
Series-parallel orientations preserving the cycle-radius

Nili Guttmann-Beck∗ Refael Hassin†

June 22, 2011

Abstract

Let G be an undirected 2-edge connected graph with nonnegative edge weights and a dis-
tinguished vertex z. For every node consider a shortest cycle containing this node and z in G.
The cycle-radius of G is the maximum length of a cycle in this set. Let H be a directed graph
obtained by directing the edges of G. The cycle-radius of H is similarly defined except that
cycles are replaced by directed closed walks. We prove that there exists for every nonnegative
edge weight function an orientation H of G whose cycle-radius equals that of G if and only if G

is series-parallel.

1 Introduction

Orienting an edge weighted undirected graph (or a multigraph) G = (V,E) means replacing each
of its edges e = {u, v} by a directed arc (u, v) or (v, u) (in this paper edges are undirected and arcs
are directed). We denote both the orientation and the resulting directed graph by H.

Let G = (V,E) be a 2-edge connected undirected (multi) graph, with non-negative edge weights
and a distinguished node z ∈ V . For every node v ∈ V \ {z} find a shortest (with respect to its
total edge weight) undirected cycle containing this node and z, and define the cycle-radius of G with
respect to z, CRz(G), as the maximum length of these cycles. Similarly, for every node v ∈ V \ {z}
find a shortest closed walk containing this node and z in H, and define the cycle-radius of the
orientation H with respect to z, CRz(H), as the maximal length of these walks. To simplify the
exposition we often refer in the rest of the paper to closed walks simply as cycles. We refer to cycles
with no repeated nodes as simple cycles.

This paper focuses on series-parallel graphs, i.e., graphs that do not contain a K4 subdivision [6].
These are also the graphs whose tree-width is at most 2. Other characterizations of series-parallel
graphs are also available, for example, as in our paper, the characterization by Bein, Brucker and
Tamir [3] requires that a certain property holds for arbitrary selection of edge weights: An acyclic
multigraph with a single source and a single sink is series-parallel if and only if for arbitrary linear
cost functions and arbitrary capacities the corresponding minimum cost flow problem can be solved
by a greedy algorithm.

Our main result is the following Theorem:

∗Department of Computer Science, The Academic College of Tel-Aviv Yaffo, Yaffo, Israel. Email: beck-

nili@mta.ac.il
†Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel. Email: has-

sin@post.tau.ac.il

1

z

v1

v3v2 x

z

v1

v3v2 x

Figure 1: A proper subdivision of K4.

Theorem 1.1 Suppose that G = (V,E) is a 2-edge connected undirected graph with |V | > 4. G is
series-parallel if and only if for arbitrary nonnegative edge weights and every z ∈ V there exists an
orientation H satisfying CRz(H) = CRz(G).

A proper subdivision of K4 is any graph derived from a complete graph K4 by a sequence of
at least one edge subdivision - see Figure 1-left. Note that an undirected graph with more than
four nodes is series-parallel if and only if it does not contain a proper subdivision of K4. We first
show that in this case there is a weight function w for which no such orientation exists. We give all
subdividing paths total length one except for one path which contains an inner node, denoted as x,
to which we assign total length of two. Other edges are of length three. If the cycle containing z and
x is oriented (see Figure 1-right), then it is not possible to complete the orientation so that both
the cycle containing z,v1 and v2, and the cycle containing z,v1 and v3, are oriented into directed
cycles. The other direction of the proof follows from Theorem 2.1 which we state and prove in
Section 2.

For every pair of nodes in G, mark the shortest (not necessarily simple) cycle that contains
these points and define the cycle-diameter, CD(G), of a graph as the length of the longest, over
all node pairs, such undirected cycle. Similarly, for every pair of nodes in H, mark the shortest
closed walk containing these nodes, and define the cycle-diameter CD(H) of the orientation H as
the longest of these walks. We note that a walk may contain repetitions of arcs. As an illustration
to these definitions, consider the graph G in Figure 2 (left), where all edges have unit weights. In
this example, for every pair of nodes there is a common cycle with four edges, and CD(G) = 4. For
the orientation H shown in Figure 2 (right) CD(H) = 8 is determined by (u, x, w, y, v, x, w, y, u),
which is the shortest directed closed walk containing v and u.

Clearly, every orientation H satisfies that CD(H) ≤ 2CRz(H) for every z, because we can build
a closed walk between u and v by combining the closed walk connecting v and z with the closed
walk connecting u and z. Also, by definition, CRz(G) ≤ CD(G) for every z ∈ V .

The cycle-diameter of a graph is our new measure for closeness of the nodes of the graph to
each other. The directed cycle-diameter can serve as a measure for the quality of an orientation.

An interesting question is to bound maxG∈G{ρ(G)} for various classes G of graphs, where ρ(G) =

min
{

CD(H)
CD(G) : H is an orientation of G

}

. A by-product of such a bound is that an algorithm

that computes an orientation with minimum, or approximate, cycle-diameter can also be used to
compute an orientation with a small diameter. We now explain this point.

The diameter of a graph (digraph) is the maximum over all (ordered) node pairs u, v, of the

2

•

• • •

•

•

• •

•

•

u

wy

v

x

Figure 2: G and H.

length of the shortest u-v (u→v) path. Denote by D(G) and D(H) the diameters of G and H,
respectively.

Denote by D∗(G) the smallest possible diameter of an orientation of G. The orientation which
gives D∗(G) contains a u→v path and a v→u path for every u, v ∈ V . Ignoring directions, the
union of the shortest such paths contains a cycle in G that contains both u and v. Thus, the length
of this cycle is at most twice the diameter of the oriented graph, giving that CD(G) ≤ 2D∗(G).
Suppose that, for every G ∈ G, we know how to compute an orientation H = H(G) such that
CD(H)
CD(G) ≤ ρ. Then D(H) satisfies D(H) ≤ CD(H) ≤ ρCD(G) ≤ 2ρD∗(G).

In this paper we prove that ρ = 2 for series-parallel graphs (see Theorem 3.2 below). This
bound is tight as can be seen from the series-parallel graph shown in Figure 2.

In [11] we present a proof (associated with a polynomial time algorithm) that ρ ≤ 810 for planar
graphs. The bound can clearly be reduced, and we conjecture that the real value is quite small.
However, our proof is very tedious and too long for a journal paper.

There are two common approaches in the literature to define a good orientation. One approach
requires that the orientation maintains high connectivity (see [10, 13, 16, 17]). The other approach
requires short directed diameter. Chvátal and Thomassen [5] show that there exists an orientation
such that D(H) ≤ 2D(G)2+2D(G). On the other hand, there are graphs where for every orientation
D(H) ≥ 1

4D(G)2 +D(G). In addition, they show that finding a minimum diameter orientation of an
undirected graph G is NP-hard, and even deciding whether a graph admits an orientation H with
D(H) ≤ 2 is NP-complete. Koh and Tay [14] present a survey on the minimum directed diameter
in restricted classes of graphs (see also [2, 9, 8]). Burkard et al [4] consider minimizing the sum
of shortest path lengths between node pairs in the orientation. Medvedovsky, Bafna, Zwick and
Sharan [15] (also in [1, 12]) maximize the number of pairs from a given set that admit a directed
path in the oriented graph. Eggemann and Noble [7] describe an algorithm that decides if a planar
graph G has an orientation with diameter at most l using tree decomposition of planar graphs.
Yen [18] investigates a version of the problem where each node x has a cost C(x), for every node
we add the sum of length of the edges leaving this node, and we which to minimize this size for all
the nodes of the graph.

A naive approach for orienting a series-parallel graph and obtain a small cycle-diameter follows
the construction of the graph from a cycle. Direct the initial cycle in an arbitrary orientation,
then when an edge is replaced by two edges in series direct them in the same orientation as the
edge they replace, and when an edge is added in parallel direct it also in the same orientation.

3

z v2

v3

v4

Figure 3: Naive orientation.

This approach may fail even for the simple example of a graph consisting of three parallel edges
(with one end-node denoted as z), two of them of zero weight and one having unit weight. If the
initial cycle contains the unit length edge, then the two zero length edges may end up with the
same orientation and CRz(H) = 1, whereas the optimal orientation has CRz(H) = 0. A possible
conclusion of this example might be that it is worth starting with a short cycle. The example in
Figure 3 shows that even this approach can fail. Here the weight of the edge {z, v3} is one and the
other edges have zero weight. We start by orienting the parallel edges {z, v2} in opposite direction.
Then the other edges are oriented according to (z, v1) implying again CRz(H) = 1, whereas the
optimal orientation has CRz(H) = 0.

The next section completes the proof of Theorem 1.1 by constructing (in polynomial time) an
orientation with the same cycle-radius.

2 Cycle-radius preserving orientations

Let G = (V,E) be a 2-edge connected undirected series-parallel graph, with non-negative edge
weights and a distinguished node z ∈ V . For every node v ∈ V \ {z} let Cz(v) be a shortest
undirected cycle containing v and z. Denote Cz = {Cz(v) : v ∈ V }, and let GCz

be the graph
induced by the edges in Cz. Without loss of generality we assume that all the cycles in Cz are of
different lengths.

In this section we constructively prove the following theorem:

Theorem 2.1 If GCz
is series-parallel then there is an orientation H such that every cycle C ∈ Cz

is a directed cycle in H.

We note that if G is series-parallel then GCz
is also series-parallel, hence Theorem 1.1 is a

corollary of Theorem 2.1.

Definition 2.2 Every cycle C ∈ Cz consists of a sequence of simple cycles, say Cv1
, . . . , Cvk

, where
z ∈ Cv1

, Cvi
∩ Cvi+1

= {vi} is a cut-node of C, for i = 1, . . . , k − 1, and the cycles are otherwise
vertex-disjoint. Our algorithm orients these cycles by increasing index. It works recursively on
subgraphs with new distinguished nodes called anchors which are cut nodes of cycles in Cz. At

4

any stage of the algorithm the anchor which applies to the cycle is the unique cut node vi such
that Cv1

, . . . , Cvi−1
have already been oriented, Ci is either undirected or partially directed, and

Ci+1, . . . , Ck are still undirected. Initially the anchor is z and the subgraph is GCz
.

We denote by V (G′) and E(G′) the node and edge sets of a subgraph G′, respectively, and P \Q

as the subgraph induced by E(P) \ E(Q), for subgraphs P and Q.

Definition 2.3 Let v1, v2, . . . , vl be the neighbors of z in GCz
. For every i, j ∈ {1, . . . , l}, i 6= j

define A{i,j} = {C ∈ Cz : C contains the path (vi, z, vj)}, and let C{i,j} be a shortest cycle in A{i,j}.
Define F (z), the flower of z, as F (z) = {C{i,j}|A{i,j} 6= ∅}.

The algorithm first orients the cycles in F (z), next all the simple cycles in Cz, and then it finds
new anchors with their relevant subgraphs, and recursively orients these subgraphs.

Definition 2.4 Given F (z), define Tf (z) as the graph whose node set consists of the neighbors
{v1, v2, . . . , vl} of z in GCz

, and contains an edge between vi and vj if A{i,j} 6= ∅. Consider for
example the flower F (z) in Figure 4-left and Tf (z) in Figure 4-right.

z

v2 v3
v1

v4

v5

v6

v2

v3

v1

v4

v5

v6

C{1,2} C{2,3}
C{3,4}

C{5,6}

C{2,5}

Figure 4: Example for Definition 2.4

Lemma 2.5 Tf (z) is a forest.

Proof: If Tf (z) contains a cycle (as in Figure 5-right), then this cycle corresponds to cycles in
GCz

which intersect each other, (see Figure 5 -left). Thus, a K4 subdivision has been created,
contradicting the assumption that GCz

is series-parallel.

Remark 2.6 The forest Tf (z) may contain more than one component. Consider for example the
graph in Figure 6-left. The corresponding Tf (z) is shown in Figure 6-right, a forest containing two
components.

5

z

v1

v3

v2v1

v3

v2

Figure 5: Example for Lemma 2.5

z

v2 v3
v1

v5

v2 v3
v1

v4

v5

v4

Figure 6: Example for Remark 2.6

Orient flower
input

F (z) - the flower of z.
At most one cycle in every connected component of Tf (z) is partially oriented.
returns

An orientation of F (z).
begin

while (there exists a cycle in F (z) which is not completely oriented)
while (there exists a cycle C ∈ F (z) which is partially oriented)

Complete the orientation of C.
end while

Arbitrarily choose a cycle C ∈ F (z) and orient it in an arbitrary direction.
end while

end Orient flower

Figure 7: Orienting a flower

6

Algorithm Orient flower (see Figure 7) orients the cycles in F (z). By Lemma 2.5 no contradic-
tion is created. For example applying Algorithm Orient flower on the flower in Figure 4-left yields
the directed graph in Figure 8.

At the beginning all the cycles are completely undirected, so one of the cycles is chosen, for
example C{2,3}. This cycle is oriented (z → v3 → v2 → z). Now the cycles C{1,2},C{3,4} and C{2,5}

are partially oriented, so one of them is chosen for example C{3,4}. Since the edge (z → v3) is
already directed, the orientation of the cycle is (z → v3 → v4 → z). The cycles C{1,2} and C{2,5}

are partially oriented, so one of them is chosen for example C{1,2}. It is oriented (z → v1 → v2 → z)
to agree with the edge (v2 → z). The only cycle which is partially oriented is C{2,5}, so it is chosen
and oriented (z → v5 → v2 → z) to agree with the edge (v2 → z). Finally C{5,6} is partially
oriented and it is oriented (z → v5 → v6 → z) to agree with the edge (z → v5).

z

v2
v3

v1

v4

v5

v6

C{1,2} C{2,3}
C{3,4}

C{5,6}

C{2,5}

Figure 8: Example for Algorithm Orient flower

Later in Lemma 2.14 we will show that in every connected component of Tf (z) at most one cycle
is partially oriented. Algorithm Orient by anchor (see Figure 9) calls Algorithm Orient flower. It
orients all the simple cycles in GCz

and recursively orients all the other cycles in GCz
. Algorithm

Orient by anchor is demonstrated in Figure 10. The graph GCz
is shown on the left side of the figure,

the anchor of this graph is the node z. The flower F (z) contains three cycles: (z, v5, v4, v3, v2, v1, z),
(z, v5, v16, z) and (z, v16, v17, z). In this example none of the flower’s cycles is partially oriented.
When Orient flower is activated the algorithm may choose to orient it (z → v5 → v4 → v3 →
v2 → v1 → z). Next, the orientation of the cycle (z → v5 → v16 → z) is completed, and last, the
orientation of the cycle z → v17 → v16 → z is completed.

Now Algorithm Orient by anchor may:

1. Choose the cycle (z, v5, v4, v3, v2, v7, v6, v1, z) and direct the path (v2 → v7 → v6 → v1) to
complete its orientation.

2. Choose the cycle (z, v5, v4, v12, v11, v9, v3, v2, v1, z) and direct the path (v4 → v12 → v11 →
v9 → v3 to complete its orientation.

3. Choose the cycle (z, v5, v4, v3, v2, v7, v8, v6, v1, z) and direct the path (v7 → v8 → v6) to
complete its orientation.

7

Orient by anchor
input

A distinguished anchor node z.
A set of cycles Cz (connecting every node in GCz

to z).
GCz

- an undirected (or mixed) series-parallel graph.
returns

An orientation of GCz
.

begin

Orient flower F (z).
for every (simple cycle C ∈ (Cz \ F (z))

Complete the orientation of C.
end for

SA := ∅. [This will be the set of new anchor nodes]
for every (cycle C ∈ Cz which is still not fully oriented)

Let v∗(C) be the anchor node of C (see Definition 2.2).
SA := SA ∪ {v∗(C)}.

end for

for every (v∗ ∈ SA)
Let SCv∗ := {Cv∗(u)|v∗ is the anchor node of Cz(u)}.
[Cv∗(u) is the shortest cycle containing u and v∗,
this cycle may contain few simple cycles].
Let Gv∗ be the graph induced by the union of the cycles in SCv∗ .
Orient by anchor (v∗, SCv∗ , Gv∗).

end for

end Orient by anchor

Figure 9: The orientation algorithm

8

4. Choose the cycle (z, v5, v4, v12, v11, v10, v9, v3, v2, v1, z) and direct the path (v11 → v10 → v9)
to complete its orientation.

We note that the cycles (v4, v12, v13, v4),(v4, v14, v13, v4) and (v4, v15, v14, v4) create a flower with
the anchor-node v4. The algorithm will call Orient by anchor on this subgraph (which contains in
this case just the flower). The flower contains one connected component with exactly one cycle
(v4, v12, v13, v4) which is partially oriented.

We know by Lemma 2.5 that no contradiction is created while orienting F (z). The next lemmas
prove that no contradiction is created for any simple cycle in GCz

.

v1

v2

v3 v4

z

v6

v7
v8

v9

v10

v11
v12

v1

v2

v3 v4

z

v6

v7
v8

v9

v10

v11
v12

v14

v15

v13v13

v14

v15

v5 v5

v16

v17

v16

v17

Figure 10: Example for Algorithm Orient By anchor

Lemma 2.7 For a cycle C ∈ A{i,j} \ {C{i,j}}:

• C{i,j} \C is a (not necessarily simple) path (or a cycle) with at most two nodes in C{i,j} ∩C.

• C \C{i,j} is a (not necessarily simple) path (or a cycle) with at most two nodes in C{i,j} ∩C.

Proof: Let v be a node satisfying C = Cz(v) (C is the shortest cycle containing v and z). We
prove the claim by contradiction. Suppose that C{i,j} \ C is not a path (in this case it contains
at least two disjoint paths). Let (P1, T, P2) be a subpath of C such that P1, P2 ⊆ C \ C{i,j} ,
T ⊆ C{i,j} ∩ C and v ∈ P1, z ∈ C{i,j} \ T , (see Figure 11).

Let Q1 (Q2) be the subpath of C{i,j} \ {z} between the end-points of P1 (P2). Without loss of
generality we can assume that C{i,j} was defined as the shortest cycle containing z and a node in
Q1. Since C = Cz(v), l(P2) < l(Q2). But then the cycle C{i,j} \Q2 ∪P2 is a cycle containing z and
the nodes in Q1, which is shorter then C{i,j}, contradicting the definition of C{i,j}.

9

v

P1 P2

zi j

T

Q1
Q2

Figure 11: Example for Lemma 2.7, P1 and P2 in C \ C{i,j}, Q1 and Q2 in C{i,j} \ C

Since C{i,j} \C and C{i,j}∩C are both paths, it follows that C \C{i,j} is also a path with the same
ends as C{i,j} \ C.

Definition 2.8 Given two (not necessarily distinct) nodes u, v ∈ V (C{i,j}), define Su,v = {C ∈
A{i,j} : C \C{i,j} is a u-v path (or a u-u cycle if u = v)} (for example in Figure 10 Cz(v10) ∈ Sv3,v4

).

Observation 2.9 {Su,v : u, v ∈ C{i,j}} is a partition of A{i,j} \ C{i,j}.

Lemma 2.10 If C ′ ∈ A{i,j} and C ′′ ∈ A{a,b} for {i, j} 6= {a, b} then E(C ′\C{i,j})∩E(C ′′\C{a,b}) =
∅.

Proof: Suppose e ∈ E(C ′ \C{i,j})∩E(C ′′ \C{a,b}) as in Figure 12-right. Then a K4 subdivision is
created with nodes {x, y, i, j}. In Figure 12-left we present the special case |{i, j} ∩ {a, b}| = 1.

C{i,j}i
C{a,b}

C ′

C ′′
C ′

C ′′C{i,j}i j

z

a

b

x

y

C{a,b}

Figure 12: Examples for Lemma 2.10

The first loop of Algorithm Orient by anchor orients all the simple cycles is Cz. Lemma 2.13
proves that no contradiction is created when orienting these cycles. We first need the next two
lemmas.

Lemma 2.11 Suppose C ′, C ′′ ∈ A{i,j}, with V (C{i,j}\C ′)∩V (C{i,j}\C ′′) = ∅, then E(C ′\C{i,j})∩
E(C ′′ \ C{i,j}) = ∅.

10

Proof: By Lemma 2.7 (C{i,j} \ C ′), (C{i,j} \ C ′′), (C ′ \ C{i,j}), (C ′′ \ C{i,j}) are all simple paths.
Suppose that C ′ ∈ Sv1,v2

and C ′′ ∈ Sv3,v4
(it might be that v1 = v2 or v3 = v4). See Figure 13 for

an example of the graph. Suppose that E(C ′ \ C{i,j}) ∩ E(C ′′ \ C{i,j}) contains an edge {v5, v6}.
Then, a subdivision of K4 is created between v5, v6, v2, v3, contradicting the assumption that this
is a series-parallel graph.

zi j

C{i,j}

v1 v2 v3 = v4

v5

v6

Figure 13: Example for Lemma 2.11

Lemma 2.12 Let C ′, C ′′ ⊂ A{i,j}, both simple cycles, C ′ ∈ Sv1,v2
with v1 6= v2 and C ′′ ∈ Sv3,v4

with v3 6= v4. Then either {v1, v2} = {v3, v4} or E(C ′ \ C{i,j}) ∩ E(C ′′ \ C{i,j}) = ∅.

Proof: We denote by (v1 − v2) and (v3 − v4) the paths on C{i,j} that do not contain z, between v1

and v2 and between v3 and v4, respectively.

Suppose that E(C ′ \C{i,j})∩E(C ′′ \C{i,j}) 6= ∅ (for example they share an edge which touches
C{i,j}). Since {v1, v2} 6= {v3, v4} it follows that (v1 − v2) 6= (v3 − v4). Therefore these paths satisfy
one of the following relations:

• (v1 − v2)∩ (v3 − v4) = ∅, in this case E(C ′ \C{i,j})∩E(C ′′ \C{i,j}) = ∅ according to Lemma
2.11.

• (v1 − v2) ∩ (v3 − v4) contains exactly one node, as in Figure 14-left.

• (v1 − v2)∩ (v3 − v4) = P , P 6= C{i,j} \C ′, C{i,j} \C ′′ as in Figure 14-middle (where C ′′ \C{i,j}

is given by the broken line).

• (v1 − v2) ⊆ (v3 − v4) or (v3 − v4) ⊆ (v1 − v2), as in Figure 14-right.

In the latter three cases the graph contains a subdivision of K4.

Lemma 2.13 Algorithm Orient by anchor changes all the simple cycles in Cz into directed cycles,
without creating any contradiction.

Proof: We first note that since Tf (z) is a forest (by Lemma 2.5) no contradiction may occur when
Algorithm Orient flower orients cycles in F (z).

11

zi j

v1 v3 v2 = v4

C{i,j}

C ′C ′′

zi j

v1 v3 v2 v4

C{i,j}

C ′ C ′′

zi j

v1 v2 = v3 v4

C{i,j}

C ′ C ′′

P

Figure 14: Examples for Lemma 2.12

•

• •

•

•

•

•

•
••

• •

C{i,j}

C ′

w1

C ′′

D1

D2

Dn

w2

w3

u
v∗

w

zi j

Figure 15: Example for Lemma 2.14

Let C ′ and C ′′ be distinct simple cycles in Cz \ F (z). There are i, j, a, b ∈ {1, . . . , l} such that
C ′ ∈ A{i,j} \ C{i,j} and C ′ ∈ A{a,b} \ C{a,b}.

If {i, j} 6= {a, b} then by Lemma 2.10 E(C ′) ∩ E(C ′′) = ∅ and their orientation is independent.

If {i, j} = {a, b} then C ′, C ′′ ∈ A{i,j} \C{i,j}. If C{i,j} \C ′ = C{i,j} \C ′′ = (u−v) (a simple path
between u and v) and without loss of generality assume that in C{i,j} the path is oriented u → v,
then in C ′ and in C ′′ the (u, v) path is directed from u to v, independent of the order by which these
paths are oriented. If C{i,j}\C ′ 6= C{i,j}\C ′′ then by Lemma 2.12 E(C{i,j}\C ′)∩E(C{i,j} \C ′′) = ∅
so orienting one of these paths doesn’t affect the other, and again the order of their orientation can
be chosen arbitrary.

In the first loop of Algorithm Orient by anchor all the simple cycles in GCz
are oriented. After

this stage for every anchor-node v∗, in each component Tf (v∗) at most one of its cycles at one of the
components is partially oriented (for example in Figure 15 either D1 or Dn is partially oriented).
This ensures that no contradiction will happen when orienting the next flowers. In particular,
Lemma 2.14 below shows that the situation shown in Figure 15, where both C ′ and C ′′ imply a
partial orientation on the graph for the anchor-node v, is not possible.

Lemma 2.14 After the first loop of Algorithm Orient by anchor (in which the simple cycles in
GCz

are oriented) for every anchor-node v∗, each component of Tf (v∗) contains at most one node

12

associated with a partially oriented cycle, and if such a node exists then the oriented part of the
cycle is a path.

Proof: After the first loop of Algorithm Orient by anchor, a flower F (z) and all the simple cycles
in Cz \ F (z) are oriented, for example in Figure 15 the cycles C{i,j} ,C ′ and C ′′ are oriented. Next,
v∗ is identified as an anchor node. and the set SCv∗ contains the cycles D1, D2, . . . , Dn.

We prove the claim by contradiction, suppose that the two oriented subpaths belongs to two
partially oriented cycles in the same component of Tf (v) as D1 and Dn in Figure 15. In this case
the graph contains a subdivision of K4 (created by the nodes w1, w2, w3 and v∗).

We conclude from Lemma 2.14 that every flower on which the algorithm is activated contains
at most one directed path in every component of Tf (z), and can be further directed by Algorithm
Orient flower.

The next corollary follows from Lemmas 2.13 and 2.14:

Corollary 2.15 Algorithm Orient by anchor changes in polynomial time every cycle C ∈ Cz into
a directed cycle (thus proving Theorems 1.1 and 2.1).

3 Concluding remarks

Definition 3.1 For u, v ∈ V , ucl(u, v) is the length of the shortest cycle in G containing u and
v. Similarly, for an orientation H of G, dcl(u, v) is the length of the shortest closed walk in H

containing these nodes.

Theorem 3.2 Let H be an orientation satisfying Theorem 1.1, then CD(H) ≤ 2CD(G), implying
ρ(G) = 2 for series-parallel graphs.

Proof: According to Theorem 1.1, the length of the shortest oriented walk which contains any two
nodes v, u ∈ V \ {z} in H is at most ucl(v, z) + ucl(u, z) ≤ 2CD(G). Thus, CD(H) ≤ 2CD(G).

The bound for ρ is tight. Consider again the undirected graph in Figure 2(left), and suppose
that each edge length is one. Without loss of generality assume the orientation in Figure 2(right).
In this case ucl(v, u) = 4 but dcl(v, u) = 8.

The main problem left open by this paper is whether ρ is bounded for general graphs. Another
open problem concerns the existence of solutions with even stronger properties, similar to those
proved to exist by Nash-Williams with respect to connectivity. Define r = maxu,v∈V

dcl(v,u)
ucl(v,u) . For a

given family of graphs, prove a bound, if one exists, such that for any graph in this family there
exists an orientation with a smaller value of r. The next theorem shows that for some series-parallel
graphs no orientation can achieve r ≤ 2.

Theorem 3.3 There are series-parallel graphs such that r > 2 in every orientation of the graph.

Proof: Consider the undirected graph in Figure 16 (top). Suppose that each curved edge (even if
subdivided) is of total length one and each straight edge is of length zero.

In this graph ucl(v, u) = 3 and ucl(v, w) = 2.

13

•

•

•

•

•

••
v

u

v

w

v

w

u

Figure 16: r > 2

Without loss of generality we can assume the graph is oriented in one of the orientations shown in
Figure 16. In Figure 16 (lower left) dcl(v, u) = 7 so r > 2 for this orientation. In Figure 16 (lower
right) dcl(v, w) = 6, again giving r > 2.

Other obviously interesting open problems concern the complexity of computing minimum cycle-
radius and minimum cycle-diameter orientations for special classes of graphs such as planar and
series-parallel graphs.

References

[1] E. M. Arkin and R. Hassin. A note on orientations of mixed graphs. Discrete Applied Mathe-
matics, 116 271–278, 2002.

[2] L. Babai. On the diameter of Eulerian orientations of graphs. In ACM-SIAM Proceedings of
the Seventeenth Annual Symposium on Discrete Algorithms, SODA, 822–831, 2006.

[3] W. W. Bein, P. Brucker and A. Tamir. Minimum cost flow algorithms for series-parallel net-
works, Discrete Applied Mathematics 10 117-124, 1985.

[4] R. E. Burkard, K. Feldbacher, B. Klinz, and G. J. Woeginger. Minimum-cost strong network
orientation problems: classification, complexity, and algorithms. Networks, 33 57–70, 1999.

[5] V. Chvátal and C. Thomassen. Distances in orientations of graphs. J. Combinatorial Theory
Ser. B, 24 61–75, 1978.

[6] R. J. Duffin. Topology of series-parallel networks. J. Math. Anal. Appl., 10 303–318, 1965.

[7] N. Eggemann and S. D. Noble. Minimizing the oriented diameter of a planar graph Electronic
Notes in Discrete Mathematics, 34 267–271, 2009.

[8] F. V. Fomin, M. Matamala, E. Prisner, and I. Rapaport. AT-free graphs: linear bounds for
the oriented diameter. Discrete Appl. Math., 141 135–148, 2004.

14

[9] F. V. Fomin, M. Matamala, and I. Rapaport. Complexity of approximating the oriented
diameter of chordal graphs. J. Graph Theory, 45 255–269, 2004.

[10] A. Frank, T. Király, and Z. Király. On the orientation of graphs and hypergraphs. Discrete
Appl. Math., 131 385–400, 2003.

[11] N. Guttmann-Beck and R. Hassin. Minimum diameter and cycle-diameter orientations in
planar graphs. arXiv:1105.4770v1 [cs] 2011.

[12] R. Hassin and N. Megiddo. On orientations and shortest paths. Linear Algebra Appl., 114/115
589–602, 1989.

[13] B. Jackson. Some remarks on arc-connectivity, vertex splitting, and orientation in graphs and
digraphs. J. Graph Theory, 12 429–436, 1988.

[14] K. M. Koh and E. G. Tay. Optimal orientations of graphs and digraphs: a survey. Graphs
Combin., 18 745–756, 2002.

[15] A. Medvedovsky, V. Bafna, U. Zwick and R. Sharan. An algorithm for orienting graphs based
on cause-effect pairs and its applications to orienting problem networks. In K. A. Crandall
and J. Lagergren Algorithms in Bioinformatics Proceedings of WABI2008, LNBI 5251 222-
232, 2008.

[16] C. St. J. A. Nash-Williams. Well-balanced orientations of finite graphs and unobtrusive odd-
vertex-pairings. In Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combi-
natorics, 1968), pages 133–149. Academic Press, New York, 1969.

[17] A. Schrijver. Combinatorial Optimization. Polyhedra and Efficiency. Volume B, §61.3.
Springer-Verlag, Berlin, 2003.

[18] W. C. Yen. The edge orientation problem and some of its variants on weighted graphs. Infor-
mation Sciences, 176 2791–2816, 2006.

15

