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We develop a method for computing efficient patient-specific drug protocols. Using this method, we identify two general
categories of anticancer drug protocols, depending on the temporal cycle parameters of the host and cancer cells: a one-
time intensive treatment, or a series of nonintensive treatments. Our method is based on a theoretical and experimental
work showing that treatment efficacy can be improved by determining the dosing frequency on the drug-susceptible target
and host cell-cycle parameters. Simulating the patient’s pharmaco-dynamics in a simple model for cell population growth,
we calculate the number of drug susceptible cells at every moment of therapy. Local search heuristics are then used to
conduct a search for the desired solution, as defined by our criteria. These criteria include the patient’s state at the end of a
predetermined time period, the number of cancer and host cells at the end of treatment, and the time to the patient’s cure.
The process suggested here does not depend on the exact biological assumptions of the model, thus enabling its use in a
more complex description of the system. We test three solution methods. Simulated annealing is compared to threshold
acceptance and old bachelor acceptance, which are less known variants to this method. The conclusions concerning the
three approximation methods are that good results can be achieved by choosing the proper parameters for each of the
methods, but the computational effort required for achieving good results is much greater in simulated annealing than in
the other methods. Also, a large number of iterations does not guarantee better solution quality, and resources would be
better used in several short searches with different parameter values than in one long search.
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1. Introduction
Optimization methods have been employed in medicine to
direct clinical interventions such as radiotherapy (e.g., Wu
and Zhu 2001) or surgery (e.g., Malinen et al. 2003). As
will be explained below, the optimization of drug therapy,
as it involves multiple drug-patient interactions, is too com-
plex to be solved using analytical optimal control methods.
The aim of this paper is to lay the ground work for a clini-
cally implementable heuristic optimization method for drug
therapy in oncology.

Oncology patients are treated nowadays using tradi-
tional and novel modes of anticancer therapy. The tradi-
tional modes include surgery, radiotherapy, and classical
chemotherapy; that is, toxic, natural, or artificially synthe-
sized nonspecific products, which inhibit growth of rapidly
proliferating cells. The novel anticancer therapies involve,
for example, the disruption of signal transduction path-
ways that are important for tumor growth, the inhibi-
tion of tumor-induced blood vessel generation (denoted

angiogenesis), or immunotherapy, which exploits tumor-
specific antigens. With the exception of surgical excision
of relatively small tumors, treatment strategies employed
for the great majority of the patients are currently multi-
modal. This multimodality and the ongoing development of
new drugs or treatment approaches generate a fast growing
number of different possible protocols of cancer treatment.
Given the limited human and financial resources for clin-
ical trials, optimal protocols cannot be determined empir-
ically; that is, by trial and error alone as is presently the
only existing medical paradigm. Rather, a formal method
is necessary for a priori suggesting improved drug sched-
ules, according to criteria set by the physician. These cri-
teria may be, for example, life expectancy of the patient,
time to reach a specified disease stage, side effects, qual-
ity of life, cost of treatment, etc. In this paper, we focus
on the use of operations research methods for ameliorating
chemotherapy, which is still the most widely applied mode
of anticancer therapy.
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It may be argued that no open optimization problems
exist today in traditional chemotherapy, where one wishes
to maximize drug total dose, while keeping toxicity below a
certain threshold. This view relies on the naive assumption
that today’s chemotherapy treatments achieve the maximum
efficacy/minimum toxicity requirement. This is not so:
chemotherapy still suffers from the inability to control the
efficacy/toxicity balance, and as will be mentioned below,
mathematical models of the physiological and pathological
cellular dynamics have been developed for identifying new
strategies for splitting the total drug dose so that toxicity
will be reduced without compromising efficacy. However,
these strategies rely on mathematical scenarios that are
too simple to enable the implementation of specific drug-
disease systems. Therefore, improved optimization meth-
ods are needed, which can accommodate more complex
disease-treatment models. One such method will be devel-
oped in this paper. This method, whose protocol space
includes mostly new therapy schedules, is to be distin-
guished from the known methods using expert rules for
selecting improved anticancer treatments out of a repertoire
of available treatments.

Cancer progression in a patient undergoing chemother-
apy is a very complex process, concurrently occurring on
many levels of organization: the genomic level, the level
of gene expression, that of cell-to-cell signaling, of cell
populations, the level of organ (e.g., blood vessels) forma-
tion, etc. Each one of these processes itself is very com-
plicated, and the system as a whole is even less tractable,
due to the multiple interactions among the processes occur-
ring on the different levels. For this reason, it is impossible
to predict, on the basis of biological knowledge and intu-
ition alone, the therapeutic results of changes in treatment
schedules. Rather, such predictions must take account of
the specific effects of the treatment schedule on the relevant
cellular and molecular dynamics of the patient. Calculating
these detailed dynamics, one can predict the effects of each
individual treatment scenario and, subsequently, employ
optimization methods for suggesting improved treatment
schedules for the drugs in question.

To date, extensive effort has been invested in the theoret-
ical investigation of cancer chemotherapy control methods.
For example, following Cox et al. (1980), Swan (1987) pre-
sented two optimal control problems, which differ in the
cancer growth function: drug effect is taken as linear in
one, and nonlinear (saturated) in the other. The efficiency
of a treatment is measured both by the overall toxicity it
induces and by the overall number of cancer cells through-
out the entire treatment period, and the number of cells
is taken in relation to a desired lower bound. An optimal
analytic solution is found to both problems in the form of
a function of drug dose, tumor size, and time. In another
work, Murray (1990) addressed the problem of minimiz-
ing the tumor size while limiting toxicity by keeping the
host cells population above a given threshold. The optimal
solution here is the administration of an initial intensive

treatment, thus reducing the number of host cells to the
minimum allowed, and consequently, the administering of
a drug such that the host cells are always kept at their min-
imal level.

An optimization problem involving multiple drug che-
motherapy is studied in Pereira et al. (1994). Here, the
mathematical model describes the kinetics and the dynam-
ics of anticancer drugs as well as the description of cancer-
ous and host cells dynamics. Because an analytical solution
is unobtainable in the general case, the optimization pro-
cedure involves the execution of an iterative algorithm
using Pontryagin’s maximum principle. The optimization
problem is formulated in a rather conventional way: mini-
mize the cost function, considering the number of surviv-
ing tumor cells, as well as minimize the concentration of
the administered drugs under the conditions described by
the main equation. The iterative algorithm obtains a local
minimum of the cost function. The optimization problem
thus formulated admits solutions which satisfy the formal
requirements but are not sound biologically. Moreover, to
obtain a solution, the description of the host and the cancer
cell progression is much oversimplified. For example, it is
assumed that cellular tissue structure is completely homo-
geneous, and no interaction exists between tissues.

Recently, Athanassios and Barbolosi (2000) treated can-
cer chemotherapy as an optimization problem, where tumor
and white blood cells’ (WBC) responses to chemotherapy
have been considered. The optimization problem is formu-
lated as searching a chemotherapy protocol (timing and
dose), which minimizes tumor load at the end of the first
chemotherapy cycle (subsequent cycles are not considered)
and minimize toxicity to the WBC, as measured by their
counts in peripheral blood. The model consists of ordinary
delay differential equations, where the tumor compartment
is controlled by Gompertz-type growth and by an addi-
tional cell kill function, depending on the drug pharmaco-
dynamics. The peripheral WBC counts are taken as having
constant production and elimination, with a constant delay
effect of chemotherapy. The selected, loosely defined con-
straints on possible protocols are: (1) WBC counts never
descending below the level of clinical leukopenia, and
(2) the level of peripheral WBC never descending below
a certain threshold for a time longer than some constant.
The optimization is performed using nonlinear program-
ming and numerical methods. This optimization problem
cannot be applied in the clinical setting, as its tractability is
based on a gross simplification of the underlying kinetics.
As Athanassios and Barbolosi rightly remark, the assump-
tion of constant tumor cell kill, and the exclusion of the
multiple feedback effects of the cytokine G-CSF, the main
modulator of WBC production, significantly oversimplify
the model. In contrast, the consideration of more complex
tumor elimination mechanisms and the introduction of the
important G-CSF feedback loop, as well as many additional
missing factors, while making the model clinically applica-
ble, will probably render it too complex to enable analysis.
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The models discussed above fail to retrieve the real ben-
efit of a large class of anticancer drugs, that of cell-cycle
phase-specific drugs, namely, drugs that are detrimental to
the cell in specific moments of its life cycle. As will be
detailed below, these drugs can be administered at times
when the tumor is mostly drug sensitive (i.e., when many
of the cells are in the drug-susceptible phase of their cycle).
To take account of such susceptibility, one must introduce
the cell-cycle structure into the mathematical model.

A mathematical model which takes account of cell-cycle
dynamics of tumor and host cellular dynamics has sug-
gested that intermittent delivery of cell-cycle phase-specific
drugs, at intervals equivalent to the mean cell-cycle time,
might minimize harmful toxicity without compromising
therapeutic effects on target cells (The Z-Method; Agur
1986, Agur et al. 1988). Subsequently, explicit general
formulas have been derived for the growth or decay of
cell populations that are subjected to repeated pulse deliv-
ery of cell-cycle phase-specific drugs (Cojocaru and Agur
1992), and an algorithm has been developed for calcu-
lating the required length of treatment for this protocol
(Agur and Dvir 1994). The existence of this resonance phe-
nomenon has been further demonstrated for a general class
of chemotherapy functions, thus supporting the underly-
ing theory (Webb 1990, Johnson and Webb 1996; see also
Dibrov et al. 1985).

Agur (1986), Agur et al. (1988), and Agur and Dvir
(1994) considered a restricted case of the above-mentioned
cell-cycle dynamic model, assuming that no growth occurs,
and that all cells whose vulnerable period coincides with
the treatment are eliminated. This applies to both the host
and the target cells. In Agur (1986) and Agur et al. (1988),
the goal is to minimize the ratio of target/host survival time,
whereas in Agur and Dvir (1994), the goal is to totally
eliminate the target cells.

The predictions of the Z-method have been verified in
experiments in mice bearing lymphoma, treated by repeated
pulse delivery of the anticancer drug Ara-C, and by the
anti-viral drug AZT. These experiments have shown that
when the rhythm of drug delivery roughly coincides with
the characteristic marrow cell-cycle time, animals survive
and myelotoxicity is significantly reduced. The optimal
spacing of repeated treatments was determined by measure-
ments of the kinetics of cell movement through different
cell-cycle phases . These experiments showed that it is fea-
sible to control host toxicity by rational drug scheduling
(Agur et al. 1991, 1992; Ubezio et al. 1994; Agur et al.
1995).

Only periodic policies were considered in the above-
mentioned models. Therefore, treatments were to be given
at regular times, t0 + il for i= 1� � � � � n, and a given time, l,
between the onsets of consecutive treatments. It was also
assumed that all treatment periods are of the same given
length. Concluding from Agur and Dvir (1994), if we
choose l to be a multiple of the host cells life cycle, each
treatment will strike the host cell and its descendants at

the same point of the life cycle, and therefore except for
the damage caused to host cells by the first treatment, no
further damage will be caused by the following treatments.

Optimal control problems of cell-cycle phase-specific
drugs are treated by Swierniak (1995, 1996), paying atten-
tion to various degrees of complexity of the cell cycle
and of the drug’s phase specificity. As was previously
suggested, cell-cycle dependent chemotherapy is shown to
favor periodic treatment. Here, the problem is approached
by minimizing the final count of cancer cells at the end
of the treatment or, alternatively, by maximizing the final
count of host cells at that time. This area was also reviewed
by Swan (1990).

As is shown by the above-mentioned examples, to date,
the approach has been mostly theoretical, using mainly
control methods where, inevitably, the functions describing
the involved dynamics are much simplified—the obvious
trade-off being the sacrifice of medical realism for main-
taining analytical rigor. In this work, we use operations
research techniques for identifying improved drug sched-
ules in any group of patients. Our focus is the general con-
cept of the optimization method, rather than the particular
treatment solution. For this reason, we chose to employ
the much simplified, but already validated (see above) cell-
cycle model, which underlies the Z-method. It should be
emphasized that, in principle, the heuristic optimization
method put forward below admits dynamic mathematical
models of any desired level of complexity.

In our model, we consider two types of cells in the
human body. The host cells denoted h-cells, and the tar-
get cells or abnormal cells denoted a-cells, which are,
in fact, the tumor. Modeling cell behavior in this work relies
on well-established biological research (see, for example,
Marieb 2002) which shows that some types of cells have a
life cycle that consists of four phases, resulting in the cells’
duplication. Each one of these phases is an essential step
in the cells’ reproduction. Phase-specific drugs, which are
used in cancer treatment (see, for example, Elledge 1996,
Freaux de Lacroix and Klein 1983) are designed to interfere
with the normal process of cell reproduction by preventing
the cell from completing a certain phase. Because both nor-
mal cells and cancer cells follow this behavior, both types
of cells may be damaged while exposed to chemotherapy.
Our aim is to reduce the number of target cells, while
maintaining a certain level of host cells in the body. More-
over, we assume that the lengths of the cell-cycle phases
are deterministic and known, both for host and target cells.
Both host and target cells are assumed to be sensitive to
the chemotherapeutic agents in only one or two of the cell-
cycle phases. These phases are defined here as the critical
phase of the life cycle. If a cell is exposed to chemother-
apy during part of its critical phase, there is a chance that
it will be eliminated. Specifically, we assume that during
each unit of time in which treatment is given, a fraction of
the cells which are in their critical phase will be destroyed.
Our aim is to reduce the number of target cells to a certain
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fraction of their initial level. However, in order not to cause
irreversible damage to the patient’s body, we must sched-
ule treatments so that the number of host cells will always
remain above a fraction of its initial level. Cells of both
types multiply, but not necessarily at the same rate. If the
number of target cells is reduced below the desired level,
we assume that the remaining target cells will not multiply
anymore.

Unlike the studies mentioned previously, we assume that
treatments can be of variable length and can be given at
any time. A solution, or a treatment protocol, determines
those time intervals in which treatment is to be given.

Our model is computationally intractable. We demon-
strate this point by proving that even in an extremely sim-
plified special case, it is NP-complete to check whether a
patient can be cured. Consequently, we suggest an approach
aimed at obtaining good (although not proved to be opti-
mal) solutions. Our approach solves the model by applying
local search. There are many local search heuristics that
can be used. We used our numerical study to study two not
very well-known heuristics, namely, threshold acceptance
and old bachelor acceptance, and compare them to simu-
lated annealing, which is a commonly-used heuristic. Our
aim is to compare the three methods in terms of quality
of the solutions and the computational effort. A necessary
step that this comparison requires is the fine tuning of each
algorithm’s performance by choosing the best parameters
for each one. We would also like to learn as much as pos-
sible about the performance of these algorithms and about
how the performance depends on the various parameters of
each algorithm.

To follow the dynamics of cells and their age distribution
with or without the chemotherapy treatment, a computer
program was written that simulates the cells’ conduct. This
also enabled us to assess the quality of the solutions tried
and suggested by the approximation methods.

For each solution, we view the condition of the patient
at a common predetermined time T . In particular, treatment
must end by this time. If the patient is cured earlier, then
the time until T is used by the body to recover its host
cells. The quality of a solution is measured by its fitness.
The fitness function assigns a value to each solution. This
value is affected by the following factors:
• The number of host cells in the body at T . The fitness

increases as this number grows.
• The number of target cells in the body at T . The fitness

decreases as this number grows. If the patient is cured, the
amount of target cells that remain in the body does not
affect the fitness.
• The fitness increases if the patient is cured, and the

increase grows as cure is achieved at an earlier stage.
• The fitness decreases if the patient dies as a result of

the treatment protocol, and the decrease grows the earlier
death occurs.

Even though all solutions that end in the patient’s death
are practically worthless, we need to be able to compare

them. In such cases, the longer the patient lives, the better
the solution is considered. The obvious reason is ethical,
but another reason for this decision is that solutions that
prolong a patient’s life can be more easily modified into
solutions that keep the patient alive.

From the biological point of view, we attempted to sim-
ulate genuine cell behavior as much as possible. The simu-
lation and approximation methods discussed here are very
flexible and can easily be modified to suit more strict
assumptions.

The results suggest two types of treatment protocols—
intensive and nonintensive. The initial impression is that
the type of protocol depends on the relative lengths of the
host and target life cycles, as well as the lengths of the
critical phases. Further study can be made to characterize
the biological models that yield the different patterns of
treatment protocols—intensive or nonintensive.

The conclusions concerning the three approximation
methods are that good results can be achieved by choosing
the proper parameters for each of the methods. In threshold
acceptance, only one parameter has to be chosen, and one
value was found that produced best-found solutions for all
problem instances that were studied. Old bachelor accep-
tance requires three parameters, and combinations of these
parameters were found to produce best-found solutions for
all instances. However, it was not the same combination for
all instances. The computational effort required for achiev-
ing good results is much greater in simulated annealing
than in the other methods. As for the other two heuristics, it
can be seen that a large number of iterations does not guar-
antee better solution quality. This leads to the conclusion
that computer resources would be better used in several
short searches with different parameter values, than in one
long search. This is particularly relevant for old bachelor
acceptance, in which the number of iterations is determined
by the user. Comparing the algorithms, it seems that old
bachelor acceptance is the least demanding method from
the computational effort point of view.

It should be noted that the problem of chemotherapy
scheduling is only one of a large set of scheduling problems
on which the operations research methods studied in this
paper can be applied. The key to applying these methods
on other problems lies in defining the proper parameters
for the search heuristics.

2. The Model
Let us denote by �i and si the length of the life cycle and the
critical phase, respectively, of i-cells, i ∈ a�h�. At the end
of a cell’s life cycle, it may produce new cells. The average
number of new cells produced by a single i-cell that reaches
age �i is the growth rate in the i-cells’ population, and we
denote it by ri.

If the proportion of target cells is reduced to a frac-
tion �a of its initial level, then the body is considered cured
and the treatment may be stopped. In practice, the propor-
tion of host cells must remain above a fraction �h of its
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initial level during the entire treatment. If the proportion of
host cells falls below this level, the patient is considered
dead. However, we will allow solutions that do not satisfy
this condition to be tested, with the aim of achieving good
solutions at a later stage of the process. In our model, the
patient can only die as a result of the treatments’ toxicity—
death is not caused by the tumor. This model assumption
would not result in solutions that leave a patient without
treatment because growing cancer cells will quickly reduce
the fitness to −�. Hence, solutions that result in a patients’
death due to treatment have higher fitness values than solu-
tions that do not treat the patient at all.

For each t ∈ �0� T �, the state of the system is charac-
terized by two “density” functions, ni�w� t� i ∈ a�h�, that
are defined for w ∈ �0� �i�. For 0 � p� q � �i, the number
of i-cells whose age is in the interval �p� q� at time t is∫ q
w=p ni�w� t�dw. In particular, the total number of i-cells at
t is xi�t�=

∫ �i
w=0 ni�w� t�dw. We will normalize the units by

which we count cells so that the initial quantity is xi�0�= 1.
Initially, before treatments start, we assume that the

cell ages distribute uniformly along the life cycle, that is,
ni�w�0�= 1/�i, w ∈ �0� �i�. When chemotherapy is applied,
the cell age distribution obtains some nonuniform shape,
depending on the treatment schedule.

We assume that without treatment, the number of a-cells
is doubled during each life cycle, that is, ra = 2. In reality,
we may find that the actual growth rate is lower. However,
a growth rate of 2 defines the worst-case scenario, and the
solutions found for this case still hold when the rate is
lower. The host cells’ growth rate depends on their num-
ber. The growth rate at time t is r�xh�t��, where r�x� is
a (nonlinear) decreasing function that tends to 1 as x goes
to 1. Therefore, the growth of the host cells slows as they
multiply. Note that our model assumes that although influ-
enced by the total number of host cells, their growth rate
is independent of the age distribution.

Let us denote by �i the proportion of i-cells (host or
abnormal) from those which are at their critical phase, that
are destroyed during one time unit of treatment. (Different
rates for host and target cells suit newly developed drugs
that are more aggressive to the target cells than the host
cells.) A treatment policy (or protocol) consists of the times
at which treatments are given.

Any policy that cures the patient without damaging more
host cells than is permitted is a good policy, and can be
accepted as a solution of high quality to our problem.
However, defining a most desirable policy is more difficult
because two factors determine the quality of a treatment—
the time of cure, and the number of host cells at time T .
The relative importance of each one of these factors must
be defined to refine the performance of the algorithm. The
fitness function constructed to meet these criteria is

fitness�s�=�xh�T �−�h��2+�h−xh�T ��−xa�T �
+c1Ialive+c2Icured+c3IaliveIcured

+ time_of_death
K

�1−Ialive�−
time_of_cure

K
Icured�

where Ialive and Icured are indicator functions stating the
patient’s condition at the end of the treatment period.
Detailed analysis of this fitness function follows in §5.

Our approach is to compute a protocol through numer-
ical computations because theoretical analysis is possible
only for very simplified models (Agur and Dvir 1994). To
make the process computationally tractable, we will mea-
sure time and age by discrete units of a given length. To
make computations reasonably quick, we divide the cells’
cycle into discrete time units, and assume that the number
of cells is constant over this unit. Thus, treatment policy
consists of the times t1� � � � � tm ∈ �0� T �, at which treatments
are given.

The distribution of the cells’ age is generated using the
following simulation rule: When no treatment is given,
all cells mature by one time unit, and the cells that
have reached the end of their life cycle multiply. When
chemotherapy is present, all cells mature by one time unit,
cells that are in the critical phase are reduced by a given
fraction, and the cells that have reached the end of their
life cycle multiply.

The growth rates are calculated using the following rules:
The target cells double their amount at each cycle, therefore
the target growth rate always equals 2. The population of
host cells, on the other hand, can never exceed its initial
level—there is no uncontrolled growth in the host cells.
Their growth rate is assumed to be the highest number not
greater than 2 that will keep the total amount of host cells
at most 1. This growth rate becomes smaller as the host
cells multiply.

3. Interactive Code for Simulating a
Treatment Protocol

We constructed an algorithm to simulate the body’s re-
sponse to chemotherapy. It implements cell growth and cell
death procedures as described in the previous section. The
pre-defined parameters of the program are the lengths of
the host and target life cycles, the lengths of their critical
phases, and a resolution factor that determines the length
of a single time unit. The main part of the program are
two procedures that simulate the growth of the cells during
treatments and when no treatment is given. The array in
which the numbers of cells are kept is updated once per
time unit, whether with or without treatment present at that
time.

The graphical representation of the cells’ status shows
us the two “density functions” on the same graph. This
means that for every interval �t0� t1�, the area under the
curve between t0 and t1 is proportional to the number of
cells whose age is in the interval. The initial state is that
both types of cells have a total relative number of one,
and their ages are uniformly distributed over the life cycle.
When treatments are given, and when cells grow, the total
number changes, and the graphs show the change in the
number of cells in each point of the life cycles, with respect
to the initial uniform distribution of the cells.
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In the figures, we measure age not from the beginning
of the conventional cell cycle, but rather from the begin-
ning of the critical phase. The reason is that such a graph
enables us to detect the most favorable time for the next
treatment more easily. Let us consider an example that will
be discussed in details later in the paper: in this problem,
denoted P2, �a = 28, �h = 24, and sa = sh = 10, all in units
of one hour with � = 0�05. We also assume that the host
cells’ critical phase starts at age 10 hours, and the target
cells’ critical phase starts at age 16 hours. The treatment
plan consists of treatments in times 1–6, 18–29, 42–47, 49–
50, and 66–69. Figure 1 (top) shows how one time unit of
treatment affects the cell distribution: the first 10 hours of
both life cycles that are shown on the graph are the critical
phase, and so we observe treatment effect on them—their
number is reduced. The actual beginnings of the life cycles
occur, in our shifted cycle clock, at time 12 for the target
cells and at time 14 for the host cells. We can see that
in the beginning of the life cycle, there is one time unit
in which cells have begun their growth. The target cells’
growth is larger at this time because many host cells are

Figure 1. P2: time = 1 (top); end of first treatment
time = 6 (bottom).
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still present in the patient’s body and this implies that the
host cells grow relatively slowly. The growth happens along
an interval which is one hour long because in our imple-
mentation, each time unit equals one hour. The target cells
show uniform growth, caused by the constant growth rate
of 2. The host cells, on the other hand, show an increas-
ing growth, affected by the fact that their overall number
decreases during treatment periods.

As more and more treatments are given, both functions
lose their initially uniform shape. We have done interpola-
tion in the figures describing the density functions to trans-
form a step function to a continuous function. It can be seen
that, in general, this protocol suggests treatments coincid-
ing with many target and few host cells being in (or about
to enter) the critical phase.

Figures 1 through 4 give a brief look at the cell age dis-
tribution before and after chemotherapy for the best-known
solution for P2. In these graphs, the critical phases of both
types of cells are the first phases on the scale (age = 0).
This solution suggests a somewhat nonintensive treatment
plan, and it can be seen that there is an area of unharmed

Figure 2. P2: end of first break-time = 17 (top); end of
second treatment-time = 29 (bottom).
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Figure 3. P2: end of second break-time = 41 (top); end
of third treatment-time = 47 (bottom).
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host cells, and chemotherapy is avoided when these cells
are in their critical phase. Treatments are given when the
critical phase has relatively many target cells and few host
cells. The cells that are just about to enter the critical phase
are also taken into account: treatments are given if many
target and few host cells are about to enter the critical
phase, and are stopped when the situation changes. This
can be seen, for example, in Figure 2 (bottom): the number
of host cells just before the critical phase is large, and the
treatment is stopped. In Figure 3 (top), a treatment period
is about to start, when the majority of the host cells has just
left the critical phase, a large number of target cells is still
in it, and very few cells of both types are about to enter the
critical phase. At the end of this treatment period (Figure 3
(bottom)), there are hardly any cells of any type in the crit-
ical phase, and the number of target cells is considerably
reduced in relation to the host cells. Note that cancer cells
are not shown in Figure 4 (bottom) because their number
is below the threshold �a.

In another example denoted P5, �a = 20, �h = 24, sa =
14, and sh = 10, with the same �= 0�05. The solution we

Figure 4. P2: end of fourth break-time = 65 (top); end
of last treatment-time = 69 (bottom).
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obtained for P5 demonstrates a different type of a treatment
protocol—intensive with a short one hour break. It was also
noticed that the number of host cells remained relatively
high throughout the entire treatment period. This can be
explained by the fact that in P5, �a < �h, which is in favor
of the host cells. The target cells can be destroyed within
one life cycle, without damaging the host cells more than
is permitted, and this implies a treatment protocol of one
long treatment period. The short break in the middle of the
treatment period can be explained by the fact that without
it more target cells would be destroyed than is required for
curing, so this time unit of treatment can be spared, leaving
more host cells at the end of the treatment period. Figure 5
shows the cell age distribution at time t = 10, just before
all target cells are destroyed.

4. Optimization
The generality of our model makes it computationally very
hard. The following theorem demonstrates that even an
extremely simple special case of it is NP-hard.
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Figure 5. P5: end of first (and only) break-time = 10.
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Theorem 4.1. Given the distributions of the healthy and
tumor cell ages at time 0 �ni�w�0�, w = 0� � � � � �i − 1,
i = a�h�, computing whether a patient can be cured is
NP-complete even when the growth rates are 0 for both cell
types and �h = sh = �a = sa.

Proof. We use a reduction from the knapsack prob-
lem: Maximize

∑n
j=1 bjxj subject to

∑n
j=1 ajxj � B, where

x1� � � � � xn are binary decision variables and aj , bj , j =
1� � � � � n, are given integers. We construct an instance in
which the life cycle is n for both normal and abnormal
cells, and the critical phase consists of the whole life cycle.
The initial distribution of healthy cells is nh�i�0� = ai+1

and that of the tumor cells is na�i�0� = bi+1, i = 0� � � � �
n− 1. We also set �h = 1 − B. Because �h = �a, there is
a curing schedule if and only if the patient can be cured
during a single cycle. Let xi = 1 if treatment is given dur-
ing the ith interval. The goal is to kill at least a fraction
1 − �a of the tumor cells, while killing at most a fraction
1 − �h = B of the healthy cells. Thus, the patient can be
cured if and only if the solution to the knapsack problem
is of value at least 1−�h. This problem is well known to
be NP-complete. �

Given the computational hardness of the model, we aim
at computing good, although not proved to be optimal, solu-
tions. The rest of this section contains brief descriptions of
three local search heuristics that participate in our compu-
tational study.

Simulated annealing (SA) is a well-known heuristic and
we refer the reader to Aarts (1997) and Johnson et al.
(1989) for details. In this section, we give brief descriptions
of the other two heuristics that we used in our study.

Threshold acceptance (TA) is a deterministic version of
SA. The difference between the two heuristics lies in the
criterion for making a downhill descent—accepting a solu-
tion s for which fitness�s� < fitness�s0�, s0 being the current

best solution. In SA, downhill descent is made with a cer-
tain probability that depends on fitness�s�− fitness�s0� and
on the temperature, that is gradually reduced as the SA pro-
cess continues. In TA, the temperature is replaced by a series
of descending thresholds t0� � � � � tn. A solution s such that
fitness�s� < fitness�s0� will replace s0 as the current solution
at stage i of the process if fitness�s� > fitness�s0�− ti. We
refer the reader to Dueck and Scheuer (1995) for further
details.

The same fitness function and the same neighborhood
were used as in SA. The TA parameters were tested by
running a series of different instances of the problem, and
comparing the performances of the algorithm under differ-
ent parameter values. The series of thresholds taken was
geometrically descending, and several values of a descent
rate, noted as the reduction factor, were tried. The thresh-
old was reduced after two complete searches of the entire
neighborhood, which is similar to the rule used for reducing
the temperature in SA. The algorithm terminates when two
consecutive thresholds ended with the same fitness value,
which is also similar to the SA termination rule.

Old bachelor acceptance (OBA) is a modification of
TA, where the threshold does not always decrease. In
this method, the threshold depends on the acceptance or
rejection of the several most recently tried solutions. The
heuristic is described in Hu et al. (1995), and was slightly
changed to suit our specific problem—the original algo-
rithm used T0 = 0 as the initial threshold and we used
T0 > 0. The reason for this modification is that the first
solutions tested always cause an increase in the fitness,
therefore lowering the threshold rapidly. When these con-
secutive improvements stop, many solutions are rejected
until the threshold enables another acceptance. To avoid so
many rejected solutions, we set the initial threshold a bit
higher than in Hu et al. (1995).

Let us now examine this algorithm more closely: OBA
uses three parameters to determine thresholds and search
termination:
• M—total number of iterations the procedure will per-

form—that is, the number of solutions that will be tested
throughout the search.
• d—number of consecutive solutions that can be re-

jected before a solution is accepted and would still be con-
sidered a fast acceptance.
• &—a threshold change factor, used both for increasing

and reducing the threshold.
When a solution is accepted, the number of preceding

nonaccepted solutions is checked: if this acceptance is not
a fast one, i.e., d or more solutions were rejected before the
current solution was accepted, then the fast_acceptances_
counter, which counts the number of consecutive fast
acceptances is set to 1, and this implies a small reduction
of the threshold in the next iteration. If the acceptance is a
fast one, and less than d solutions were rejected between
the last acceptance and this one, then the fast acceptances
counter is increased by 1, which means a bigger reduction
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of the threshold in the next iteration. One should note that
by this way of reducing the threshold, the threshold might
become negative and demand a strict improvement of the
fitness to accept a solution.

As in TA, a solution si is accepted (at stage i out of M)
if fitness�si� > fitness�s0� − ti. The threshold ti is then
increased (if the solution is rejected) or reduced (if the solu-
tion is accepted) by a multiple of &�1− i/M�. That means
smaller changes in the threshold as the search advances.

Let us now examine the multiplier. When a solution is
rejected, the multiplier is the constant 1/d, and so the
threshold is increased by �&/d��1 − i/M�. When a solu-
tion is accepted, the multiplier is the number of consecutive
fast acceptances that happened prior to this solution being
tested. The threshold is then reduced by fast_acceptances_
counter &�1− i/M�. That means that acceptance becomes
more difficult as many solutions are accepted quickly.

The procedure terminates once M solutions have been
tested. It returns the best solution tested, which is not nec-
essarily the last one.

When adapting the algorithm to our needs, the common
parameters (fitness function, neighborhood, etc.) were taken
to be the same as in SA and TA. The specific parameters
that were tested were M , d, and &.

5. Testing for Parameters
Fitted for our purposes, the generic algorithms take the fol-
lowing form: Each treatment protocol is represented by a
binary string of length T . Each bit in this string is equiv-
alent to one time unit, say one hour, where a zero means
that no treatment is given in this hour, and one means that
treatment is given. For example, the string 110001 shows
that treatment is given for two hours, then no treatment is
given for three hours, and again treatment is given for a
period of one hour. The length of this string can be deter-
mined by the user. Such a string is equivalent to a series
of treatments, not necessarily of equal length, with variable
length periods of no treatment between them.

The fitness of a solution includes several factors: xh�t�
and xa�t� denote the relative numbers of host and target
(abnormal) cells, respectively, at time t. We measure these
numbers as proportions which are taken with respect to the
initial level, so that by definition xa�0�= xh�0�= 1. When
a patient is cured, we assume that as a consequence, all the
target cells are eliminated. Our discrete representation of
the cell age distribution implies that

xh�t�=
�h−1∑
w=0

nh�w� t�

and

xa�t�=




�a−1∑
w=0

na�w� t��
�a−1∑
w=0

na�w� t�� �a�

0�
�a−1∑
w=0

na�w� t� < �a�

In addition, let us define two indicators (using obvious
notation): Icured and Ialive, that indicate the patient’s status
during the treatment series. Icured indicates that at some
point during the treatment series, the number of target cells
went under the required threshold, and from this point on
we considered the patient cured. As mentioned earlier, we
assume that once a patient is cured, the target cells do not
multiply anymore. In other words, we consider the tumor
totally eliminated. The indicator Ialive shows that the patient
was alive during the entire treatment period, and that at no
time did the number of host cells go under the permitted
limit. If the patient is cured, time_of_cure is the time when
cure happens, and if the patient dies, time_of_death is the
period until the patient’s death.

Our aim is to cure the patient as quickly as possible,
when a certain level of host cells must be maintained
throughout the entire treatment period to keep the patient
alive. Until the patient is cured, we attempt to preserve as
many host cells as possible. No more treatments need to
be given after the patient is cured, and it is assumed that
given enough time, the host cells will recover.

As stated, if the patient is cured, we prefer that cure
will occur as early as possible. Similarly, in case of the
patient’s death, we prefer to delay the death as much as we
can. These preferences are made under the assumption that
solutions that prolong a patient’s life can be more easily
modified into solutions that keep the patient alive.

All these considerations taken into account, the following
fitness function was constructed:

fitness�s�=�xh�T �−�h��2+�h−xh�T ��−xa�T �
+c1Ialive+c2Icured+c3IaliveIcured

+ time_of_death
K

�1−Ialive�−
time_of_cure

K
Icured�

Let us now examine how this fitness function depends on
each one of the required variables. The fitness increases as
xh�T � increases. However, this increase is not linear. The
quadratic argument which includes xh�T � in the function
is equal to 0 when xh�T � = �h, and is maximized when
xh�T �= 1. Thus, the function changes more rapidly around
the critical value of �h, where host cells are very valu-
able, than around the maximal value of 1, where host cells
can easily be spared. Its derivative changes from 2 when
xh�T �= �h to 2�h when xh�T �= 1. Comparing this to the
derivative of the argument representing xa�T � in the fitness
function, which always equals 1, we see that many host
cells can be sacrificed to eliminate one target cell when
xh�T � is around 1. When xh�T � is close to �h, we will sac-
rifice a host cell only if many target cells will be eliminated
with it. This way, host cells affect the fitness more when
they are most needed.

A “bonus” of c1 is given if the patient survives the
treatment, and c2 if the patient is cured. In addition, if
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both goals are achieved, an additional bonus of c3 is given.
(Note that cured does not necessarily mean alive. There are
two thresholds, one for the host cells and one for abnormal
cells, that determine the patient’s status: if the host cells
are reduced below their threshold, the patient is considered
dead. If the abnormal cells are reduced below their thresh-
old, the patient is cured.)

Because the effect of the time_of_death variable should
never exceed the effect of any of the indicators that were
mentioned earlier in the paper, its contribution to the fit-
ness is normalized such that it will never be greater than 1.
This is done by dividing the time_of_death by a constant
K > T .

Following the same logic, if a patient is cured, we would
like the curing to happen as early as possible. In this case,
this demand is not just a means of comparing “good” solu-
tions to modify them, but is an actual benefit to the patient.
The contribution of the time_of_cure variable is also nor-
malized as mentioned before for the same reasons.

Three types of neighborhoods were considered; each one
is generated by allowing a different subset of the following
actions.

(1) Replacing one bit of the given solution by the com-
plementary bit (changing 0 to 1 and 1 to 0). This action
enables us to change the total number of treatment hours in
the solution. This way we can shorten a certain treatment,
lengthen it, split it into two treatments, or combine two
treatments into one. A new treatment may also be created
by splitting a break into two. Similarly, a treatment may
also be canceled by combining two breaks into one.

Actions 2 and 3 allow exchanging the last, or first
(respectively) bits of two, not necessarily consecutive se-
quences—one of zeros and the other of ones. This enables
us to bring forward or postpone a break between treatments,
and to bring forward or postpone an entire set of treatments
and breaks, without changing the length of that treatment.
While doing so, it is still possible that a treatment will
be split into two treatments, or that two treatments will
be joined together and become one long treatment. Here
are examples of the new treatment plans these actions will
produce:

(2) Exchanging the last bits of two not necessarily con-
secutive sequences:

Bringing forward the first break:

1
−−→
100010111 → 1000110111.

Bringing forward the second break:

1
−−−−→
100010111 → 1000011111.

Postponing the second treatment:

11000
−→
10111 → 1100001111.

(3) Exchanging the first bits of two not necessarily con-
secutive sequences:

Postponing the first treatment:
−→
1100010111 → 0110010111.

Combining the second and third treatments:
−−−−−→
1100010111 → 0100011111.

Actions 4 and 5 only allow the exchange of the last (or
first) bits of consecutive sequences. Referring to the same
example, treatment plans produced by these actions will be:

(4) Swapping ends of consecutive sequences:

Bringing forward the first break:

1
−−→
100010111 → 1000110111.

Postponing the second treatment:

11000
−→
10111 → 1100001111.

(5) Swapping beginnings of consecutive sequences:

Postponing the first treatment:
−→
1100010111 → 0110010111.

Combining the first and second treatments:

11
−−→
00010111 → 1110000111.

Actions 6 and 7 allow the exchange of the last (or first)
bit of a sequence with any bit of the sequence that follows,
thus allowing to split a treatment or a break in every possi-
ble place without changing the overall number of treatment
time units.

(6) Swapping the end of a sequence with the consecutive
sequence:

Splitting the first treatment:

1
−→
100010111 → 1001010111,

1
−−→
100010111 → 1000110111.

Postponing the second treatment:

11000
−→
10111 → 1100001111.

(7) Swapping the beginning of a sequence with the con-
secutive sequence:

Postponing the first break:

11
−−→
00010111 → 1110000111.

Bringing forward the third treatment:

110001
−−→
0111 → 1100011110.

Three types of neighborhoods are defined as follows:
• Type A: actions 1, 2, 3—allowing the replacement of

a single bit, and swapping first or last bits of any two
sequences.
• Type B: actions 1, 4, 5—replacing a single bit, swap-

ping first or last bit of consecutive sequences.
• Type C: actions 1, 6, 7—replacing a single bit, swap-

ping the first or last bits of a sequence with any bit of the
sequence that follows.

The relations between the neighborhoods are such that
both neighborhoods A and C contain neighborhood B, but
no such relation exists between neighborhoods A and C.
These neighborhoods were tested for the quality of solu-
tions they produce. The results of these tests appear later
in the paper.

The solutions produced by the three different actions are
searched in the order that they appear in the neighborhoods’
definition. That is, action 1 is performed and its results
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are searched first, followed by the two other actions of
which the neighborhood consists. Each action’s results are
searched until a pre-defined number of consecutive, non-
improving solutions have been tested. In this context, an
improving solution is one that has a higher fitness than
the current best solution. The order of search within each
action’s results is cyclic, and when an improvement occurs
the search will continue from the point of the last change.
For example, if action 1 of the neighborhood is performed,
and changing the third bit proved to be successful, then the
next try will be to change the fourth bit of the new solution.
The same principle is followed when searching the results
of the other two actions of the neighborhood.

The initial solution can be chosen randomly or determin-
istically. A few ways of choosing an initial solution were
tried, and the results appear later in the paper.

A series of tests was made to determine some of the
parameters, joined for all approximation methods. These
parameters are:
• The coefficients in the fitness function.
• The selection of an initial solution.
• The necessity of each of action in producing a neigh-

borhood.
• The type of neighborhood to be used.
Some of these parameters were tested on small size

instances, for which both the solutions quality and algo-
rithm run times were compared. The tests produced the
following results.

The indicator coefficients. The coefficients c1, c2, and c3

that form the cure and survival bonuses in the fitness func-
tion (c1Ialive+c2Icured+c3IaliveIcured) were given several com-
binations of values, differing in the coefficients’ absolute
and relative sizes. The tests showed that c3 is redundant—
no bonus needs to be given for curing and survival, in addi-
tion to the high bonuses already given for each achievement
separately.

The tests show that the values of c1 and c2 should be
set so that their contribution to the fitness function will
exceed the contribution of the number of cells. The bonus
for survival should be greater than the bonus for curing, and
again, the difference between the bonuses should exceed
the contribution of the number of cells. The precise values
of c1 and c2 are insignificant.

Choosing an initial solution. Both random and determin-
istic solutions were tried. The random starts were charac-
terized by the probability that a certain bit of the initial
solution would indicate a treatment. It seems that the ini-
tial solution may effect the quality of a solution, but the
effect was inconsistent: no certain probability gave good
results for all (or most of) the instances. The deterministic
initial solutions, on the other hand, performed better: the
options tried were an initial solution that was all “treat-
ment,” one that was entirely “no treatment,” and a mixed
solution. The mixed solution started with one time unit of
treatment that had to be given because postponing the first

treatment will damage the fitness, and the rest of the solu-
tion was “no treatment” bits. The logic of this choice is
that the first treatment will be constructed by the neighbor-
hood search at the very beginning of the search. The mixed
initial solution indeed gave the best results of all. It should
be noted that the combination of the initial solution and
the relatively high value of c1 are equivalent to a constraint
that the patient must always be kept alive. Because the ini-
tial solution has almost no treatments, the patient is alive
in the beginning, and will remain so because any solution
that violates this constraint will cause a severe loss in the
fitness function.

The fitness function can be now be written as

fitness�s�= �xh�T �−�h��2+�h− xh�T ��− xa�T �
+ c2Icured −

time_of_cure
K

Icured�

with Ialive = 1 as a constraint.
The three types of the neighborhood. All actions proved

to be necessary, and lesser quality results were reached if
any one of them was missing. In addition, the neighbor-
hood type that gave the best results was type C, in which
beginnings and ends of sequences were swapped with each
bit of the consecutive sequence. When neighborhoods A
and B were compared, it was seen that swapping between
consecutive sequences was enough—further swapping was
time consuming and did not produce better results. A com-
parison was then made between neighborhoods B and C,
using TA on five selected instances with different reduc-
tion factors. The results of this comparison can be seen
in Table 3 in the appendix, and the five instances will be
described later in the paper. In this table and throughout
the rest of the paper, the best solution for each instance is
in bold type. It should be noted that changes in the fitness
values of each instance may seem relatively small. This is
because the fitness is increased by large constants when
curing or survival are achieved, and does not suggest that
the differences in the solutions quality are minor. These
results show that neighborhood C produced better results
with the same computational effort and for all reduction
factors tested, so it was used as the neighborhood for all
three algorithms.

6. Comparing the Algorithms
The three approximation methods were tried on several
instances of the problem. The common parameters were set
to the values as given in the previous section, and this set of
instances was used to test the parameters that are algorithm
specific. The parameters characterizing the host cells, �h
and sh, remained the same in all of these instance, whereas
the target cells parameters �a and sa varied. Out of the
instances tried, a smaller set of five instances was chosen
for further study, and the results shown in this paper relate
to them. The reason for choosing these particular instances
was that they make a fine representation of a variety of
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Table 1. The five instances used for compar-
ing the approximation methods.

Instance �h sh �a sa

P1 24 10 16 10
P2 24 10 28 10
P3 24 10 16 6
P4 24 10 28 6
P5 24 10 20 14

solutions: some of these solutions suggest a single long
treatment period, or two long treatments separated by one
time unit of no treatment; others suggest a few shorter
treatments, separated by longer breaks. There is also one
instance in which the patient was not cured. The parame-
ters characterizing the five chosen instances are shown in
Table 1. Throughout this section, those instances will be
referred to as P1� � � � �P5.

A comparison was made both between the methods and
between different parameterization of each method.

A crucial parameter of both SA and TA is the reduc-
tion factor. Higher reduction factors mean slower reduc-
tion rate, which requires higher computational effort. SA
requires slow reduction of the temperature, as stated in
Aarts et al. (1997). The SA reduction factor was set to be
0.95. As will be seen later in this section, the computational
effort involved in this procedure prevented further attempts
to optimize the SA parameters. Several values, ranging
from 0.05 to 0.85, were tried for TA, and the results show
that high reduction factors (which cause a slow descent in
the threshold) do not always produce better solutions than
moderate or small reduction factors. This is as opposed to
SA, where a slower descent in the temperature leads to a
better performance of the algorithm. The best results were
produced by reduction factors of about 0.10–0.25, which
required little computational effort. A reduction factor of
0.85 did not perform as well, and higher reduction fac-
tors that were tried gave even worse results. A comparison
between the reduction factors tested for TA is shown in
Table 4 in the appendix. Fitness values above 6 mean that
that patient is cured.

To further investigate the dependence of the solution on
the reduction factor, we used TA with a series of close
reduction factors ranging from 0.05 to 0.95 on P2. The

Table 2. The comparison of the approximation method.

SA TA OBA

Instance Fitness Iterations Fitness Iterations 3,500 Iterations 1,500 Iterations

P1 7.588316 14,369 7.588316 2,630 7.588316 7.582802
P2 6.746259 22,958 6.749344 4,630 6.733498 6.735837
P3 7.021295 24,197 7.204986 3,872 7.204986 7.199592
P4 4.467657 15,688 4.467657 2,963 4.467657 4.467657
P5 7.620466 15,357 7.620466 3,005 7.615119 7.614556

results, shown in Table 5 in the appendix, support the claim
that a high reduction factor does not guarantee the best
results. Best results were obtained for reduction factors of
about 0.25. These results show that no monotonic rela-
tion exists between the reduction factor and the fitness. It
appears that the best approach for identifying a desirable
solution might be to try several small reduction factors in
the TA algorithm, and choose the best of the several solu-
tions generated.

In OBA, three parameters should be determined: M , d,
and &. The initial values for d and & were chosen by trial
and error, and by following the parameters used in Hu et al.
(1995). The value of M was taken to be similar to the num-
ber of iteration needed in TA. To see if any rule can be
learned about the dependence of the best solution found
on M , d, and &, after choosing the initial ranges, P2 was
tested with a “grid” of values for the three parameters. This
grid seems to be a good representation of the ranges of
parameters that were found suitable for solving this prob-
lem. The results of these tests are given in Tables 6 and 7
in the appendix. Both tables show the same results, where
Table 6 is arranged by values of M and d, and Table 7
is arranged by values of & for convenience. These results
show that holding d and & constant, higher values of M
are not necessarily associated with better solutions, and that
changes in & are not necessarily associated with changes
in solution values. Thus, it appears that small values of M
should not be used with high values of d.

The best results for M = 3�000 were produced by &=
0�08, and for M = 2�000 by &= 0�06 (these solutions are
not necessarily the overall best solutions, but are the best
solutions for these values of M). The conclusion from these
results is that it is better to use small values of M with
several combinations of d and & than to use a high value
of M once.

Several sets of parameters were tried on all five
instances, resulting in similar conclusions. It can be seen in
Table 8 in the appendix that big M values do not necessar-
ily guarantee good solutions. An exceptionally high value
of M = 6�000 was also taken in two sets of tests, and did
not prove to perform better than the smaller M values. Fur-
thermore, solutions whose fitness is near the best achieved
so far can be obtained by using small M values, such as
M = 1�500.
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Figure 6. P2: the fitness curve as a function of time for
OBA.

0

1

2

3

4

5

6

7

0 500 1,000 1,500 2,000 2,500 3,000

F
itn

es
s

Iterations

When considering the parameterization that gave the best
results in each method, one can conclude that SA yields
results that are not better than the other two methods, but
the computational effort involved in reaching the solution
(measured by the number of iterations used) was much
higher. For this reason, no further attempts to optimize the
problem by SA were made. TA gave good results using rel-
atively small computational effort, and it should be noted
that OBA came close to the best-found results using even
less iterations than TA. The comparison between the best
solutions is shown in Table 2.

In Figures 6 and 7, we can see how the fitness changes
while the algorithms proceed. Both figures show the pro-
cess of approximating P2, and both reached the highest fit-
ness known for this instance. We can see a trend of descent
in the beginning of TA, and sharp up and down moves.

Figure 7. P2: the fitness curve as a function of time for
TA.
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Figure 8. P2: the fitness curve in iterations 1,500–2,000
for OBA.
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The fitness stabilizes when it reaches the high values. In
OBA, we see small descents in the general trend of ascent.
The beginning of the process shows an almost continuous
ascent because the first moves are almost always improv-
ing moves. It can also be seen that OBA shows a more
stable pattern, both in small fitness values (before curing)
and in high fitness values (after curing). Curing solutions
are reached later in the process in OBA than in TA. Note
that the jump in the graphs shows the point of cure.

For a more detailed look, Figures 8 and 9 show the fit-
ness in iterations 500 through 1,000 in TA, and iterations
1,500 through 2,000 in OBA. These stages were chosen
because they are around the point of curing. Small increases
and decreases in the values of the fitness function, as well
as the general trend of an increase in the fitness function,
may be discerned in Figures 8 and 9.

Figure 9. P2: the fitness curve in iterations 500–1,000
for TA.
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Figure 10. The best treatment protocols of the five
problems.
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7. Discussion
This paper addresses the problem of adapting OR heuris-
tics to optimize chemotherapy scheduling, with the partic-
ular aim of eliminating the cancer cells while maintaining
a sufficiently high level of healthy cells. This problem was
defined as an optimization problem to which the possi-
ble solutions are scheduling plans represented by strings
of zeros (no treatment) and ones (treatment). The possible
schedules are tested by three local search-based heuristics
to find a solution that will locally optimize the fitness
function. The comparison between the three approximation
methods shows that the three are competitive but the com-
putational effort is much higher in SA than in the other
two methods. All three methods produced solutions of sim-
ilar quality, and therefore the choice among them should
be done according to their computational efficiency. When
optimizing by TA, we could see that a slow reduction of
the threshold does not necessarily produce better solutions.
Similarly, for OBA, we could find combinations of param-
eters that gave good results for almost any value of M . We
found that several shorter TA or OBA runs that are exe-
cuted with different sets of parameters give better results
than one long run. The alternative of trying several initial
solutions is not suitable for our purpose.

If we examine the types of best solutions the algorithms
reached for these problems, they could be roughly divided
into two categories: intensive treatment and nonintensive
treatment. Intensive regimens are more easy to detect. The
solutions to all the problems are shown in Figure 10, where
time is measured in hours and the line marks a treatment
period.

A central question for which we only have a partial
answer is: What problem characteristics determine inten-
sive versus nonintensive regimens? It seems that the type
of treatment protocol depends on the relation between �a
and �h, and on the relation between sa and sh. The situation
favorable to the host cells is when the host cells have a

long life cycle and a short critical phase. This situation may
imply an exhaustive treatment.

The same problems may be studied under different
model assumptions. The algorithms and implementations
that were reviewed in this paper are very flexible, and can
be very easily adapted to suit other assumptions, such as:
• A different growth function to the host (or target) cells.

This can be very easily implemented, as the model refers
to a generic growth function and does not depend on a
particular growth function.
• A treatment effect that decays with time. In this case,

the number of cells at each time will be calculated as a
function of the overall treatment length, and not after each
time unit individually.
• Stochastic life cycle lengths. The way to implement

this modification is by taking a range of life cycle lengths
and dividing the multiplying cells among this range. For
example, we may have 20% of the cells multiplying at time
18 (and 80% reaching age 19), then 30% multiplying at
age 19 (and 50% reaching age 20), and so on.
• Drugs that affect more than one phase of the life cycle.

This modification might be needed to simulate treatments
in which a cocktail of drugs is given, each drug affecting a
different phase of the life cycle. The implementation is by
defining the critical phase as a union of the two sensitive
phases of the life cycle.
• Radiotherapy. Sophisticated algorithms have been de-

veloped for optimizing radiotherapy planning in each indi-
vidual dosing. Here, the goal is to improve dose distribution
homogeneity within the whole treated organ (Mihai 2005),
or to find a compromise between the contradicting goals
of delivering a sufficiently high dose to the target volume
while widely sparing critical structures (Scherrer 2005).
The search for such a compromise requires the computa-
tion of several plans, which mathematically means solv-
ing several optimization problems. In the case of intensity
modulated radiotherapy (IMRT), these problems are large
scale, hence the accumulated computational expense is very
high. Mathematical models for ionizing radiation therapy,
applied to multicellular populations whose cells have time-
dependent radio sensitivity have been studied (see, for
example, Chen et al. 1995 and Hlatky et al. 1994). How-
ever, methods for optimizing multiple dosing schedules in
radiotherapy, applied over extended periods of time, are yet
to be developed. An approach similar to the one described
above with respect to cell-cycle specific chemotherapy can
be adopted with respect to optimal regimens of ionizing
radiation.

Our work concerns the selection of an optimal drug
treatment by applying a new heuristic optimization method
to the system of biomathematical models representing a
cancer patient. This method is more elaborate and more
realistic than the relatively simple one of maximizing effi-
cacy-toxicity ratio, suggested in Agur (1986) and Agur
et al. (1992).
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Currently, drugs are developed to maximize the ratio of
efficacy to toxicity, with the objective of improving over a
“gold standard” set by the best drug in the market. The eval-
uation of a new drug is done by trial-and-error clinical test-
ing and a retrospective evaluation of its efficacy and toxicity.
Drug protocols that are authorized to be used by the treating
physicians are those which are shown by the drug developer
to satisfy the criteria of better efficacy and less or equal tox-
icity than the gold standard. The heuristics proposed here
can be further refined and used in conjunction with clini-
cally validated detailed mathematical models that accurately
simulate the dynamics of key biological and pathological
processes in a patient undergoing specific drug therapy, such
as those in Skomorovski et al. (2003). The method presented
in this paper will hopefully help to replace the prevailing
trial-and-error paradigm by predictions-directed trials.

Appendix

Table 3. Comparison between neighborhood types B and C.

Neighborhood B C B C

Instance Fitness Iteration Fitness Iteration Fitness Iteration Fitness Iteration

Reduction factor = 0�25 Reduction factor = 0�50
P1 7.582802 3,120 7.588316 2,630 7.588316 3�582 7.588316 3�886
P2 6.739438 4,411 6.749344 4,630 6.749344 4�981 6.749344 4�984
P3 6.965311 1,882 7.204986 3,872 7.007004 5�970 7.204986 5�539
P4 4.460903 3,295 4.467657 2,963 4.467657 4�137 4.188200 3�297
P5 7.620466 2,667 7.620466 3,005 7.302219 4�845 7.620466 3�460

Reduction factor = 0�70 Reduction factor = 0�85
P1 7.588316 6,209 7.588316 6,073 7.582802 7�578 7.588316 10�307
P2 6.738903 4,951 6.716496 4,912 6.748282 5�672 6.715153 6�758
P3 7.204418 3,735 7.080932 9,020 7.204080 6�450 7.133704 4�342
P4 4.467657 5,411 4.467657 4,893 4.408935 2�542 4.467657 8�685
P5 7.620466 5,803 7.620466 5,590 7.620466 12�009 7.620466 12�466

Table 4. TA—Comparison of the reduction factors.

Reduction factor

0.05 0.10 0.15 0.25

Instance Fitness Iteration Fitness Iteration Fitness Iteration Fitness Iteration

P1 7.588316 2,152 7.588316 2,204 7.588316 2,206 7.588316 2�630
P2 6.739438 3,231 6.737697 3,370 6.749344 4,148 6.749344 4�630
P3 7.204986 2,659 7.204986 2,973 7.204986 3,030 7.204986 3�872
P4 4.460903 2,468 4.467657 2,581 4.467657 2,737 4.467657 2�963
P5 7.620466 2,177 7.620466 2,151 7.620466 3,005 7.620466 12�466

0.35 0.50 0.70 0.85

Fitness Iteration Fitness Iteration Fitness Iteration Fitness Iteration

P1 7.588316 3,103 7.588316 3,886 7.588316 6,073 7.588316 10�307
P2 6.736225 3,669 6.749344 4,984 6.716496 4,912 6.715153 6�758
P3 7.080932 4,334 7.204986 5,539 7.080932 9,020 7.133704 4�342
P4 4.467657 3,020 4.188200 3,297 4.467657 4,893 4.467657 8�685
P5 7.620466 3,083 7.620466 3,460 7.620466 5,590 7.620466 12�466

In this paper, we have introduced a general approach for
determining chemotherapy schedules, which can satisfy a
realistically complex medical optimization problem. Elabo-
rate mathematical models of the pathology and physiology
at hand have been developed to enable precise quantita-
tive predictions and, hence, to implement this approach in
the clinic. A first step in this direction was carried out
and the realism of these models has been verified in the
pre-clinical setting (e.g., Arakelyan et al. 2002, 2005; Sko-
morovski et al. 2003; Vainstein et al. 2005). Subsequently,
it is suggested that replacement of a conventional breast
cancer treatment schedule, which involves 100 mg/m2 of
Taxotere applied every three weeks, by a weekly dosing of
30 mg/m2 of Taxotere, can accelerate tumor shrinkage and
significantly reduce its chemotherapy-induced neutropenia
in specific patients (Arakelyan et al.).
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Table 5. TA results for several reduction factors on P2.

Reduction factor Fitness Iterations

0.05 6.739438 3�231
0.10 6.737697 3�370
0.15 6.749344 4�148
0.20 6.736225 4�408
0.25 6.749344 4�630
0.30 6.749344 5�402
0.35 6.736225 3�669
0.40 6.749344 4�880
0.45 6.723167 5�700
0.50 6.749344 4�984
0.55 6.724916 3�589
0.60 6.722980 3�930
0.65 6.726003 5�694
0.70 6.716496 4�912
0.75 6.739790 4�406
0.80 6.726003 9�154
0.85 6.715153 6�758
0.90 6.749257 16�532
0.95 6.661870 5�053

Table 6. Testing for the effect of M and & on the fitness.

d & M = 1�000 M = 1�500 M = 2�000 M = 2�500 M = 3�000 M = 3�500 M = 4�000 M = 4�500

12 0.06 6.735475 6.698936 6.723886 6.722915 6.723464 6.724006 6.748339 6.722383
12 0.08 6.709258 6.731380 6.745951 6.730176 6.749314 6.724008 6.748559 6.731344
12 0.10 6.736221 6.736100 6.737187 6.745504 6.736045 6.749315 6.745971 6.737512
16 0.06 4.642803 6.749279 6.735410 6.738925 6.734566 6.748559 6.736127 6.737365
16 0.08 6.688278 6.734002 6.659443 6.748367 6.737780 6.746024 6.738289 6.745430
16 0.10 6.722203 6.619663 6.738241 6.739790 6.715841 6.748017 6.745286 6.747786
20 0.06 6.716185 6.668162 6.736395 6.715796 6.722136 6.749344 6.721400 6.732031
20 0.08 6.674582 6.723643 6.615793 6.749257 6.745426 6.733498 6.749257 6.748339
20 0.10 4.643348 6.652962 6.730593 6.734861 6.738684 6.746253 6.742629 6.723137
24 0.06 4.613020 6.676059 6.748357 6.749324 6.738931 6.739438 6.723239 6.748394
24 0.08 4.541359 6.735941 6.618395 6.737556 6.749344 6.728144 6.735289 6.736157
24 0.10 4.623247 4.661262 6.735617 6.749344 6.736157 6.704856 6.723325 6.737697

Table 7. Testing for the effect of d on the fitness.

d & M = 1�000 M = 1�500 M = 2�000 M = 2�500 M = 3�000 M = 3�500 M = 4�000 M = 4�500

12 0.06 6.735475 6.698936 6.723886 6.722915 6.723464 6.724006 6.748339 6.722383
16 0.06 4.642803 6.749279 6.735410 6.738925 6.734566 6.748559 6.736127 6.737365
20 0.06 6.716185 6.668162 6.736395 6.715796 6.722136 6.749344 6.721400 6.732031
24 0.06 4.613020 6.676059 6.748357 6.749324 6.738931 6.739438 6.723239 6.748394
12 0.08 6.709258 6.731380 6.745951 6.730176 6.749314 6.724008 6.748559 6.731344
16 0.08 6.688278 6.734002 6.659443 6.748367 6.737780 6.746024 6.738289 6.745430
20 0.08 6.674582 6.723643 6.615793 6.749257 6.745426 6.733498 6.749257 6.748339
24 0.08 4.541359 6.735941 6.618395 6.737556 6.749344 6.728144 6.735289 6.736157
12 0.10 6.736221 6.736100 6.737187 6.745504 6.736045 6.749315 6.745971 6.737512
16 0.10 6.722203 6.619663 6.738241 6.739790 6.715841 6.748017 6.745286 6.747786
20 0.10 4.643348 6.652962 6.730593 6.734861 6.738684 6.746253 6.742629 6.723137
24 0.10 4.623247 4.661262 6.735617 6.749344 6.736157 6.704856 6.723325 6.737697
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Table 8. Comparison of the OBA parameters.

M 1,500 1,500 1,500 1,500 2,000 2,000 2,000 2,000
d 6 6 10 10 7 7 12 12
& 0.06 0.08 0.06 0.08 0.06 0.08 0.06 0.08

P1 7.582802 7.582802 7.582802 7.582802 7.582802 7.582802 7.582802 7.582802
P2 6.744762 6.694140 6.735837 6.734866 6.699061 6.748134 6.723886 6.745951
P3 7.187378 7.173682 7.199592 7.162495 7.175924 7.171024 7.168155 7.172284
P4 4.458408 4.446000 4.467657 4.461132 4.464170 4.440691 4.467657 4.467657
P5 7.611470 7.601449 7.614556 7.597960 7.604000 7.615119 7.620466 7.608343

M 3,000 3,000 3,000 3,000 3,500 3,500 3,500 3,500
d 10 10 12 12 12 12 20 20
& 0.06 0.09 0.06 0.09 0.08 0.1 0.08 0.1

P1 7.588316 7.588316 7.582802 7.852802 7.582802 7.583802 7.588316 7.852802
P2 6.726542 6.746068 6.735837 6.737025 6.724008 6.749315 6.733498 6.724008
P3 7.168155 7.172410 7.199592 7.204080 7.204720 7.202552 7.204986 7.204720
P4 4.464170 4.463534 4.461972 4.467657 4.467657 4.467657 4.467657 4.467657
P5 7.615999 7.611483 7.620466 7.608449 7.610704 7.611151 7.615119 7.610704

M 3,500 4,000 4,000 4,000 4,000 6,000 6,000
d 20 12 12 20 20 12 20
& 0.06 0.06 0.08 0.06 0.08 0.06 0.08

P1 7.584845 7.582802 7.582802 7.588316 7.587222 7.582802 7.587222
P2 6.749344 6.748339 6.748559 6.721400 6.749257 6.732992 6.748282
P3 7.203444 7.204986 7.202552 7.200144 7.203189 7.203189 7.201053
P4 4.467657 4.467657 4.467657 4.467657 4.467657 4.467657 4.467657
P5 7.620466 7.609602 7.612834 7.620466 7.620466 7.620466 7.618140
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