Algorithmica (2004) 39: 175-187

DOI: 10.1007/500453-004-1087-0 AlgOI' ithmica

© 2004 Springer- Verlag New York, LLC

Approximations for Maximum Transportation with
Permutable Supply Vector and Other
Capacitated Star Packing Problems'

Esther M. Arkin,? Refael Hassin,? Shlomi Rubinstein,? and Maxim Sviridenko*

Abstract. We describe approximation algorithms for the maximum transportation with permutable supply
vector and related problems.

Key Words. Transportation problem, Approximation algorithm, NP-complete problem

1. Introduction. The TRANSPORTATION PROBLEM is acentral problem in Optimization.
Its input consists of a complete bipartite graph G = (Vy, V5, E), with a non-negative
function w: E — R, integer supplies a; > 0, i € V1, and integer demands b; > 0,
J € Vz, where without loss of generality }7;cy, @ = ey, bj. The problem is to
compute flows x;;,i € Vi, j € V,,suchthat Zj xij = a;foreveryi € V1,3, x;; = b; for
every j € Vs, and the total weight of the flow, >_ ; w;; xi;, is maximized (or minimized).
In this paper we assume non-negative weights (representing profits) and the goal is then to
maximize the total profit. It is well known that the transportation problem is polynomially
solvable even when the flows are required to be integers.

One of the problems considered in this paper is a variation of the transportation
problem which we call MAXIMUM TRANSPORTATION PROBLEM WITH PERMUTABLE SUPPLY
VECTOR (or TPS for short). In this variation, supplies are not attached to the vertices of
V1, but rather to a set of capacitated facilities that have to be located at the vertices of
V1, one facility at each vertex. Thus, the problem is both to decide on the location of the
facilities associated with the given set {a;} to V| and on the flows between V; and V; so
as to maximize the total profit.

TPS has several practical applications. An obvious application mentioned in [9] and
[10] arises from maximizing profit for the delivery from |V;| different production fa-
cilities to | V| customers, where the demand of customers is given by vector b and the
sizes of supply facilities can be chosen as a permutation of vector a. The problem occurs

I An extended abstract appeared in the proceedings of SWAT 2002. The first author was partially supported
by NSF (CCR-0098172).

2 Department of Applied Mathematics and Statistics, SUNY Stony Brook, Stony Brook, NY 11794-3600,
USA. estie@ams.sunysb.edu.

3 Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv 69978, Israel.
{hassin,shlomiru} @post.tau.ac.il.

4 IBM T. J. Watson Research Center, Yorktown Heights, P.O. Box 218, NY 10598, USA. sviri@us.ibm.com.

Received August 21, 2002; revised September 17, 2003. Communicated by G. N. Frederickson.
Online publication February 25, 2004.

176 E. M. Arkin, R. Hassin, S. Rubinstein, and M. Sviridenko

when we want to construct or extend these facilities but sizes are given by some external
decision maker (in real life sizes are often defined before locations because of budget or
political considerations). Another application of the minimization variant of the above
problem is in a placement model in the design of printed circuit boards [8], [9].

Another closely related problem considered in this paper is MAXIMUM CAPACITATED
STAR PACKING. The input to the problem consists of a complete undirected graph G =
(V, E) with a non-negative weight function w: E — R, and a vector ¢ = (cy, ..., Cp)
of integers. We use w(E’) to denote the total weight of a subset E’ of edges. A star
is a subset of edges with a common vertex called the center of the star. The other
vertices are leaves of the star. The size, or capacity, of a star is its number of edges
(equivalently, leaves). The weight of a star is the total weight of its edges. We consider
the MAXIMUM CAPACITATED STAR PACKING problem in which it is required to compute a
set of vertex-disjoint stars in G of sizes ¢y, ..., c,, 50 as to maximize their total weight,
where >_7_, ¢; = |V| — p. The problem can be thought of as a facility location problem.
Facilities of given sizes ¢; are to be located at vertices to serve customers, where the profit
is given by the weight of the edge. We call the special case of TPS with unit demands
MAXIMUM CAPACITATED STAR PACKING IN BIPARTITE GRAPHS.

Previous Work. The MAXIMUM STAR PACKING PROBLEM is NP-hard even when all
capacities are 2 and 0/1 weights [S5, p. 76]. The NP-hardness of the minimum TPS
problem and polynomially solvable subcases of the problem were studied by Meusel
and Burkard [9] and Hujter [6]. Most of their results are valid for the maximization
problem, too, e.g., the TPS with a; € {0, 1, 2} is polynomially solvable by reduction to
the maximum weight f-factor problem [6]. Wolsey [11] analyzed “greedy” heuristics
for several discrete facility location problems in which monotone submodular functions
are maximized. In particular, his results imply the existence of a (1 —e~!)-approximation
algorithm for the special case of TPS withb; = 1, j € V,, and a; € {0, A}, i € Vy, for
some positive integer A. Unfortunately his approach cannot be generalized for the more
general problems considered in this paper since the objective function is not necessarily
submodular. For example, consider a MAX CAPACITATED STAR PACKING instance defined
on a graph on eight nodes, V = {x,y,1,2,3,4,5,6}, with ¢ = (3, 1, 1). The edges
(x, 1), (x,2), (x,3), (v, ¥, (. 5), (5, 6), (5, 6) have weight 1, and all other edges have
weight 0. Let f(S) denote the optimal solution when centers are allowed only among
nodes of § C V. Then f({y}) = f({y.5) =3, f({x,y}) =4,and f({x,y.5) =5
showing that f is not submodular (the addition of 5 to y does not increase f while its
addition to {x, y} does).

The MAXIMUM QUADRATIC ASSIGNMENT PROBLEM is a generalization of the MAX-
IMUM CAPACITATED STAR PACKING problem as well as many other problems. Three
n X n non-negative symmetric matrices A = (a;;), B = (b;;), and C = (c;j) are
given and the objective is to compute a permutation 7 of V = {1,...,n} so that
Yo jevig) n@a(hbij + Liey Cing) is maximized. A ;-approximation algorithm for
the MAXIMUM QUADRATIC ASSIGNMENT problem assuming the triangle inequality on
matrix B was given in [3]. The problem is also a special case of the MAXIMUM k-SET
PACKING PROBLEM where k is a maximum star size. The results of Hurkens and Schrijver
[7] imply that for 0-1 weights a local search algorithm is almost a 2/ k-approximation
algorithm. Arkin and Hassin [2] showed that the same local search is almosta 1 /(k — 1)-

Approximations for Maximum Transportation 177

approximation algorithm when general non-negative weights are allowed. Chandra and
Halld6rsson [4] showed that a combination of a greedy algorithm and local search im-
proves the bound for k > 5to 3/2(k + 1).

Our Results. In this paper we design approximation algorithms for the TPS and MAX-
IMUM CAPACITATED STAR PACKING, improving previously known approximation algo-
rithms. We prove that:

e A greedy type algorithm with modified edge weights is a %-approximation for the
TPS.

e A local search algorithm can be made arbitrarily close to be a %-approximation algo-
rithm for the TPS by increasing its depth.

o There is an example showing that a natural greedy algorithm does not guarantee any
bound for the MAXIMUM CAPACITATED STAR PACKING.

e A low-depth local search algorithm is a %-approximation algorithm for MAXIMUM
CAPACITATED STAR PACKING.

¢ A matching-based algorithm is a %-approximation algorithm for MAXIMUM CAPACI-
TATED STAR PACKING if the edge weights satisfy the triangle inequality.

Note that all algorithms studied in this paper are rather simple, natural, and very fast
and thus they are good candidates for practical usage.

2. Star Packing in Bipartite Graphs. In this section we derive approximation al-
gorithms for a special case of the TPS. In the next section we show how they can be
generalized for the general problem. We consider MAXIMUM CAPACITATED STAR PACK-
ING PROBLEM IN BIPARTITE GRAPHS. An instance of this problem consists of a complete
bipartite graph G = (V, V,, E) with non-negative edge weights w. Let p = |V;|. The
problem is to locate p centers of stars of cardinality ¢; > - > ¢, at the vertices of
V1 and assign vertices of V,, |V2| = Z{;l ¢i, to star centers, satisfying the cardinality
constraints on sizes of stars.

2.1. Greedy Algorithm. We consider a greedy algorithm that modifies the weights of
edges, algorithm GR in Figure 1. Note that GR selects in each iteration a maximum
weight star with respect to modified weights which reflect a deletion of an edge from
the partial solution, when a new edge entering the same vertex is selected. Algorithm
GR outputs a partial solution, i.e., a set of stars Sy, ..., S, such that |S;| < ¢;. Since all
original edge weights w are non-negative, this solution can be completed to a feasible
capacitated star packing without decreasing its value. Note that the modified edge weights
may be negative. However, such qd%es are never chosen to the star S; in Step i since all
modified edges are incident to U}C;l X; and therefore any vertex v € Vj has at least ¢;
non-modified (and therefore non-negative) edges incident to it in Step i.

THEOREM 1. Let APX be an arbitrary completion of the partial solution returned by
GR, and let OPT be an optimal solution. Then w(APX) > w(OPT)/2 and the bound is
asymptotically achievable.

178 E. M. Arkin, R. Hassin, S. Rubinstein, and M. Sviridenko

GR
input
A weighted bipartite graph G = (Vy, V,, E, w) and integers ¢, > - - > ¢p.
returns
A partial solution.
begin
Let w be a weight function on edges such that w = w.
fori=1,...,p

Let S; = (vi, X;) be a star of maximum weight with respect to w
such that v; € Vi, X; C Vo, 1 Xil = ¢;.
Delete from S\, ..., Si_1 the edges which enter X;, delete v; from V.
foreveryx € X;andy e V;

Wyy 1= Wyy — Wyx.

return Sy, ..., Sp,.
end GR
Fig. 1. Algorithm GR.
PROOF. In Step i of GR we have in our approximate solution stars S, ..., S;, where
|Sk| < ek, k =1,...,i. The size of Sy is exactly c; during the kth step of the algorithm

but it may decrease in future steps. In each step the set V; and the weight function w are
modified, so at the end of Step i of the algorithm we have an instance /; of the problem on
the bipartite graph (Vj, V,, E) and weight function w;. Let OPT; be an optimal solution
of the STAR PACKING IN BIPARTITE GRAPHS with star sizes ¢;11,...,c, on the graph
V1, Va, E, w;). We will prove that fori =1, ..., p,

1M 2w;1(8:) = wi-1(OPT;—y) — w; (OPT}).
Note that by convention we assume that w,(OPT,) = 0 since we must allocate the
empty set of stars in /,. By summing (1) overi = 1,..., p we get
P P
2 wia(S) =) (W1(OPT;_y) — B;(OPT)))
i=1 i=l

wo(OPTy) — w,(OPT,) = w(OPT).

Note that w; -1 (S;) is the weight of star §; in Step i. We emphasize this since some edges of
§; could be removed in the future but their weight is compensated by changing the weight
function, i.e., the sum of original edge weights of final stars is at least Zf=, w;_1(S;)
and therefore, w(APX) > Z{’:, w;—1(Si) = w(OPT)/2. To prove (1) we construct a
solution SOL; to I; such that

2) 2w;1(8;) = w1 (OPT;_y) — w; (SOL;).

Assume that algorithm GR chooses the star S; with the center v; in Step i. If OPT;_,
has the star with the same index (i.e., the star with cardinality ¢;) located at v;, then we
define SOL; from OPT;_, by deleting vertex v; and the star of cardinality c; located at

Approximations for Maximum Transportation 179

Si(v) IS" ()] = IS\Si
v v

"X

—_

OPT; SOL;

Fig. 2. The solutions OPT;_ and SOL;.

this vertex from OPT;_; (Figure 2). In this case
w;—1(Si) = w1 (OPT;_y) — w;—1 (SOL;).

We obtain (2) by noticing that w; (SOL;) = w; - (SOL;) since edges belonging to stars
in SOL; are not incident to edges from §; and therefore their weight does not change.

However, in general OPT;_; can have another star S located at v;. In this case OPT;_,
has the star of cardinality ¢; located at another vertex, say v, we call this star S;(v). Since
¢ = -+ > cp, we know that |S;| > [|S] > |S\S;|. We construct SOL; from OPT;_;
as follows. First we delete stars S; (v) and S from OPT;_,. We do that since we cannot
have a star with index i in SOL; and since vertex v; is in S;. After that we try to recover
the weight we lost when we deleted S\S; (generally speaking, we did not loose S N §;
since these edges are used in the greedy solution) by moving the center of S from v;
to v and using |S\S;| heaviest edges with respect to the weight function w;_; from the
|S;| available edges at v. We call this new star §’'(v). We define SOL; from OPT;_; by
removing vertex v; from OPT;_; and by defining new star §'(v) at the vertex v instead
of S;(v).

Denote by av(C) the average weight, with respect to w;_, of an edge in the star
C. By the greedy property, S; uses the heaviest edges touching vertex v;. Also their
total weight is at least the weight of S;(v). Therefore, av(S;) > av(S\S;) and also
av(S;) = av(S;(v)). Since §'(v) consists of the heaviest edges in S;(v), it also follows
that av(S;) > av(S;(v)) = av(S;(v)\S'(v)). Since |S\S;| = |5'(v)| and §'(v) € Si(v),
ISil = [S\Si| + |S; (v)\S'(v)]. Therefore,

w;i-1(8i) = av(S) |Si]
> av(S)HIS\Si| + av(S; (W\S'(W)IS; (W\S'(v)]
Wi—1(S\S;) + wi—1(S; (W\S'(v))

Wi—1(S\S) + Wi—1(S; (v)) — Wi-1(S'(V)),

v

i

180 E. M. Arkin, R. Hassin, S. Rubinstein, and M. Sviridenko

where the last equality follows since S'(v) € S;(v). Then

Wi—1(SOL;) = wi—1(OPT;—1) — ;1(S) — W;—1(Si (v)) + W1 (S’ (v))
W1 (OPT;_1) —w;1(SNS))

— W1 (S\S) — w1 (S (v)) + Wi (S'(v))

wi—1(OPT ;1) — w;—1(S)) — wi-1 (SN S;).

v

Equation (2) follows now from the fact that w; (SOL;) > w;_1(SOL;) —w;-1(S;\S) since
all edges in SOL; are also edges in OPT_,, therefore their weight cannot be influenced
by deleting edges from § N §; and changing weights of edges incident to S N S; since
edges of OPT;_; do not touch edges from § because S belongs to OPT;_; and, therefore,
only those edge of SOL; decrease their weights which touch vertices from S;\ S and their
total decrease is at most w; -1 (S;\S).

‘We now show that GR does not guarantee more than %w(OPT). Let V) = {x, y} and
|V2] = ¢+ 1. V; has a special vertex z, and the edge weights are w; , = ¢, wy,, = O for
v € Va\{z}, wy,, = 1 for v € V5. The capacities are (c, 1). The optimal solution locates
the center with capacity ¢ at y and then w(OPT) = 2¢, while GR may locate the center
of capacity c at x in which case w(APX) =c + 1. O

We note that the same example shows that the more sophisticated algorithm GR1 (see
Figure 4) also does not guarantee more than %w(OPT).

2.2. Local Search Algorithm. In this section we consider a natural local search algo-
rithm. We denote by APX (OPT) an approximate (optimal) solution. A ¢-move is defined
as follows: Take a set of at most ¢ centers of the current solution and permute their lo-
cations. To decide which leaves belong to which center, we solve a (max) transportation
problem with supplies at the permuted centers each with supply equal to its capacity,
and unit demands. The weight of the edge (v;, j) between a center v; and a leaf j, is
modified to be the original weight w(v;, j) minus the weight of the single edge of the
current approximate solution which touches vertex ;.

A local search algorithm of depth ¢ (Figure 3) is defined as follows: Start with some
feasible solution, and check whether its weight can be increased by a f-move. Repeat
until no further improvements are possible.

THEOREM 2. ¢-search is a t/(1 + 2t)-approximation algorithm for the MAXIMUM CA-
PACITATED STAR PACKING problem in a bipartite graph.

PROOF. Fix some optimal solution and let s7 be the center of the ith star in this optimal
solution, and let s{ be the center of star S7. Consider a directed graph D = (V, A) with
(u,v) € Aifu = sf and v = s for some i = 1,..., p. Note that D consists of a
collection of directed cycles (possibly loops). We call these chains. The length of a chain
is the number of its vertices. We define a collection of subchains covering the arcs of
the graph D, with at most ¢ centers of OPT in each subchain, and such that each vertex
appears in exactly ¢ subchains.

Chains of length at most ¢, we duplicate ¢ times. Chains of length greater than ¢ we
decompose into subchains of length ¢. If the chain is a cycle vy, va, ..., v;, v (j >)

Approximations for Maximum Transportation 181

t-search
input
(G, w, ¢) and integersc, = --- > ¢p
returns
Vertex disjoint stars with sizes c.
begin
Start with a feasible solution Si, ..., Sp.
while 3 an improving t-move
Perform an improving t-move.
end while
return stars S¢, ..., S:.
end t-search

Fig. 3. A depth ¢ local search algorithm.

we use subchains v;, vj41,..., V4 fori = 1,..., j where subscripts are modulo j.
We consider such a subchain to contain all the approximate centers in it, and all except
the first optimal center located at v;, in it. We thus have j subchains, each containing
t centers of OPT and ¢ + 1 centers of APX. Each center of OPT appears in exactly ¢
subchains, and each center of APX appears in ¢ + 1 subchains.

Consider each of these subchains. Each corresponds to a potential t-move which does
not give an improvement (otherwise the algorithm would have executed this move).
Define touch(S7) to be the weight of all edges of the approximate solution touching a
leaf of the star §7. Let S° (S°) be the set of centers s7 (s7) in such a chain. We have

Y w(SH =Y w(sp) =) touch(sy).
iese = ies®
Next, we sum the above inequality over the collection of subchains we generated

from graph D. Since each center of APX appears in at most ¢ 4 1 chains, the sum of the
first terms) ;o w(S7) is at most (t + 1)w(APX). Recall that the graph G is bipartite,
therefore each edge of APX cannot touch two leaves of optimal stars. Thus in summing
Y ieso touch(Sy), each optimal star appears ¢ times, and we get that each edge of APX
appears at most ¢ times. Finally, the sum of } ", ¢, w(S7) is exactly - w(OPT). Therefore,
the summation yields

(t+ Dw(APX) >t - w(OPT) —t - w(APX)
or w(APX)/w(OPT) > t/(1 4 2t), completing the proof. O
Thus an approximation factor arbitrarily close to '5 can be achieved by increasing ¢.
We remark that the local search algorithm can be carried out in polynomial time while

maintaining the bound up to any desired level of proximity by scaling the weights (see
[2] for a detailed description).

3. Maximum Transportation with Permutable Supply. The problem can be refor-
mulated as a MAXIMUM CAPACITATED STAR PACKING problem in bipartite graphs, by

182 E. M. Arkin, R. Hassin, S. Rubinstein, and M. Sviridenko

duplicating each vertex i € V; b; times, and then applying the algorithms in Figures 1
or 3. However, this approach yields only a pseudopolynomial time algorithms.

The local search algorithm can be modified to accommodate the demands of vertices
in V,. The step which needs to be modified is the one in which we calculate a new
assignment of leaf vertices to centers, which was done using a transportation problem
with modified weights. Here the weights must be modified in a more complex way. If we
wish to “send” x;; units from supply vertex i € V; to demand vertex j € V, we calculate
the weight as x;; original weights w(i, j)x;; minus the cheapest edges touching j whose
total shipment is x;;. (In the earlier case the x;; = 1 so we subtracted only the cost of the
cheapest edge touching vertex j.) This yields a maximum transportation problem with
piecewise linear concave costs. See the textbook [1] which describes a polynomial time
algorithm for the equivalent minimum cost piecewise convex problem.

Algorithm GR can also be implemented in polynomial time by a similar observation.
Instead of duplicating demand vertices, in each step the algorithm finds the star of
maximum (modified) weight. The star can have multiple edges between vertices, and we
define the flow x;; from vertex i to j to be equal to the number of edges between vertices
i and j. The profit from using x;; edges is defined in the same way, it is w;;x;; minus
a total cost of x;; cheapest edges touching demand vertex j. Note that originally we
assume that there are b; edges of zero profit touching j. Therefore, in each step we need
to solve a maximum transportation problem with piecewise linear concave costs and
just one supply vertex. Actually, in this case the algorithm can be implemented directly
without using [1].

4. Star Packing in General Graphs. We now consider star packing in general graphs,
and suggest similar algorithms to those introduced for bipartite graphs. As we will see,
the greedy approach does not guarantee a constant factor approximation, whereas a low
depth local search guarantees a %-approximation.

4.1. Greedy Algorithm. Algorithm GR1 (Figure 4) is a natural greedy algorithm for
MAXIMUM CAPACITATED STAR PACKING. It chooses the next star center which maximizes
the optimal value of a certain transportation problem between star centers and remaining
vertices in the graph. The following example shows that it does not guarantee any constant
bound for general graphs and identical capacities.

EXAMPLE 3. Consider a k-ary tree with depth L for some odd integer L. At level /,
1=0,...,L, there are k' vertices. Let the edges between level | — 1 and [have weight
o' for 0 < o < 1 satisfying k = 1/a(1 — a). The graph consists of sufficiently many
additional isolated vertices. All non-tree edges have zero weight.

Consider the star packing instance over the above graph, with capacities k. The number
of centers is equal to the number of non-leaf vertices of the tree. GR1 starts by selecting
the root. The value of o was selected so that the maximum addition of weight can now
be obtained by selecting vertices from either the sons of the root (gaining ka? — a per
vertex) or their sons (gaining ka3 per vertex). Assume that the former choice is made.
Continuing this way, GR1 selects all the non-leaf vertices of the tree as centers. Its value
is thus equal to the total weight of the leaf edges which is w(APX) = klal.

Approximations for Maximum Transportation 183

GR1
input
(G,w,¢c),c1 =
returns
Vertex disjoint stars with sizes c.
begin
fori=1,...,p
Vii={vi,..., v}
Letv; ¢ {vy, ..., v} maximize the value of.
max Zv,ev.- Z}gv. w(v, x(v, j)
v j)y=c veV;
S xS LleV,j¢V.
x(u,j)e{0,1},yeV,j¢V.
return Stars Sy, ..., S, with centers vy, ..., v, and leaves X, ..., X, respectively.
end GR1

o> cp, such that 3.7 ¢; =|V| - p.
14 i=1

Fig. 4. Algorithm GR1.

The optimal solution selects for centers from the tree only at those vertices at an
even distance from the root. The other centers are arbitrarily chosen from the non-tree
vertices. The weight of an optimal solution is w(OPT) = ka + k3a® + - - - + ktal.

LetR = ka = 1/(1 —) > 1.Thenw(OPT) = R+R3*+. ..+ RL while w(APX) =
RL. Choosing smaller @ > 0, R becomes closer to 1, and the ratio w(OPT)/w(APX) is
about L/2. By increasing L we get the claimed result that GR1 does not guarantee any
constant bound.

4.2. Local Search. Let S be the stars of an approximate solution, and let S be the
stars of an optimal solution, such that the size of S is equal to the size of S7, namely c;.
Denote by s (s7) the center of S (S7).

A move: Remove a star S and place its center at some v;. If v; was a leaf of another
star, we remove that edge. If v is a center of the approximate solution, remove its star.
Replace S7 by a star centered at vy of size ¢;. The leaves of the new star are selected
greedily, using modified weights of edges (v1, v;) which are equal to the original weight
minus the weight of edges selected by other stars of the approximate solution that touch
v;. Stars that had leaves removed from them by this process get the appropriate number of
new leaves arbitrarily. An improving move is one in which the weight of the approximate
solution improves.

THEOREM 4. Local-search returns a %-approximation Jfor MAXIMUM STAR PACKING IN
GENERAL GRAPHS.

PROOF. Define touch(S?) to be the weight of all edges of an approximate solution
touching vertices of S7. At the end of the algorithm, no move is an improving move and
thus moving the center of the approximate solution to its location in the optimal solution

184 E. M. Arkin, R. Hassin, S. Rubinstein, and M. Sviridenko

Local-search
input
(G,w,c)
returns
Vertex disjoint stars with sizes c.
begin
Start with a feasible solution Y, ..., S}.
while 3 an improving move
Perform an improving move.
end while
return stars Sy, ..., S;.
end Local-search

Fig. 5. Local-search algorithm.

is non-improving. Hence,
w(S{) = w(S7) — touch(sy).

Let w(APX) = Y, w(S{) be the value of the approximate solution while w(OPT) =
> w(S?) is the optimal value. We now sum the above inequality over all centers
i = 1,..., p. Note that >, touch(S?) < 2w(APX), since each edge of the approx-
imate solution touches at most two stars of the optimal solutions, as the stars are
vertex disjoint. The summation therefore yields w(APX) > w(OPT) — 2w(APX), or
w(APX) > 1/3w(OPT). O

4.3. Metric Case. We now assume that the weights w, satisfy the triangle inequality.
We describe for this case a %-approximation algorithm.

A greedy maximum matching of size m is obtained by sorting the edges in non-
increasing order of their weights and then scanning the list and selecting edges as long
as they are vertex-disjoint to the previously selected edges and their number does not
exceed m.

LEMMA 5. Let M be a greedy maximum matching. Let M’ be an arbitrary matching.
Then, fori < |M|and 2i — 1 < |M’|, the weight of the ith largest edge in M is greater
than or equal to the weight of the 2i — 1 largest edge in M'.

PROOF. Letey,...,e, be the edges of M’ in non-increasing order of weight. By the
greedy construction, every edge of ¢’ € M'\M is incident to an edge of e € M with
w(e) > w(e’). Since every edge of M can take the above role at most twice, it follows
that for ey, ..., ez;_; we use at least i edges of M, all of which are at least as large as
w(ezi-1). O

Assume that p is even. Our approximation algorithm first computes a greedy maxi-
mum matching of size p/2. The vertices incident to the matching will be the centers of

Approximations for Maximum Transportation 185

Metric
input
1. A complete undirected graph G = (V, E) with weights w, e € E
satisfying the triangle inequality.
2. Constants ¢y > ++- > ¢, > 1 such that), ¢; = |V| — p.

returns
Vertex disjoint stars S\, ..., S, such that |S;| = c;.
begin
Greedily compute a matching M = (e, ..., en) where e; = (a;, b)), and m = [p/2].
if p is even:
Arbitrarily choose from V\{ay, ..., am, b1, ..., bm)
disjoint subsets Vy, ..., V, of sizescy, ..., c, respectively.

fori=1,...,p/2
Set (ryi_y, ry;) to (a;, by) or (b;, a;), each with probability 0.5.

elseif p is oda:
Arbitrarily choose from V\{a,, ..., an, by, ..., bn)
subsets Vi, ..., V, of sizescy, ..., Cp1,0p — 1.
fori=1,...,(p—1)/2
Set (ryi—1, ry) to (a;, by) or (b;, a;), each with probability 0.5.
Tp 1= @y Or T, = by, each with probability 0.5.
Vo =V, Ulam, bu\1rp.

end if
Si := the star with center r; and leaves V;.
return S, ..., S,.
end Metric

Fig. 6. Algorithm for the metric case.

the approximate star packing and the remaining vertices of the graphs will be the leaves.
The algorithm takes edges of the greedy matching one by one by decreasing order of
their values. It assigns two unassigned star centers of stars of the biggest cardinality
to the ends of the edge considered in that step. Since there are two ways to do it, the
algorithm chooses the way to assign centers each with probability % After that the algo-
rithm arbitrarily assigns leaves to centers. The algorithm for odd p works similarly (see
Figure 6 for a precise description of the algorithm).

THEOREM 6. Given that the edge weights satisfy the triangle inequality, algorithm
Metric (Figure 6) is a %-approximation algorithm for MAXIMUM CAPACITATED STAR
PACKING.

PROOE. Let apx be the expected weight of the solution returned by Metric. Let g; be
the length of the ith largest edge in the greedy matching M computed by Metric. Let
o; be the length of the largest edge in the ith star in a given optimal solution of total
weight w(OPT). Note that the corresponding edges are a matching. Let (4, ...,1,) be
the values of {0y, ..., 0p} sorted in a non-increasing order.

186 E. M. Arkin, R. Hassin, S. Rubinstein, and M. Sviridenko

Suppose first that p is even. Then by the triangle inequality and the randomized way
by which the ends of the greedy matching are assigned to centers of stars, the expected
weight of each edge selected to the stars Sy;—; and Sy; is at least g;/2. Therefore,

1 p/2
apx > 3 ;(sz +ca)gi
On the other hand,

p/2 p/2 p/2
w(OPT) £) (cai-102i-1 + €2i021) < Y camrbyor + b)) £ Y (cat + €28y

i=l i=1 i=1

where the second inequality follows from Lemma 5. The theorem follows from the above
two relations.

Suppose now that p is odd. We repeat the same proof but also use the fact that (by
the same lemma) w(en) > 0. O

We note that algorithm Metric can be easily derandomized. When assigning a; and
b; to rp;_y and ry;, choose the one with maximum additional weight. This maximum is
always bigger than the average, which is bigger than (c;—1 + c2i)g: /2.

REMARK 7. The bound given by Theorem 6 is tight, and this is still true even for
the derandomized version. This fact is demonstrated by the following example. Let
V =AU B where A ={1,2,3}and B = {4, 5, 6}. Let w, = 1 if e connects A and B,
and w, = 0 otherwise. Let p = 2 and ¢; = ¢; = 2. Clearly, an optimal solution places
one center in A and the other in B, and uses four unit-weight edges. Hence, w(OPT) = 4.
Algorithm Metric will choose for M some unit-weight edge, say (1, 4). It then partitions
V\{l1, 4} arbitrarily into two 2-sets. A possible choice is V; = {2, 5} and V, = {3, 6}.
For this choice, each of the resulting stars has one zero-weight edge and one unit-weight
edge, so that apx = 2.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Nerwork Flows: Theory, Algorithms, and Applications,
Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] E.M. Arkin and R. Hassin, On Local Search for weighted k-set packing, Mathematics of Operations
Research 23 (1998), 640—648.

[31 E.M. Arkin, R. Hassin, and M. Sviridenko, Approximating the maximum quadratic assignment problem,
Information Processing Letters 77 (2001), 13-16.

[4] B.Chandraand M.M. Halldérsson, Greedy local improvement and weighted set packing approximation,
Journal of Algorithms 39 (2001), 223-240.

[5] M.S.Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Freeman, New York, 1979.

[6] M. Hujter, B. Klinz, and G. Woeginger, A note on the complexity of the transportation problem with a
permutable demand vector, Mathematical Methods of Operations Research 50 (1999), 9-16.

[7] C.A.J. Hurkens, and A. Schrijver, On the size of systems of sets every ¢ of which have an SDR, with
an application to the worst-case ratio of heuristics for packing problems, SIAM Journal on Discrete
Mathematics 2 (1989), 68-72.

Approximations for Maximum Transportation 187

[8] S. Meusel, Minimizing the placement-time on printed circuit boards, Ph.D. Thesis, Fakultit fir Math-
ematik und Informatik, TU Bergakademie Freiberg, 1998.
[9] S. Meusel and R. Burkard, A transportation problem with a permuted demand vector, Mathematical
Methods of Operations Research 50 (1999), 1-7.
[10] B. Steinbrecher, Ein Transportproblem mit permutiertem Bedarfsvektor, Master’s thesis, Fakultét fiir
Mathematik und Informatik, TU Bergakademie Freiberg, 1997.
[11] L.A. Wolsey, Maximizing real-valued submodular functions: primal and dual heuristics for location
problems, Mathematics of Operations Research 7 (1982), 410-425.

