2hf

Hchf K−(0.5Hc+hf ρ)2

1−2ρ
.

Figure 9: Semi-continuous sales: w2 < p < w1

5 Solutions which are neither simple nor semi-continuous

In the next lemma we prove that optimal policies which are neither simple nor semi-continuous

consist of a single, possibly empty, continuous-sales interval that starts at the replenishment epoch,

followed by at least two no-sale intervals. The next lemma provides some further properties of such

an optimal solution.
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Lemma 4 There exists an optimal solution where the no-sale intervals are ordered in nondecreasing

length. Moreover, a no-sale interval is not followed by an interval of continuous sales (hence there

may be at most one continuous-sales interval and it must start at 0).

Proof: We prove the first part of the lemma. The second part can be considered as a limit case

and be proved similarly. Consider consecutive sales at τ0, τ0 +x, τ0 +x+y, and suppose that x > y.

We will show that selling at τ0 +y instead of at τ0 +x does not decrease profits. W.l.o.g. let τ0 = 0

and hf = 1. The change does not affect the total sales and therefore we only consider inventory

holding costs. We assume in the analysis below that x + y < T , since if x + y = T (i.e., [x, x + y] is

a no-stock interval) it is clear that the savings associated with selling earlier and thus postponing

more sales to T are greater, so that the claim in this case also follows.

Let Ci(x) (Ci(y)) be the holding cost associated with i-customers if the product is sold at x (y,

respectively). We distinguish three cases:

• x, y ≤ ∆i. In this case

Ci(x) = λi{x[(1 − ρ)x + ρy] + [(x + y)y(1 − ρ)]}

= λi[(x
2 + y2)(1 − ρ) + xy].

and Ci(x) = Ci(y).

• y ≤ ∆i < x. In this case

Ci(x) = λi{x[(1 − ρ)∆i + ρy] + [(x + y)y(1 − ρ)]},

and

Ci(y) = λi{y[(1 − ρ)y + ρ∆i] + [(x + y)∆i(1 − ρ)]},

giving Ci(x) − Ci(y) = λiy(x − ∆i) > 0 by our assumption that x > ∆i.

• y > ∆i. Also here Ci(x) > Ci(y). The sales to i-customers at x + y are of size (1− ρ)∆i, and

at the middle sales point (x or y) they are of size ∆i. But selling at y rather than at x saves

in inventory costs.
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In view of the lemma, a general cyclic policy for the problem can be represented by a continuous-

sales interval [0, TI ], TI ≥ 0 followed by k ≥ 0 no-sale intervals. In Sections 3 and 4 we considered

the case TI = 0 and k = 1, which is the simple policy with sales only at replenishment instants, the

case TI = T and k = 0, which is the simple continuous-sales policy, and the case 0 < TI < T and

k = 1, which is the semi-continuous policy. Let xi for i = 1, . . . , k denote the length of the i−th

no-sale interval. Thus, T = TI +
∑k

i=1 xi. By Lemma 4, w.l.o.g. x1 ≤ x2 ≤ · · · ≤ xk. Thus, the

product is sold continuously in [0, TI ], and thereafter positive quantities are sold in discrete points:

TI +
∑ℓ

i=1 xi for ℓ = 0, 1, . . . , k.

6 High customer holding cost: ρ ≤ 0.5

In this section we characterize the solution assuming ρ ≤ 0.5, or equivalently, the customers’ holding

cost rate, hc, is higher than their backlogging cost rate, s. We prove that in this case there exists

an optimal solution which is either simple or semi-continuous. Then we analyze the case ρ = 0.5

separately, as we use it in the next section to characterize the optimal solutions when ρ > 0.5.

Theorem 5 If ρ ≤ 0.5, there exists an optimal policy which is either simple or semi-continuous.

Proof: Consider an optimal policy such that TI > 0. Suppose also that in the given policy there

exists a no-sale interval [a, a + ∆], such that 0 ≤ a < a + ∆ ≤ TI . Denote by Da and Da+∆ the

amounts sold at the respective ends of the no-sale interval. According to the analysis of Section 2

and because ρ ≤ 0.5, Da ≤ Da+∆. Thus, the average holding cost paid by the firm for these units

would decrease if it sold continuously to each of these customers at time they were born. Moreover,

continuous sales may cause reneging customers born during the interval to buy as well, resulting

in more profits to the firm.

Indeed, in view of Theorem 5, the optimal solution for ρ ≤ 0.5 can be obtained by enumerating

all the solutions V (ℓ) for ℓ = 1, . . . , 8 and picking up max
{

0, V (1), V (2), . . . , V (8)
}

.

Theorem 6 If ρ = 0.5 and p 6= w2 then the optimal solution is simple.

Proof: In view of Theorem 5 the optimal solution for ρ = 0.5 is either simple or semi-continuous.

By Lemma 3, a necessary condition for a semi-continuous policy to be optimal is p < w1. It remains
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to show that if p < w1, ρ = 0.5 and p 6= w2, there does not exist an optimal semi-continuous policy.

If p < w2, the only possible optimal semi-continuous policy obtained requires ρ < 0.5, see Figure 7.

If w2 < p < w1, the only possible optimal semi-continuous policy obtained requires s < hc which is

equivalent to ρ < 0.5, see Figure 9, concluding the proof.

7 High shortage cost: ρ > 0.5 and p 6∈ {w1, w2}

We now analyze the case where the customer’s shortage cost is higher than the customer’s holding

cost, i.e., ρ > 0.5. Theorem 7 states that when ρ > 0.5 it is suboptimal to have intervals of

continuous sales, unless the optimal price satisfies p ∈ {w2, w1}.

Theorem 7 Suppose ρ > 0.5. If the optimal price is not in {w2, w1} then the optimal solution

does not contain continuous-sales intervals.

Proof: First we exclude semi-continuous policies. By Lemma 3 semi-continuous policies may be

optimal only for p < w1. According to Figures 7-9, if p 6= w2, there does not exist a semi-continuous

optimal policy if ρ > 0.5. Moreover, from Figures 5 and 6, a simple policy with continuous sales

cannot be optimal.

Theorem 7 implies that if ρ > 0.5, the optimal price p satisfies p < w1. In the next two theorems

we prove that for ρ > 0.5 and p 6= w2 the optimal policy is sales at replenishment instants only.

Theorem 8 Consider an optimal solution sol for an instance I defined by ρ > 0.5, c, hf , hc, s and

K, with monotone non-decreasing no-sale intervals of lengths x1 ≤ · · · ≤ xk. Define the associated

instance I ′ with c′ = c, h′

f = hf , K ′ = K, and h′

c = s′ = 2hcs
hc+s

. Note that ρ′ = 1
2 and hH′

c = Hc.

Denote the profits for these instances by V (sol) and V ′(sol). Then V (sol) ≤ V ′(sol).

Proof: Denote by Di the total sales to customers arriving during the ith no-sale interval. Clearly

D1 ≤ · · · ≤ Dk, and the sequence D1, . . . ,Dk depends on Hc but not on ρ. However, ρ does affect

the timing of the sales in the sales points. The sales at time TI + x1 + · · · + xl for ℓ = 1, . . . , k − 1

are (1 − ρ)Dl + ρDl+1. Since Dl ≤ Dl+1, the coefficients of ρ are nonnegative in all of these cases.

It follows that the holding cost with ρ > 1
2 is at least as large as the holding cost of the firm with

ρ = 1
2 and the same value of Hc. Since the total revenue is the same, the profit decreases with ρ,

for ρ > 0.5, while Hc is kept constant. Therefore V (sol) ≤ V ′(sol).
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Theorem 9 Suppose ρ > 0.5 and that the optimal price is not in {w2, w1}. Then optimal solution

is sales at replenishment instants only.

Proof: Consider an instance I with ρ > 0.5 and its associated instance I ′ as in Theorem 8.

Consider any non-simple solution sol with monotone nondecreasing no-sale intervals as in Lemma

4. By Theorem 6, if ρ = 0.5 and p 6= w2 then there is an optimal simple solution sol′ to I ′. Then,

V (sol) ≤ V ′(sol) ≤ V ′(sol′) = V (sol′).

The first inequality follows from Theorem 8, the second by optimality of sol′ to I ′, and the equality

since the value of a simple solution depends on Hc but not on ρ. Therefore sol′ is a better solution

for I than sol. According to Lemma 7 an optimal solution for I does not contain a continuous-sales

interval, implying that the optimal policy for I is simple with sales only at replenishment instants.

Corollary 10 When ρ > 1
2 the optimal solution is the best among the simple solutions with discrete

or continuous sales, see Figures 2-4, and the best solution obtained under the assumption p = w2.

8 High shortage cost: ρ > 0.5, and p = w2

In this section we consider instances in which the optimal price is p = w2.

Lemma 11 The optimal solution consists of an initial interval of length TI ≥ 0 with continuous

sales to both types, and sales to 1-customers only after this. These sales consist of k ≥ 0 no-sale

intervals all of length ∆1, and possibly another no-sale interval of length α∆1 with 0 ≤ α < 1 which

starts at TI .

Remark 12 This section assumes p = w2, and therefore only 1-customers buy in no-sale intervals.

In view of Lemma 3, all no-sale intervals have a length of at most ∆1. Considering the first case in

the proof of Lemma 4, which is the case relevant here as there is no loss of 1-customers, the profit is

not affected by the order of the no-sale intervals, except for the last one which must be the longest

one.
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Proof: By Lemma 4 there exists an optimal solution with nondecreasing no-sale intervals. If the

claim does not hold then there exists an index 1 < i ≤ k such that xi−1 ≤ xi < ∆1. We claim

that increasing xi while decreasing xi−1 by the same amount increases the profit. First note that

the change does not affect sales since only 1-customers are involved and all no-sale intervals remain

bounded by ∆1. For comparing holding costs assume w.l.o.g. that xi−1 starts at 0, and we mark

x = x1. Let x1 + x2 = τ and by assumption x ≤ τ/2. It is sufficient to show that the holding cost

is increasing in x. The inventory holding costs associated with customers born in [0, τ ], for τ < T ,

in the given solution amount to

C1(x) = λ1hf{x[(1 − ρ)x + ρ(τ − x)] + τ(τ − x)(1 − ρ)}.

If τ = T the last term in the curly brackets should be removed. The derivative with respect to x

for τ < T is proportional to

2(1 − 2ρ)x + τ [2ρ − 1] ≥ 2(1 − 2ρ)
τ

2
+ (2ρ − 1)τ = 0,

where the inequality follows since ρ ≥ 0.5 and x ≤ τ/2. If τ = T the derivative with respect to x

is proportional to 2x(1 − 2ρ) + ρτ ≥ τ(1 − 2ρ) + ρτ = τ(1 − r) ≥ 0 for the same reasons as above.

That means that the holding cost is increasing in x. Performing a sequence of changes of this type

we end up with a solution as claimed and its cost is not greater than that of the original solution.

Therefore, for ρ > 0.5 and p = w2, if the optimal solution is not simple then it falls in one of

the following two options:

• A semi-continuous solution with TI = T − ∆1 and of profit V (7), see Figure 8.

• A solution which is neither simple nor semi-continuous. Such a solution consists of a continuous-

sales interval [0, TI ], 0 ≤ TI < T , followed by k+1 no-sale intervals. The first of these intervals,

i.e., the one starting at TI , may be empty, and in any case its length is strictly less than ∆1.

All the other k no-sale intervals are of length ∆1. In the sequel of this section we consider this

type of policies that are neither simple nor semi-continuous, namely, policies with k+⌈α⌉ ≥ 2.

The following observation states that the possibility of 0 < α < 1 and k = 0 can be excluded:

Observation 13 Consider a problem with ρ > 0.5. If there exists an optimal policy with p = w2
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whose cycle contains a single no-sale interval (which is also a no-stock interval), then its length is

∆1.

The proof follows directly from Figures 2 and 8.

8.1 0 < α < 1 and k ≥ 1

In this subsection we prove that the possibility of 0 < α < 1 can be excluded from consideration

also when k > 0.

Using Remark 12, we assume without loss of generality that the no-sale interval of length α∆1

starts at TI . Fix T and k, then TI +α∆1 is also fixed at value T −k∆1, and dα
dTI

= − 1
∆1

. The terms

in the profit function that are affected by the choice of α are: The profit from sales to 2-customers,

λ2(w2 − c)TI ; the holding costs on sales in [0, TI ), 0.5hf (λ1 + λ2)T
2
I ; the holding costs on sales

at TI , hfλ1ρα∆1TI ; and the holding costs on sales at TI + α∆1, hfλ1(1 − ρ)α∆1(T − k∆1). We

use dα
dTI

= − 1
∆1

to obtain that the derivative of the profit V with respect to TI is proportional to

λ2(w2 − c) − hf [TIλ2 + αλ1∆1(2ρ − 1)] .

The second derivative is proportional to 2ρλ1 − λ.

• Suppose 2ρλ1 ≥ λ. In this case, for any given T and k ≥ 1, the profit function V is a convex

function of TI and therefore it is maximized at one of the extreme values α = 0, α = 1.

• Suppose 2ρλ1 < λ. In this case, for any given T and k ≥ 1, the profit function V is a concave

function of TI , and therefore the there is another candidate which satisfies the first-order

optimality conditions. We will show that this solution cannot be optimal.

Equating the derivative of V with respect to TI to 0 gives,

TI =
w2 − c

hf
− α∆1λ1

2ρ − 1

λ2
. (2)

Thus,

T = TI + (α + k)∆1 =
w2 − c

hf
+ k∆1 − α∆1

2ρλ1 − λ

λ2
. (3)

For this solution, with at least two no-sale intervals, to be optimal, the cost of carrying

inventory to TI + α∆1 must be smaller than the profit from selling there:

TI + α∆1 =
w2 − c

hf
− α∆1

2ρλ1 − λ

λ2
≤ w2 − c

hf
,
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or equivalently 2ρλ1 ≥ λ, contradicting the assumption of the claim. Therefore, an improved

solution can be obtained by canceling the sale at TI + α∆1. The effect of this cancellation

is that some customers who previously bought there will buy instead at TI and by that save

the firm inventory holding costs. Others who previously bought there will not buy at all, and

by assumption this also increases the firm’s profit.

8.2 α = 0

Denote V (T ) = Vk(T ) if T = TI + k∆1, where k ≥ 1. Thus,

Vk(T ) = λ(w2 − c) −
1

T



λ2(w2 − c)k∆1 +
1

2
hfλT

2
I + λ1hf

»

TI(k − 1 + ρ)∆1 + k
k − 1

2
∆2

1

–

+ K

ff

= λ(w2 − c)
1

T



λ2(w2 − c)k∆1 +
1

2
hfλ(T − k∆1)

2 + λ1hf∆1

»

(T − k∆1)(k − 1 + ρ) + k
k − 1

2
∆1

–

+ K

ff

.

Substituting TI = T − k∆1 gives Vk(T ) = E −
(

BT + C
T

)

, where

E = λ(w2 − c) + (w1 − w2)
2hf

Hc
[λ2k + λ1(1 − ρ)];

B = 1
2hfλ;

C = K + k∆1

[

λ2(w2 − c) + 1
2hf∆1(λ2k − λ1(2ρ − 1))

]

;

BC = 1
2λhf

(

K + 2k(w1−w2)
Hc

[

λ2w2 +
(w1−w2)hf

Hc
(λ2k − λ1(2ρ − 1))

])

.

If C < 0 then Vk(T ) is decreasing in T and obtains its maximum at the lower boundary, T = k∆1

and TI = 0, so that there are sales to 1-customers only. Using the results of Glazer and Hassin

(1986) for a single type of customers, such a structure with k > 1 is not possible. Therefore, we

assume that C > 0. In this case Vk(T ) is concave with maximum at T =
√

C/B. The solution is

given in Figure 10. Note that V
(9)
1 = V (7), i.e., the case k = 1 is the semi-continuous case

of Figure 8.

9 Summary

The nine possibilities for an optimal solution are:

• Sales at replenishment instants to 1-customers only, with value V (1).

• Sales at replenishment instants without loss of any customer, with value V (2).
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Let

E = λ(w2 − c) + (w1 − w2)
2hf

Hc
[λ2k + λ1(1 − ρ)];

B = 1
2hfλ;

C = K + k∆1

[

λ2(w2 − c) + 1
2hf∆1(λ2k − λ1(2ρ − 1))

]

.

If C > 0, and
√

C/B ≥ k∆1, then

V
(9)
k = E − 2

√
BC.

Figure 10: Solution with k no-sale intervals

• Sales at replenishment instants to all 1-customers but only a fraction of the 2-customers, with

value V (3).

• Continuous sales to 1-customers only at price w1 and value V (4).

• Continuous sales to all customers at price w2, with value V (5).

• Continuous sales to all customers followed by a no-stock interval with sales to all 1-customers

but only a fraction of the 2-customers. This is a semi-continuous policy at price lower than

w2, and value V (6).

• Continuous sales to all customers followed by a no-stock interval with sales to 1-customers

only. This is a semi-continuous policy at price w2, and value V (7).

• Continuous sales to 1-customers followed by a no-stock interval with sales to 1-customers

only. This is a semi-continuous policy at price higher than w2 but lower than w1, and value

V (8).

• Continuous sales to all customers at price w2 during an initial interval followed by k no-sale

intervals in which 2-customers are lost, with value V
(9)
k .

We note that with a single type of customers, Glazer and Hassin (1986) proved that the op-

timal solution is either simple or semi-continuous. Indeed, multiplicity of no-sale intervals in our

generalized model comes with p = w2, meaning that if w1 = w2 the solution requires continuous

sales, without a no-sale interval.
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Figure 11: Optimal number of intervals (above) and the value function (below)

We conducted an intensive computational study, but since there are seven parameters, there

doesn’t seem to be a meaningful way to describe the results. We concentrate here on the interesting

case, which is not possible with homogeneous customers, where V
(9)
k is optimal for k ≥ 2, is

obtained only with high values of Khf and KHc, for example when the fixed cost K is high.

Figure 11 shows the optimal solution value as a function of ρ, for (w1, w2, λ1, λ2,Khf ,KHc, c) =

(8.1, 7.7, 19.3, 1.6, 635, 345, 0). (For these values of the parameters we have V (i) ≤ 0 for i = 1, . . . , 5.)

The values of V
(9)
k are given in Table 1 for k = 1, . . . , 7.

Future research should address the possible structures of optimal policies for a general number

of customer types. In particular, is the optimal policy for a discrete number of customer types

greater than 2 is still either simple, semi-continuous, or consisting of a continuous sales interval

followed by a number of no-sale intervals? A challenging extension assumes a continuous probability

distribution F (w) on the proportion of customers with a reservation price no greater than w.

Another line of research that may be of interest is to check the benefit of dynamic pricing

and price promotions within the framework of our model. An interesting future question is how

customers will react if the next period selling price is uncertain.
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k ρ V
(9)
1 V

(9)
2 V

(9)
3 V

(9)
4 V

(9)
5 V

(9)
6 V

(9)
7

1 0.500 5.077 4.940 4.705 4.373 3.948 3.433 2.830

2 0.605 3.730 3.730 3.630 3.430 3.136 2.747 2.268

3 0.682 2.729 2.831 2.831 2.731 2.534 2.241 1.855

4 0.761 1.722 1.928 2.030 2.030 1.930 1.733 1.442

5 0.839 0.708 1.017 1.222 1.323 1.323 1.224 1.028

6 0.919 0 0.101 0.409 0.613 0.714 0.714 0.615

7 0.999 0 0 0 0 0.101 0.202 0.202

Table 1: Minimum ρ ≥ 0.5 such that k no-sale intervals are optimal, and the values V
(9)
k k = 1, . . . , 7

at this ρ. (w1, w2, λ1, λ2,Khf ,KHc, c) = (8.1, 7.7, 19.3, 1.6, 635, 345, 0).
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