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MINIMAL LENGTH CURVES THAT ARE NOT EMBEDDABLE IN
AN OPEN PLANAR SET: THE PROBLEM OF A LOST SWIMMER
WITH A COMPASS*

R. HASSIN' Anp A. TAMIR' §

Abstract. Given an open bounded set S in R2, the problem of computing a path f of minimum
size such that for every = € S the set {z}+ f intersects the boundary of S is considered. The existence
of such paths is proved both when the path size is its length and when it is its (one-dimensional
Hausdorff outer) measure. Some theorems characterizing optimal paths are proved and it is shown
that when S is convex, the minimum width chords of CI(S) are optimal with respect to both size
definitions.
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1. Introduction. A fisherman on a small boat lost on a big lake in a very thick
fog has no information regarding his location. He has zero visibility but possesses a
compass and a map of the lake and its surroundings. The fisherman can do dead-
reckoning navigation by selecting at each point in time an azimuth and by traveling
along this direction for any distance d he wishes to cover. His objective is to minimize
the distance he must travel to the shoreline.
Next consider a soldier lost in a mine field under zero visibility conditions. He
has a compass, a map of the field (which does not indicate the mines), as well as a
special spoke to search for the mines. The soldier wants to minimize the time he will
need to reach a boundary of the field. If he traverses a certain segment of a path for
the first time, he must search for mines, thus moving at a very low speed v. However,
if his path repeats a segment for a second time, he can speed up, attaining a velocity
that is practically infinite in comparison to v.
Suppose that both the fisherman and the soldier are conservative and that they
wish to minimize the maximum travel distance (time) over all possible initial locations.
. We use several examples to demonstrate the difference between the two models
(see Fig. 1). The optimal path of the fisherman is given by the minimal length path,
while that of the soldier is depicted by the minimal measure path in the examples
below. For comparison purposes, we normalize v, the speed of the soldier, to one unit
when he explores “new avenues,” and we let him repeat a segment he has aircady
traveled before with infinite velocity. With this assumption, the measure of a path
does not exceed its length. (These two terms are properly defined in the next section.)
In Fig. 1, examples (a), (c), (d), and (f), the optimal measure path is an arc; i.e.,
none of its points is visited more than once. Therefore, the length is equal to the
measure. In example (b), the minimal length is 2, while the minimal measure is only
1 ++/3/2. In example (e) the difference between the measure and the length is e.
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Finally, example (d) demonstrates that the length and the measure are very sensitive
to connectivity properties. In particular, they might both have discontinuity jumps
when the boundary is slightly perturbed. The optimal length and measure are equal
to 2 for any € > 0. However, if € = 0, i.e., the lake becomes disconnected, they both
decrease to 1.

In this study, after we provide general existence theorems, we focus on convex open
sets (lakes). We prove that the length and the measure are both equal to the width of
the convex set, i.e., to the minimum distance between a pair of distinct parallel lines
that bound the set. Therefore, an optimal path is a (shortest) line segment connecting
this pair of lines. Example (g) demonstrates that the optimal path is not necessarily
unique. It also shows that there may be nonlinear optimal paths even in the convex
case. In particular, every path whose image is the three normals from a point in the
equilateral triangle to its edges is a minimal measure path. A piecewise linear path
with a single breakpoint on an edge of the equilateral triangle whose image is the two
normals from that point to the other two edges is a minimal length path.
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We do not know of any works dealing with optimal “navigation” with a compass.
Works on navigation without a compass and related topics are described in (1], [3], and
[5]-[14]. In the last section, we present a general framework unifying search problems
of this nature.

2. The mathematical model. Let S be a bounded open set in R2. Let 85
denote the boundary of S and let CI(S) denote its closure.

A path in R? is a continuous function f from the unit interval I in R? into R2. A
path f is called an arc (a simple Jordan curve) if f is one-to-one. We use the symbol
f(I) to indicate the image of I, i.e., the set of all elements f(t) in R? where t € I.

The path length of f, A(f), is defined as

k+1 k
(5 -0 ()
where ||-| is the Euclidean norm. When f is piecewise smooth (piecewise continuously
differentiable), A(f) = [} ||F® (¢)]ldt.

Let z,y be in R? and let A and B be subsets of R2. Define d(z,y) = ||z — ||,
d(z,A) = d(A,z) = inf {d(z,y) | y € A}, and diam(A) = sup {d z,y) | =,y € A}.
Let d(A A B) denote the Hausdorff distance between A and B, i.e.,

Af) =

k

d(A A B) = max { sup {d(:c,B) I x € A},sup {d(y, A) l y € B}} .

Also, define A+ B = {z +y|z € A,y € B}.
Let C be a subset of R2. The one-dimensional Hausdorff outer measure of C in

R2? is
i) < ¢ for all z}) .
i=1

A(C) = hm (mf{

Consider a path f. Then f is S-uncontained if f(0) = 0 and for every =z € S the
set {z} + f(I) intersects 8S. The length of such a path f is given by A(f), defined
above, and its measure is given by A1 (f(I)).

Motivated by the examples presented above, we consider the following two opti-
mization models.

Model 1. Find an S-uncontained path of minimum length.

Model 2. Find an S-uncontained path of minimum measure.

In Theorem 1, we prove the existence of optimal paths in either of the two models.
It has been demonstrated above that the two models can have different solution paths.
We show here that if the set S is convex, then both models are optimized by the same
linear path. Specifically, an optimizer of both models is the minimum width chord of
CI(S). (The latter is defined as a line segment in R2? of minimum length connecting
any two distinct parallel lines that bound CI(S) between them.)

THEOREM 1. Let S be an open bounded set in R2.

a) There erists an S-uncontained path of minimum length.
b) There exists an S-uncontained path of minimum measure.

Proof. Denote M = diam(Cl(S)). To prove the theorem, it is certainly sufficient
to consider only those paths whose length (and measure) is bounded by M.

(a) Let B denote the infimum of the lengths of all S-uncontained paths. Con-
sider an S-uncontained path f with length A\(f). We represent f by a standard
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parametrization f on its length: f : I — R2, where f is continuous and f (O) = 0.
fis M-Lipschitz. Using the Arzeld—Ascoli theorem [4, p. 266], we conclude that the
set of all (parametrized) S-uncontained and M—LlpSChltZ paths is nonempty and com-
pact in the uniform convergence topology If { fn} is a sequence of (pa.rametnzed)
S-uncontained paths such that A( fn) — [, there exists a subsequence { fn,} converg-
ing uniformly to an S—unconta.lned path g. Since path length is lower semicontinuous,
we obtain A(g) < lim; A( fn,) =

(b) Let « denote the mﬁmum of the measures of all S-uncontained paths, and let
{f»} be a sequence of (parametrized) S-uncontained paths such that A, (fn(I ) —
As in part (a), let {ﬁ;} be a subsequence converging uniformly to an S-uncontained
path h. It follows that the sets {fn (I)} converge in Hausdorff distance to h(I).
Therefore, using [6, Thm. 3] we conclude that

M (A(D) < lim i (Fau (1) =7 . o

Remark. Instead of using the Arzeld-Ascoli theorem in the above proof, one might
prefer a more elementary argument as exhibited in [3]. It is based on repeatedly using
the Bolzano—Weierstrass property in the usual plane metric.

We will need the following definition: Let a € I. The subpath of f defined by «,
fo,is

ft), 0<t<e
fe@t) =
fle), a<t<l1.

THEOREM 2. Let f be an S-uncontained path. Then there exist T € CI(S) and
a € I such that f is S-uncontained and {ZT} + f=(I) C CI(S).
Proof. For each z € S define

t(z)=sup{tel|z+ f(s)€S forall 0<s<t}.

Since f is S-uncontained, = + f(t(x)) is in 8S.

Define a = sup {¢(z) | z € S}.

For each z € S, {z} + f>(I) intersects 8S. Thus, fo is S-uncontained. From the
definition of a and the compactness of CI(S), there exists a sequence {z"} of points
in S that converges to some Z € CI(S), and {t(z")} converges to a. We claim that
{z} + f(I) € CK(S).

Suppose, by contradiction, that there exists some s, 0 < s < a, and T + fo(s) ¢
CI(S). Let ¢ = d(z + f*(s),CI(S)) > 0. Let n be such that d(z",T) < /2, and
s < t(z") < a. Then for any y € CI(S), d(y,z"+ fo(s)) > d(y, T+ f*(s)) —d(z™, T) >
€/2. Therefore, d(z™ + f°‘ (), CI(S)) > €/2 for some s < t(z™). This contradicts the
definition of t(z™).

Next we prove that if S is a bounded open convex set in R2, then there exists
an S-uncontained path of minimum length and minimum measure that is a linear
function. In particular, we show that the length of such a linear path is the width of
CI(S).

We now need the following definition.

DEFINITION. Let u be a point in C1(S). Then d in R? is a feasible direction of S
at u if there exists € > 0 such that u + ed is in S. Otherwise d is called infeasible.
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THEOREM 3. Let f be an S-uncontained path for a bounded open conver set
S C R?, and let z € CI(S) satisfy {z} + f(I) C CI(S). Define the tangency set

R(f,z)
R(f,z) =850 ({z} + f(D)) .

Then one of the following holds:
(1) There ezist two distinct and parallel supporting (subgradient) lines to Cl(S)
at some pair of points in R( f,z).

(2) There exist three distinct supporting lines to CI(S ) at some points in R( f,x),
such that the triangle generated by these lines contains C1(S).

Proof. Since f is S-uncontained, it follows that there is no direction d at z and
an £ > 0 such that the set {z + ed} + f(I) is contained in S. The points in R( fyx)
block any translation of the set {x} + f(I) into S. Formally, it follows that the set of
infeasible directions at all the points in ﬁ( f,x) exhausts all directions in R2.

Consider a supporting line £ to Cl(S) at some point u in R(f,z). With each
infeasible direction at u, we associate a point on the unit circle corresponding to its
angle from the horizontal z;-axis. Thus the supporting line ¢ is associated with a
closed subarc I, of the unit circle of length 7. (I, captures all infeasible directions
defined by the half plane not containing C1(S).)

Consider next the collection of subarcs obtained by looking at all points in ﬁ( f,z)
and their supporting lines. From the above, it follows that the union of all the subarcs
is the unit circle. If there exists a pair of subarcs whose union is the unit circle,
then (1) holds. Otherwise, the union of the interiors of the subarcs is again the unit
circle. Due to compactness of the unit circle, there is a finite subcollection of subarcs
whose union is the unit circle. To summarize, there is a finite number of at least three
supporting lines at points in R( f,z) that define a convex bounded polygon containing
CI(S). Since no pair of these lines is parallel, it is a simple matter to verify inductively
that any such polygon can be bounded by a triangle formed by three of its supporting
lines. This completes the proof. il

LEMMA 1. Let {€1,€2,€3} be a collection of three distinct pairwise nonparallel
lines in R2. Then the minimum over R2 of the sum of (Euclidean) distances from the
three lines is attained at a point where two of these lines intersect.

Proof. For z in R2, let gi(z) = d(=, 4:), i = 1,2,3, and g(z) = g1(z)+g2(x)+g3(z).

Consider an arbitrary line L in R2. If L and ¢; are parallel, the restriction of
gi(z) to L is a constant function. Otherwise, this restriction is piecewise linear with
one breakpoint at the intersection point of L and ¢;. Therefore, the restriction of g(z)
to L is a (convex) piecewise linear function having at most three breakpoints (the
intersection points of L with the three given lines). The minimum of g(z) over L is
attained at an intersection point of L with some line ¢;, 7 = 1,2, 3.

Let z* be a minimum point of g(z) over R2, and consider some line L contain-
ing z*. Then there exists some line ¢; and the point 2z*, {2*} = L N ¥¢;, such that
g(z*) = g(z*). Consider next the minimization of g(z) over ¢;. From the above, the
minimum is attained at an intersection point of ¢; with some other line ¢;, j = 1,2,3,
j#i. O

LEMMA 2. Let S be the interior of a triangle, and let X be a closed connected set
in R? such that there is no x in R2 with {z} + X C S. Then there is T in R? such
that {Z} + X intersects the three edges of the triangle.

Proof. Let e1, e2, and e3 denote the three edges of the triangle, and let ¢y, {2, and
¢3 denote the three lines containing the three edges, respectively. Also, for i = 1,2, 3,
let éf' be the half plane, determined by ¢;, that contains the given triangle. Since X
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is closed, there exists a translation of X, say T(X) = {2} + X for some z € R2, that
intersects £, at some (relative) interior point of e; and is contained in £; .

We first show that T(X) must also intersect either ez or e3. Indeed, if it does
not, then, since T'(X) is closed, there is a positive distance between T'(X) and ez Ues.
Also, T'(X) is included in the triangle since T(X) is connected. Therefore, there is a
perturbed translation of T'(X) along the normal to ¢; that yields a translation, say
T1(X) = {u} + X for some uw € R?, which is included in S.

Thus, suppose that T'(X) intersects ez but not es. (If it intersects both, the result
holds.) Let £, be a line parallel to £; and containing the vertex of the triangle opposing
e1. Also let £§ denote the half plane, defined by £., which contains the triangle.

Without loss of generality, suppose that ¢; is the (horizontal) z;-axis in the plane.
Define N

TX)=T(X)ne&rnegnet .

Let ¢ = Minimum{y—z: | (y,z2) € e3, (z1,22) € f(X)}. Due to the fact that T(X)
is closed and does not intersect es, € is well defined and positive. (See Fig. 2.)

Next, we translate T'(X) along ¢ toward £3 by a distance of € > 0. Let T2(X)
denote the translated set obtained by this move. If T2(X) intersects ez, the result
holds. Otherwise, there are two cases to consider. First, suppose that 72(X) contains
a point outside the triangle. Then a contradiction to the connectivity of T2(X) is
easily obtained. Therefore, suppose that T2(X) is contained in the triangle and does
not intersect ez.

A perturbed translation of 72(X) along the bisector of the triangle angle, defined
by e1 and e3, moves T2(X) into S. This completes the proof. 0

THEOREM 4. Let S be the interior of a triangle. Then any minimum width chord
of CI(S) is an S-uncontained path of minimum length and minimum measure.

Proof. It is clear that any minimum width chord of CI(S) is an S-uncontained
path. Consider an S-uncontained path f. Let X = f(I). From Lemma 2 there exists
a translation, say T'(X) = {z} + X for some z € R2, that intersects the three edges
of CI(S), e1, e2, and e3 at points z!, z2, and z3, respectively. (The points are not
necessarily distinct.) A\1(X), the measure of X (with respect to the one-dimensional
Hausdorff measure) is bounded below by the measure of a minimum measure set
that (arcwise) connects z!, z2, and z3. It is known [2] that a Euclidean Steiner tree
connecting this triplet of points is a minimum measure set. Furthermore, the measure
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of such a tree is the sum of the (Euclidean) distances from some point in R? to z!,
z2, and z3. Using Lemma 1, we note that the measure of the connecting Steiner tree
is greater than or equal to the width of C1(S). Thus we conclude that the measure of
X is not smaller then the width of CI(S). Finally, the length of f, A(f) is bounded
below by the length of any minimal length path connecting z!, z2, and z3. Thus,
A(f) is bounded below by the measure of the above Steiner tree. This completes the
proof. ]

THEOREM 5. Let S be an open bounded convex set in R2. Then any minimum
width chord of CI(S) is an S-uncontained path of minimum length and minimum
measure.

Proof. Let f be an S-uncontained path. To prove that A(f) and A1 (f(I)) are
both bounded below by the width of C1(S), we may suppose that the assumptions of
Theorems 2 and 3 are satisfied. Thus we refer to the two cases stated in Theorem 3.
If (1) holds, then clearly both A(f) and A1 (f(I)) are bounded below by the distance
between the two parallel supporting lines. If (2) holds, we apply Theorem 4 to the
triangle defined in this case. Again, both A(f) and A1 (f(I)) are bounded below by
the width of that triangle, which, in turn, is bounded by the width of C1(S). This
completes the proof. 0

3. Concluding remarks and open problems. We show above that if S is
bounded and convex, then an optimal S-uncontained curve is linear and its length is
the width of S. Linearity might be lost if S is not convex. In fact, we might have no
linear minimal length curve even for the case when S is the union of seven pairwise
disjoint open rectangles of the same width. Consider the case when S is a planar
polygon, given by an ordered sequence of its vertices. If S is convex, its width can
be computed in time that is linear in the number of vertices [15]. When S is not
convex, the complexity of determining minimal length or minimal measure curves is
still unknown. We suspect that it is NP-hard. We conjecture that minimal curves arc
piecewise linear and that the number of pieces is polynomial in the number of vertices.
If some optimal curve is indced piecewise linear and a bound on the number of pieces
is known a priori, then we can construct a finite scheme to compute minimal curves.
The existence of such a scheme follows directly from the theory of Tarski on solvability
over real closed fields [16] since the model can be formulated as an algebraic sentence.

We demonstrate above that minimal measure curves are not necessarily simple,
i.e., one-to-one. However, we conjecture that there exists a minimal length curve that
is simple.

Finally, we mention several extensions and generalizations of the above models.
First, we can consider the extension to R™ for n > 3. We suspect that Theorem 5
holds for this general case as well. Second, we can consider disconnected solution sets.
Let X be a closed set in R? that contains the origin. Call X an S-uncontained set if for
any z in S, the set {z} + X intersects the boundary of S. The extended optimization
model seeks an S-uncontained compact set of minimal measure with respect to the
Hausdorff measure defined above. Since we do not require connectedness of X, we
might possibly obtain a solution whose measure is smaller than the solution to Model
2. Indeed, the example in Fig. 3, due to Gal, demonstrates this possibility.

Our model deals with optimal navigation with a compass. We cite in the Intro-
duction several works that discuss navigation models without a compass. To give some
mathematical precision to the distinction between a lost swimmer with a compass and
a lost swimmer without a compass, consider the following unifying model.

Let R be a set of transformations of R2, and let S be an open set in R2. A path
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f: I — R2 with f(0) = 0 will be called (R, S)-uncontained if, for every z € S and a
transformation r € R, the set {z} + r(f([)) intersects 8S.

In our model of the swimmer with the compass, R consists only of the identity
transformation. The problem of the swimmer without a compass is modeled by letting
R be the group of all rotations. Other interesting cases are when R is the group of
all isometries and when R = SL2(R), the group of all linear transformations with a
determinant being equal to +1 or -1. The existential result of Theorem 1 can easily be
generalized to the above examples of R. Unlike the general result stated in Theorem
5 for convex sets S in our model, finding and verifying an optimal path for a specific
set (e.g., a rectangle or a half plane) is fairly involved even while focusing on the
swimmer-without-compass model.

We have assumed in all the above models that there is no information about the
initial location of the swimmer within the set S. These models must be modified
when such information becomes available. For example, if in our original model of
navigation with a compass, the swimmer is known to be within a subset S’ of S, we
require from a path f that only for each z € S’ the set {z} + f(I) intersects the
boundary of S. The result of Theorem 1 can be extended to this case as well. It is
interesting to find sufficient conditions on S and S’ that will yield results similar to
those stated in Theorem 5.

We have also assumed throughout that the objective is to minimize the maximum
path size. In other situations, different objectives may exist, such as minimizing the
expected size of the path. In such cases, it is also meaningful to consider probabilistic
information on the initial location.
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