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We consider an M/G/1 queueing system where each customer can purchase the priority with which he will be served.
Customers may differ in their time valuation. They know the statistical distrubution of the queue length and amounts paid by
others, but not their actual values. We determine the payment policy from which no customer will deviate as long as the others

use it, and compare it to the first-come first-served discipline.

priority queues #* priority purchasing

1. Introduction

Two types of queueing models with priority
models have been extensively studied. In the first
type, a customer’s relative priority is completely
out of his control. In the second type, to which the
present study belongs, customers purchase the
right to be accepted to a priority group: this
allows customers with high time valuations to be
served first. There are here two ways to elicit
information about customers’ waiting costs. The
queue organizer can set prices for different prior-
ity classes, so that a customer can choose which
class to join. Dolan [3], Ghanem [4], and Marchand
[6] show, under various assumptions, that there
exist sets of prices that will cause each customer to
join the same priority class that would have been
assigned him by a socially optimal rule.

The other approach, which is the one we use,
allows each customer to choose the price he will
pay, and assigns him a priority class on this basis;
the bigger the payment, the higher the priority.
Each customer is assumed to minimize his private
costs, consisting of his payment and of his ex-
pected waiting cost.

Balachandran [1] (see also Balachandran and
Lukens [2]) investigates this setting. He assumes

that all customers are identical, and that each
arriving customer knows the amounts paid by all
others in the queue. He then proves that the
globally optimal policy, the one which minimizes
the average cost per customer, requires that no
payments be made, so that the order of service is
first-come first-served (FCFS). However, Bal-
achandran also shows that this policy is not stable
in the sense that it pays an individual customer to
deviate from it if everyone else uses it.

In this paper we assume, more realistically, that
different customers have different valuations of
time, and that a customer knows only the statisti-
cal distributions of the queue length and of the
amounts paid by others. For this case, Kleinrock
[5] shows that every policy for which a customer’s
payment is a strictly increasing function of his
waiting cost minimizes the customer’s average
waiting costs. Thus, if one considers the amounts
paid by customers as transfer payments that do
not affect aggregate social welfare, any such policy
is globally optimal. This result holds both for the
preemptive and the non-preemptive queueing
model.

We consider, in contrast, a customer’s total
costs, including his payments and his waiting cost.
We find that the stable policy obtained under our
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assumptions is characterized by such a strictly
increasing payment function. The system therefore
leads customers to be served in the efficient order.
We then compute the unique stable policy in the
case of M/G/1 queues and determine which
customers will benefit from the institution of this
payment system, relative to the FCFS discipline.

2. Stable priority purchasing

Each customer is characterized by his time val-
uation, a, that defines the cost per unit time of
waiting in queue (it is immaterial to the discussion
whether this cost is also incurred during the service
time). We denote P(a) = probability that an en-
tering customer has a time valuation o’ < a.

A policy 7 is an assignment of a value x to each
entering customer, denoting the prices he pays for
priority. The policy is stable if no individual
customer will wish to deviate from it if everyone
else uses it.

B, (x) = probability that an entering customer
pays a price x’ < x under policy .

The entering customer is placed in the queue
according to the price he paid; the higher the price
the closer to the queue’s head. Customers who
paid identical prices are served according to an
FCFS policy. The discussion will apply both to
preemptive and non-preemptive systems. A
customer’s goal is to minimize his expected cost,
x + aw,(x), where w,(x) is the expected wait of a
customer who paid x under policy 7. When mak-
ing the payment, the customer knows neither the
queue length nor the prices paid by others.

Lemma 1. If = is stable, then b, is continuous and
strictly increasing in the payment, x.

Proof. Suppose that B, has a jump at x,. Then
there exists a probability p > 0 that a randomly
chosen costumer will pay exactly x,. If such a
customer pays x, + dx instead, he will reduce his
expected wait by a non-infinitesimal length, since
he obtains service before a customer who paid
exactly x,. Thus 7 would not be stable.

Suppose now that B, is constant in [x,, x,]. A
customer who pays x, can reduce his payment to
x; without affecting his expected waiting time, so
that again 7 would not be stable. O
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Corollary 1. If = is stable, then the functions
—w,(x) and c,(a)=min, {x + aw,(x)} are con-
tinuous and strictly increasing.

Corollary 2. Let x, be the amount paid by a customer
with time valuation a,, and x, the amount paid by a
customer with time valuation o;. If a; > a, and the
policy is stable, then x| > x,.

Corollary 3. Suppose that P(a) is continuous on
(a, b). If 7 is stable, then there exists a continuous
function x_(a) defining the payment made by
customers with time valuations a € (a, b).

Proof. Were there a discontinuity in the payment
level at ag, a customer with a =ay+ da could
reduce his payment by a non-infinitesimal amount
while increasing his expected wait by an infinitesi-
mal amount, so that # would not be a stable
policy.

We now turn to characterizing a stable policy
in M/G/1 queues. We consider a system
characterized by Poisson arrivals with mean A,
and a general service process with a cummulative
distribution F( ) and mean 1/u. For this system
without preemption Kleinrock proves that

w(x) =wo/[1-p+pB(x)]’, (1)
where p=\/pu, and wy,=(A/2)[°t*d F(¢) is the
expected duration of the residual service time. In a
preemptive system, wj is replaced in (1) by 1/u so
that the following discussion can be modified to
such a system by exchanging these terms.

To simplify the exposition, we at times consider
functions which may not be differentiable every-
where; that is, opposite inequalities hold for the
left and right derivatives.

Theorem 1. Suppose P( ) is continuous on (a, b). ~
If 7 is stable, then
2pw,y
x(a) =f 2 3
o [1-p+pP(y)]

Proof. A customer with time valuation a wishes to
minimize x + aw,(x). The first order condition is
—1/a=w,(x(a)). (2)

From Corollaries 2 and 3, B,(x(a))= P(a) for
a € (a,b); together with (1) and (2) it follows that

2upBi(x(a)) _ 2mpoP(a)/x'(a)
[1—p+pB,,(x(oz))]3 [1-p+pP(a)]’

P(y), a€<(a,b).

1_
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or that
a) = 2pwaP’(a) .
[1-p+pP ()]’

The theorem follows from this expression. O

Suppose now that, contrary to the assumption
of Theorem 1, P( ) has a discontinuity point at a.
Now there is a positive probability, p = P(a)—
P(a—), that a randomly chosen customer has
time valuation a. Stability requires that these
customers spread their payments over an interval
(x,(a—), x,(a+)): if instead they all paid the
same amount x, a customer could reduce his
expected wait by increasing his payment to x + d x.
However, for any value of x in this interval, the
total expected cost, x + aw,(x), must be constant,
since otherwise those who chose an x which en-
tails higher expected cost have an incentive to
change their choice. Thus we have the following
theorem.

Theorem 2. Suppose P'( ) has a jump at a. If 7 is
stable, then x. (a)€(x,(a—),x,(a+)); the dis-
tribution of payments, B,(x), in this interval satis-
fies

aw,

X+ 2
[1-p+pB,(x)]

=x,(a—)+ 1=t pP(a )]
=x,(a+)+ )

[1-p+pP(a)]*

3. Customer welfare

We let a variable with an F subscript denote its
value under an FCFS discipline, and a variable
with an S subscript denote its value under a stable
payment system. We denote by C(a) the expected
cost for a customer with time valuation a. The-
orem 2 assures that Cg(a) is also defined when «a
is a discontinuity point of P( ). For the other
points we have Cg(a)=x(a)+ aw(x(a)). Dif-
ferentiate with respect to a and substitute (2) to
obtain

Cs(a) =w(x(a)). (3)

Differentiate again to find that Cg'(a) =
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w'(x)x’'(a) <0, so that Cg is concave. Clearly Cg
is linear. Customers with very low time valuation
will pay very little; their expected wait will be
larger under a payment system and Cg(a) > Cg(a)
for these customers.

Altogether we conclude that one of the follow-
ing alternatives must hold:
(i) Cs(a) = Cp(a) for all possible values of a.
(ii)) The two curves intersect once, and Cg(a) <
Cg(a) when a > a, for some critical value a,.

Thus a payment system is certain to decrease
the welfare of some customers. It may increase the
welfare of a section of the population with high
valuation of time.

This section considers several examples to dem-
onstrate the results.

3.1. Identical customers

Suppose all customers share a common time
valuation, a. The payments in the population will
be distributed on [0, a] for some a > 0 that will be
specified later. For each x € [0, a] the cost x +
aw(x) must be constant. Substitute x = 0 to find

x+aw(x)=x+ i 5= awoz’
[1-p+pB(x)]" (1-p)
x €0, a], (4)
so that
B(x)=§{[(1—_1‘-)?—a—fv;] ’_(1_,,)},
x € [0, a].

From the condition that B(a)=1 it follows that
a=awy[(1 — p)~?—1], and from (4) that

aW, aw,
CS= 2>1—p=CF'
(1-»)

All customers are worse off under the payment
system. This is a parallel result to the one ob-
tained by Balachandran [1] under his assumptions,
and could bp expected since for identical customers
the service order is immaterial.

3.2. Two types of customers

We suppose now that a proportion p of the
population has a = a; and that a proportion (1 —
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p) has a=a,, with a; <a,. Customers with o
will then choose payments in [0, a], and the others
choose payments in [a, b] for 0 <a < b that will
be specified below.

For customers with a = a;, any x € [0, a] must
yield identical costs. In particular, if x =0,

x+oaw(x)=x+ *1% 5
[1-p+pB(x)]
—_ a1W0 =
1-pf
x €0, al. (5)
Since B(a)=p we have
1 1

(6)

a=aw, - .
(1-p)" (Q-p+pp)

For customers with a = a, any x € [a, b] must
yield identical costs: in particular if x = a, then

awy(x) _—a+ AWy _=q,,
[1-p+pB(x)] (1—p+pp)
x€[0, a]. _ (7)
Since B(b) =1 we have
1
b=a+a2w0[—-——-2-—1}. (8)
(1-p+pp)

The distribution B(x) can be extracted from (5),
(6), (7) and (8). The mean cost in the population is

Cs=pCi+(1-p)G
AWy

B o %%
2
(1-p+pp)

2
(1-»)

while under FCFS

Ce=(poy+ (1+p)ay)wy/(1-p).

We demonstrate next that if the majority of the
population has a very low time valuation relative
to the minority, then a payment system not only
optimizes social welfare, but also lowers the mean
cost per customer (including his payment). Fixing
p and p, and increasing the ratio a,/a;, the
dominating term in Cp — Cg becomes

_ 1
P (1-p+pp)

If p>1, then (1-p+pp)2=(1—p/2)>> (1~
p). Hence in this case Cg > Cg.

+(1-p)la+

B

1
(1= p)ewy | 1=
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3.3. Exponential distribution of «

Suppose now that a is exponentially distrib-
uted. A customer’s average total cost is obtained
by using (3),

65=f:=°0[/;0w(x(ﬁ)) dﬁ} dP(a)

=/B°:0w(x</s)>[f;°ﬂdp(a)] aB

= [ w(x(B)1-P(B)] dB. -
B=0

For the exponential distribution, 1 —p(a)=
ap (a), hence

Es=af0°°w<x(ﬁ>> dP(B)=aw=Cr,

where the right equality holds since in FCFS the
waiting time is independent of «. Thus, in this
case the mean value of customers’ costs is not
affected by the institution of a payment system.

3.4. Uniform distribution of «

Suppose that a is uniformly distributed on
[0, 1]. Then from (1) and (3),
a W,
Csla) = [
°© (1-p+py)
woat > 1wia _
[(1=p+ap)(1-p)] p

so that each customer is worse off under the
payment system.

dy

CF(Q)’
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