Operations Research Letters 9 (1990) 315-318
North-Holland

September 1990

AN ALGORITHM FOR COMPUTING MAXIMUM SOLUTION BASES

Refael HASSIN

Statistics Department, Tel-Aviv University, Tel-Aviv 69978, Israel

Received February 1989
Revised July 1989

We consider a family of problems defined on a common solution space. A problem is characterized by a subset of the solution
space whose elements are defined to be feasible for that problem. Each solution is associated with a cost. Solving a problem
means finding a feasible solution of minimum cost. It is assumed that an algorithm for solving any single problem is available.
We show how to solve all of the problems in the family by selecting and solving a small subset of them.

computational complexity * combinatorics * flow algorithms

1. Introduction

This note 1s concerned with the solution of a set
of problems defined on a common solution space.
One can imagine a set of candidate solutions such
as a set of points in R". Each solution is associ-
ated with a cost. There is also a set of problems
and each of them is associated with a set of
feasible solutions. The value of a problem is de-
fined to be the minimum cost of a feasible solu-
tion to that problem. Solutions with ‘low’ cost will
typically be optimal for several problems. For
example, a solution with a minimum cost among
all candidate solutions will be optimal for all of
the problems for which it is feasible.

In another paper (Hassin [8]) the author stated
a theorem characterizing the number of distinct
values such a set of problems may possess. The
theorem also supplies a compact representation of
these solution values, called a maximum solution
basis, that allows to compute easily the value of
any of the problems. However, to construct this
representation one may have to solve all of the
problems. This can be a time consuming task as
the problems may be hard to solve.

The first special case of the above setting that
appears in the literature is the multiterminal cut
problem that was solved by Gomory and Hu [3].
They characterized the maximum solution bases
for the set of minimum cut problems with differ-
ent source-sink pairs, defined on undirected net-

works with edge capacities. They also showed how
to construct a maximum solution basis by solving
a number of problems equal to the upper bound
on the number of distinct solution values the
problems may have. Gusfield [S] has shown how
to sumplify the algorithm by avoiding node con-
tractions. Gomory and Hu’s results were extended
by Granot and Hassin [4] and Gusfield and Naor
[7] to networks with both edge and node capacities
and by Gusfield and Naor [6] to a compact repre-
sentation of all of the minimum cuts for each pair
of elements. Hassin [8] extended these results to
cuts of arbitrary costs, but with a procedure that
requires to solve O(n log n) problems where n is
an upper bound on the number of distinct solu-
tion values.

In this note it 1s shown how to construct a
maximum solution basis by solving a number of
problems that is at most twice the size of the
upper bound. This procedure applies to any case
that fits into the general model.

2. Solution bases

Let ¢ be a real valued function on a set X. Let
X,, 1 € S, be nonempty subsets of X, where S 1s
an index set with finite cardinality. Define the cost
(or value) of X; by

c,;=min{c(x)|x€ X, }.

0167-6377,/90/33.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland) 315



Volume 9, Number 5

Let M(S) be the number of distinct values of ¢,
ieS Forxe X, let a,(x)=11if x€ X, (le, x is
i-feasible) and a;(x) = 0 otherwise.

For our purpose the set X is the set of candi-
date solutions to a family of problems, and X, is
the set of i-feasible solutions, i € S. The binary
matrix A = (a,(x)), called the solution matrix,
defines the feasibility relations, and the cost ¢; is
the minimum cost of an i-feasible solution (i.e.,
the cost of an i-optimal solution).

Call a set S’ C S dependent if there exists S” C
S’ such that ¥, gva,(x)=0 (mod2) Vxe X
Otherwise S’ is independent. Let r( A) be the rank
of A in the binary field, i.e., the maximum cardi-
nality of an independent subset of S.

Theorem 2.1 (Hassin [8]). M(S) <r(A).

Let S"C S correspond to a maximal set of
independent rows of A; then we call S” a solution
basis. The cardinality of each solution basis 1is
equal to r(A4). Define the value of a solution basis
S’ as X,c5c;. A maximum solution basis 1s a
solution basis with maximum value.

Theorem 2.2 (Hassin [8]). Let S’ C S be a maxi-
mum solution basis. Let k € S\S’, andlet S”" Cc S’
satisfy a,(x) =2, cg»a,(x) (mod 2) Vx € X. Then
¢, =min{c,|i€S"} and there exists p€ S”" and
y € X, N X, such that c(y) = ¢,.

In view of Theorem 2.2, a maximum solution
basis contains all the information needed to com-
pute ¢, for every k€ S. It also gives clues to
locate a k-optimal solution. As a matter of fact, if
the values c(x) are distinct for all x € X then this
solution is the unique element y € X satisfying
c(y)=min{c i €S”}. If these values are not
distinct then any solution y € X with cost ¢,
which has an odd column sum in the rows of 4
corresponding to S” can be shown to be k-opti-
mal.

When all of the values ¢, i € S, are given, a
maximum solution basis can be computed by
applying the greedy algorithm. However, gener-
ating all of the ¢, values by solving all of the
problems i € § may be a time consuming task and
we are interested in a procedure that will guaran-
tee that a maximum solution basis will be found
by solving just a portion of these problems.

316

OPERATIONS RESEARCH LETTERS

September 1990

3. Computing maximum solution bases

We start by making the following simplifying
assumption:

Assumption 3.1. Distinct solutions have distinct
costs.

We note that if the above assumption does not
initially hold one can perturb the costs or rank
solutions with identical costs in some way to com-
ply with the requirement of the assumption. (See
for example, Eaves and Rothblum [2].)

Our algorithm consists of two parts. In the first
an initial set of solutions, X', is generated. Each
member of this set is optimal for some problem in
S. The problems to be solved are chosen sequen-
tially so that none of the previously generated
solutions is feasible for the current problem. This
guarantees a new optimal solution in each itera-
tion. This initialization algorithm terminates when
X’ is a cover of S in the sense of the following
definition:

Definition 3.2. A subset X’ C X is said to cover a
subset S’ C S if for every j€S’, X’ contains a
j-feasible solution.

The second, and main, part of the algorithm
applies a greedy algorithm to compute a maxi-
mum solution basis of 4. The greedy algorithm
finds in each iteration a problem of maximum
value whose row in 4 can be added to the current
set of rows and maintain independence of this set.

Algorithm 3.3.
Input: A.
Output: X' C X [a cover of S].
331: Set X' =¢, S"=S.
3.3.2: If S =4, stop. Else, choose i € S’.
3.3.3: Solve i to obtain an i-optimal solution X.
33.4: Set X< XU {X}.
Set '« S'\{j€ S |a;(%)=1}.
Go to 3.3.2.

Algorithm 3.4
Input: A, X' C X [a cover of S].
Output: T [a maximum solution basis of A4].
341: Set T=4#.
3.4.2: Set
"={jEeS|TU{j} isindependent }.

If S" =4, stop.



Volume 9, Number 5

3.4.3: Foreach j€ S’ let
¢;=min{c(x)|x€X’, a,(x)=1}.
Let i € S’ satisfy
¢;=max{c/ | jE€S}.

3.4.4: Solve i to obtain an i-optimal solution x.
Case (1). If £ & X', set
X <X u{z}
and go to 3.4.3.
Case (ii). If £ € X', set
T« Tu{i}
and go to 3.4.2.

Theorem 3.5. Algorithm 3.4 generates a maximum
solution basis.

Proof. The set of solution bases is exactly the set
of bases of the binary matroid defined by A.
Hence the greedy algorithm computes an optimal
solution. To show that Algorithm 3.4 is indeed the
greedy algorithm we must prove that in Case (i1)
of 3.4.4,

¢,;=max{c,|jE€S"}.

Case (ii)) obtains when £ € X’. Clearly, for all
JES’, ¢/ = ¢, so that

c;=c(X)=c/ =max{c/|j€S"}
>max{c;|j€S}.

Since i € S’, equality holds, as required. O

Remark 3.6. The total number of problems solved
in 3.3.3 and 3.4.4 is at most M(S) + r(A), since
each problem either has a distinct optimal solu-
tion that is used to augment X’ (3.3.3 and Case (i)
of 3.4.4), or the problem is used to augment the
independent set 7" (Case (ii) of 3.4.4). By Assump-
tion 3.1, the first case can occur at most M(S)
times, and by the definition of r( 4), the latter can
occur at most r(A) times. By Theorem 2.1, this
number is at most 2r(A4).

4. Concluding remarks

Algorithms 3.3 and 3.4 require O(|S|r(A))
operations to execute 3.3.4 and 3.4.3 (note that
after the first time 3.4.3 is executed, cj’- is revised

OPERATIONS RESEARCH LETTERS

September 1990

by a single comparison to ¢(X) whenever a,(X) =
1). Most of the effort may be devoted to solve the
O(r(A)) single problems in 3.3.3 and 3.4.4, and to
construct the sets S’ in 3.4.2. Our results are
especially useful when the latter effort is small
relative to the savings resulting from the reduction
in the number of single problems to be solved.

As a result of this observation, we are inter-
ested in cases where the matrix 4 need not be
represented explicitly, and the sets S’ in 3.4.2 can
be constructed efficiently. Consider, as an exam-
ple, the multiterminal cut problem. Here, a set
N={1,...,n)} is given with a cost c(M, M) for
every cut (M, M) of N. The i—j problem is to
find the cut of minimum cost among all cuts
separating / and j. An explicit representation of
A in this case has a dimension (5)(2" "' — 1). How-
ever, the following theorem can be used to avoid
this explicit representation.

Theorem 4.1 (Hassin [8]). Let G=(N, E) be a
complete graph with a node set N. Associate with
edge (i, j) of G the i—j cut problem. A set of
problems R C S is independent if and only if the
edges of G associated with R do not contain a cycle.

It follows from the theorem that in this in-
stance the sets S’ of 3.4.2 are easily constructed in
polynomial time, without explicitly scanning A.
The number of problems to be solved 1s O(n)
improving the O(n log n) bound of Hassin [8].
This may be a considerable saving in computation
time, especially when each problem is NP-hard
(for example, in the max-cut case). Another exam-
ple were the independent sets are compactly char-
acterized 1s mentioned in Hassin [9].

Finally, we note that recent papers by Cheng
and Hu [1,10] show how to further reduce the
number of problems to be solved in a multitermi-
nal cut problem with arbitrary costs to n — 1.

References

[1] CK. Cheng and T.C. Hu, “Maximum concurrent flow
and minimum ratio cut”, Technical Report Number
CS88-141, Department of Computer Science and En-
gineering, University of California, San Diego, CA, De-
cember 1988.

[2] B.C. Eaves and U.G. Rothblum, “A theory on extending
algorithms for parametric problems”, SOL 85-13, Depart-
ment of Operations Research, Stanford University.

317



Volume 9, Number 5 OPERATIONS RESEARCH LETTERS September 1990

[3] RE. Gomory and T.C. Hu, “Multi-terminal network alized cut trees”, Technical Report CSE-89-5, Computer
flows”, J. SIAM 9, 551-570 (1961). Science Division, University of California, Davis, CA,
[4] F. Granot and R. Hassin, ‘“Multi-terminal maximum flows 1989.
in node-capacitated networks”, Discrete Appl. Math. 13, [8] R. Hassin, “Solution bases of multiterminal cut problems”,
157-163 (1986). Math. Oper. Res. 13, 535-542 (1988).
[5] D. Gusfield, “Very simple-methods for all pairs network [9] R. Hassin, “Multiterminal xcut problems”, Presented in
flow analysis”, SIAM J. Comput. 19, 143-155 (1989). the NATO/ARW on Topological Network Design, June
[6] D. Gusfield and D. Naor, “Extracting maximal informa- 1989, to appear in Ann. Oper. Res.
tion on sets of minimum cuts” (Extended abstract), Com- [10] CK. Cheng and T.C. Hu, “Ancestor tree for arbitrary
puter Science Division, University of California, Davis, multi-terminal cut functions”, to appear in Ann. Oper.
October 1988. Res.

[7] D. Gusfield and D. Naor, “Efficient algorithms for gener-

318



