
APPROXIMATING THE TREE AND TOUR COVERS OF A GRAPH

Esther M. Arkin†

Department of Applied Mathematics and Statistics
SUNY Stony Brook

Stony Brook, NY 11794-3600
estie@ams.sunysb.edu

Magnús M. Halldórsson
School of Information Science

Japan Advanced Institute of Science and Technology – Hokuriku
Tatsunokuchi, Ishikawa 923-12, Japan

magnus@jaist-east.ac.jp

Refael Hassin
Department of Statistics and Operations Research

School of Mathematical Sciences
Tel-Aviv University

Tel-Aviv 69978, Israel
hassin@math.tau.ac.il

April 8, 2010

Abstract

The tree and tour cover problems on an edge-weighted graph are to compute a minimum weight tree and
closed walk, respectively, whose vertices form a vertex cover. Both problems are NP-hard. In this note we
give strongly polynomial time, constant factor approximation algorithms for both problems. An interesting
feature of our algorithms is how they combine approximations of other problems, namely the weighted vertex
cover, traveling salesman, and Steiner tree problems.

†Partially supported by NSF Grants CCR-9204585 and ECSE-8857642.

1 Introduction

Our starting point is the weighted vertex cover problem: Given a graph G = (V,E) with weights on the
vertices find a minimum weight set of vertices that “cover” all edges, i.e., a set of vertices V ′ ⊆ V such that
for each edge {u, v} ∈ E at least one of u and v belongs to V ′. This problem is NP-hard [GJ], however it
can be approximated by a cover whose weight is at most double the optimal weight [Ho, BE] (see [Mo] for
an updated survey of bounded approximations for the problem).

In this note we are concerned with a class of problems that generalizes the vertex cover problem. A
subgraph G′ = (V ′, E′) V ′ ⊂ V, E′ ⊂ E is said to cover G = (V,E) if V ′ is a vertex cover of the edges of
the graph G. Given a connected graph G = (V,E) with weights on the edges, we wish to find a minimum
weight subgraph from a given class that covers G.

Specifically, we describe approximation algorithms with bounded error ratios for two cases. In the tree
cover problem the subgraph is required to be connected, and thus, in the case of nonnegative weights it will
be a tree. In the tour cover problem the subgraph is required to be a closed walk. Note that in our problems
the weights are associated with edges, not vertices. Also, we do not assume that the edge weights satisfy the
triangle inequality.

Both problems are clearly NP-hard. The minimum weight tree cover is hard even when all edge weights
are equal, since it is asking for a minimum connected vertex cover ([GJ], page 190). A simple reduction from
the traveling salesman problem, TSP, shows the hardness of the tour cover problem. (For each vertex in an
instance of the TSP, add an edge whose one endpoint is that vertex and the other endpoint is a vertex of
degree 1.) On the other hand, as mentioned above, the vertex cover can be approximated by a cover whose
weight is at most double the optimum weight, and the TSP can be approximated by a tour whose length is
at most 3/2 times the optimum length, if the triangle inequality is assumed [Ch]. (Since we are looking for
a closed walk, which may repeat vertices, not assuming the triangle inequality is not a problem.) Thus we
are interested in finding approximation algorithms to the tree and tour cover problems.

Another motivation of our study is the fact that the minimum weight tour cover can also be viewed
as a watchman route problem, in which the watchman must see every edge by visiting at least one of its
endpoints. The geometric version of the watchman route problem is: Find a shortest path (or cycle) for a
watchman in an art gallery, that allows the watchman to “see” all of the gallery. The resulting problem is
called the watchman route problem, see for example [CN]. To date no approximation methods are known
for the watchman route problem, not even ones that obtain a performance ratio of O(log n) for an n-sided
polygonal environment.

The tour cover problem is a special case of the traveling purchaser problem (TPP) [Ong]. In this problem
we are given in addition to the weighted graph G also a set I of items and a cost matrix describing the cost
of purchasing item i ∈ I at each vertex v ∈ V . (We can assume that each item is available at all vertices by
placing a very large cost for the item at vertices in which it is not available.) The problem is to compute a
tour such that the total costs of travel and purchasing (each item at the least expensive vertex on the tour)
is minimized. To obtain the tour cover problem as a special case, define for each edge {j, k} an item that
can be purchased only at vertices j and k for a unit cost, while its cost elsewhere is very large. The TPP has
both the TSP and the set cover as immediate special cases. The TSP is obtained by defining a unique item
for each vertex, available only at that vertex (or equivalently, available at other vertices at a high cost). In
the set cover problem subsets S1, ..., Sn ⊂ I with weights w1, ..., wn are given. It is obtained as a special case
of TPP by defining the purchase costs at i ∈ V to be zero for Si and one for I \Si, and letting the length of
edge {i, j} be wi+wj

2 . We also note that the TPP generalizes the prize collecting TSP studied by [BGSW].
It follows from [BGLR] that unless P = NP no bounded approximation for set cover, and hence for TPP
exists. Furthermore, an approximation of factor c log n (for any constant c < 1/8) can not be achieved unless
NP is contained in DTIME(nlog log n).

Both vertex cover and TSP are known to have a lower bound of a fixed constant performance ratio
achievable in polynomial time (assuming P 6= NP) [ALMSS]. The reduction above shows the bound applies
to the tour cover problem. The following (similar) reduction from vertex cover shows the bound for the
tree cover problem: Add a new vertex v adjacent to all other vertices, and let all edge weights be equal.
A solution to the tree cover problem, which is a connected vertex cover on the new graph, minus the new
vertex v, corresponds to a solution to the vertex cover of the original graph.

A related class of problems deals with the location of path-shaped or a tree-shaped facilities on a graph

1

[AN, HSL, KLM, KLWF, Mi, R]. There, a subgraph with a given property is looked for such that the
maximum distance between any vertex of the graph and its closest vertex of the subgraph is minimized.
The “cover version” of the problem, where a maximum allowed distance (a radius) is given, and the size of
the subgraph is to be minimized, is especially close to our problem. There, it is desired to cover vertices
while in our problem we cover edges. Using our terminology, the above radius problem could be named “the
dominating subgraph problem” (though some of the authors of the abovementioned references use the term
“covering subgraph”).

We note that the tour and tree problems refer to the same setting but with a different measure of distance.
In the tree version repeating a segment for the second time is free of charge. One could picture an application
of the tree measure in a situation where a tunnel must be dug or a mine field must be crossed. The objective
is then to minimize the total length to be dug or to be freed of mines.

The remainder of this paper is organized as follows: In Section 2 (resp. 3) we give our approximation to
the tree (resp. tour) cover problem, and we conclude with open problems and discussion.

2 Approximating the tree cover

2.1 Weighted Tree Cover

We begin with a formal definition of the problem:

Problem 2.1 (Tree Cover Problem) Given a graph G = (V,E) and weight on the edges we ≥ 0 for all
e ∈ E, find a minimum weight tree, T1 ⊆ E, whose vertices cover all the edges E.

Before describing our approximation algorithm, we show that (not surprisingly) a simple modification of
Prim or Kruskal’s minimum spanning tree algorithms does not yield a constant factor approximation. The
modification is a change to the stopping criteria of the algorithms: Continue adding edges to the tree cover
as long as there is an edge of the original graph which is not covered and the resulting graph is connected.
Consider the following graph G = (V,E), where V = {a, b, c1, c2, . . . , cm}, and the edges are (a, ci) of weight
1, (b, ci) of weight 2, for all 1 ≤ i ≤ m, and edge (a, b) of weight 3. Clearly the optimal tree cover is the
single edge (a, b) of weight 3, but both the modified Prim and Kruskal algorithms will return the tree cover
containing all edges (a, ci) whose total weight is m.

Our algorithm has two main steps: Find a set of edges whose vertices form a vertex cover, and connect
these edges into a tree. We use the following contraction operation before searching for a set of connecting
edges.

Definition 2.2 The contraction of a graph G along a set of edges Y produces a graph G′ = (V ′, E′) and a
set of vertices S ⊆ V ′ defined as follows: For each edge in Y , merge its two endpoints into a single vertex,
whose adjacency list is the union of the two adjacency lists. If parallel edges occur, retain the edge with
smaller weight. The resulting graph is G′. The set S consists of the vertices formed by edge contraction (i.e.,
the nodes in V ′ \ V).

We now state our algorithm, which is really a scheme of algorithms parametrized by k and the algorithms
used to approximate the weighted vertex cover and Steiner tree in steps 3 and 4:

1. Let Q1 be the best solution on at most k vertices, if one exists, and E otherwise.

2. Define a weight for each vertex i, to be the minimum weight of any edge touching it, ŵi = min{we | e =
(i, j) ∈ E}.

3. Find an approximate weighted vertex cover V C on G with vertex weights ŵi. Denote by EC the set
of edges that yield the weights ŵi, for nodes i ∈ V C. In other words, EC is the set of edges obtained
by every vertex in V C “selecting” a shortest edge incident to it.

4. Contract G along edges EC to obtain G′ and S. Find an approximation to the Steiner tree in G′ with
terminals S, and map this solution back to G.

2

5. Let Q2 be the union of the Steiner tree approximation and the edges EC obtained from the vertex
cover approximation. Output the smaller of the two solutions Q1 and Q2. Let APX1 denote the length
of the approximate solution obtained.

First observe that the problem can be solved efficiently if the number of vertices in a solution is small.

Lemma 2.3 The problem of either finding a tree cover with at most k vertices of minimum weight or
determining that no such solution exists, can be solved in time O(|E|+ k2k+3).

Proof: The vertices of a tree cover form a vertex cover. It follows that a solution with at most k vertices must
contain every vertex whose degree is greater than k. We therefore add all such vertices to our prospective
solution, and remove the vertices, incident edges, and possible isolated vertices from the graph. The remaining
graph can contain at most k(k − 1) vertices if there is to be a cover with only k vertices. It then suffices to
check all subsets of size at most k.

Denote by OPTWV C (APXWV C) the weight of the optimal (approximate) weighted vertex cover of the
input graph G. Let T1 be an optimal tree cover, OPT1 its weight, and t1 > 0 the number of vertices in T1.
We have:

Lemma 2.4 OPTWV C ≤ (1 + 1
t1−1)OPT1.

Proof: Consider the optimal tree T1. Let the root r of the tree be a vertex of minimum weight in the tree
ŵr = min{ŵi |i ∈ T1}. Direct all edges in the tree to go towards the root. Define ŵ′

i to be the weight of the
edge in the tree leaving vertex i, and ŵ′

r = 0. (Note that by our choice of edge direction, this definition is
unambiguous.) Clearly, OPT1 =

∑
i∈T1

ŵ′
i, and for every vertex in the tree other than the root, r, ŵ′

i ≥ ŵi.
Also, since T1 is a tree cover, its vertices are a vertex cover of G. We use the notation ŵ(T1) =

∑
i∈T1

ŵi,
etc. Thus:

OPT1 = ŵ′(T1) = ŵ(T1)− ŵr ≥ ŵ(T1)(1− 1/t1) ≥ OPTWV C(1− 1/t1).

The bound given by Lemma 2.4 can be attained, as can be seen from a simple example. Consider a
graph whose vertices are four points on a line with coordinates 0, 1, 2, 3, and the edges are (0, 1), (1, 2) and
(2, 3) all of length 1. The optimal tree cover T1 contains the middle edge (1, 2) and OPT1 = 1, t1 = 2, while
OPTWV C = 2.

Let OPTSt(G′, S) (APXSt(G′, S)) denote the weight of an optimal (approximate) Steiner tree of the
terminals S in the contracted graph G′. Let rSt (rWV C) be the performance ratio obtained by the algorithm
used to approximate the Steiner tree (weighted vertex cover).

Theorem 2.5 The tree cover found by the algorithm above has weight at most rSt + rWV C(1+ 1
k) times the

optimal solution.

Proof: Our solution is the union of two edge sets, thus

APX1 = w(EC) + APXSt(G′, S)
≤ APXWV C + APXSt(G′, S)
≤ rWV C ·OPTWV C + rSt ·OPTSt(G′, S).

The first inequality holds since the weight of every edge in EC is counted by at least one of its endpoints
in V C. Since each terminal of the network (G′, S) is a contraction of one or more edges in which at least one
endpoint is contained in and connected by the optimal tree cover, OPTSt(G′, S) ≤ OPT1. It now follows
from lemma 2.4 that:

APX1 ≤ (rWV C(1 + 1
t1−1) + rSt) OPT1.

If the optimal tree cover contains k or fewer vertices, our heuristic solution will be optimal. Thus we may
assume that t1 ≥ k + 1.

3

The complexity of our approach depends on the algorithms used for the weighted vertex cover and Steiner
tree approximations, and to a lesser extent the value of k. In fact, we have a range of choices that provide
a performance/complexity tradeoff.

For the weighted vertex cover problem, a 2-approximation can be found in linear time, while a 2 −
log log |V |/2 log |V | approximation can be obtained in time O(|V ||E|) [BE]. For a Steiner tree we can obtain:

• 2-approximation in time O(|E|+ |V | log |V |) [Me],

• 11/6-approximation in time O(|S|(|E|+ |V ||S|+ |V | log |V |)) [Ze], and

• 16/9-approximation in time O(|V |2|S|3 + |V |3) [BR].

In particular, our approach can obtain a 34/9 < 3.78 performance ratio in time O(|V |2|S|3 + |V |4), by
using the Steiner tree algorithm of [BR] and the more powerful vertex cover algorithm of [BE], and by
applying lemma 2.3 with k = 2 log n/ log log n. Alternatively, we can find a tree cover of weight at most
4 + O(log log n/ log n) times the optimum in time O(|E|+ |V | log |V |).

2.2 Unweighted Tree Cover

If the underlying graph is unweighted we can obtain better bounds on the approximation ratios. The
algorithm largely stays the same, with weights being unit weights, step 1 checking only for a trivial single-
node solution, and step 3 changed to:

3. Find an approximate vertex cover V C on G. Let EC be the edges of a spanning forest of V C.

Theorem 2.6 Unweighted tree cover can be approximated within a factor of 3 in linear time.

Proof: We use a maximal matching M as our vertex cover approximation. Let t = |M |. If EC is connected,
we output Q2 = EC. Otherwise, (EC is not connected) we let Q be any minimal connected subgraph
spanning S, and output Q2 = Q ∪M .

The optimal cover must contain at least one vertex of each edge of M and must connect them together.
If it doesn’t use any additional vertices, neither will our solution, in which case we use 2t − 1 edges versus
optimal solution of t− 1. Since we may assume t ≥ 2, the ratio is at most 3.

On the other hand, we never use more than 3t− 2 edges since at most one vertex can link two terminals
in the MST solution. Thus, if the optimal solution contains an additional vertex, it has at least t edges.
Combined, we obtain a ratio of (3t− 2)/t ≤ 3.

Better yet, we can get within a factor of 2, which is best possible in the sense that a better constant
would directly lead to an improved performance ratio for the thoroughly studied vertex cover problem.

Theorem 2.7 Unweighted tree cover can be approximated within a factor of 2 in polynomial time.

Proof: For a vertex cover approximation we use the set C ∪W , where C is a maximal collection of disjoint
odd cycles in G and W is an optimal vertex cover of the remaining bipartite graph G \ C. This method is
closely related to the vertex cover algorithms of Bar-Yehuda and Even [BE] and Monien and Speckenmeyer
[MS].

Let t be the number of odd cycles found, |Ci| be the number of vertices in the i-th cycle, and |C| the
total number of vertices in the cycle collection.

Since C ∪W forms a vertex cover, at least one endpoint of every edge is in C ∪W . Thus, to connect the
cycles of C and the vertices of W , at most t + |W | − 1 additional vertices must suffice. Hence, the number
of vertices in the solution is at most 2|W |+ |C|+ t− 1, and the number of edges precisely one less or

APX1 ≤ 2|W |+ |C|+ t− 2.

On the other hand, any solution must contain at least p + 1 vertices from any odd cycle of length 2p + 1,
as well as OPTV C(G \C) = |W | vertices from the remaining part of the graph. Hence, the optimal number
of vertices in a tree cover is at least |W |+

∑
i(|Ci|+ 1)/2, and the number of edges

OPT1 ≥ |W |+
∑

i

(|Ci|+ 1)/2− 1 = |W |+ (|C|+ t)/2 ≥ APX1

2
.

4

A maximal collection of disjoint odd cycles can be found in O(|V ||E|) time by running breadth-first
search starting at each vertex. An optimal vertex cover of a bipartite graph can be found using matching
techniques (see [La, p.190] for a theorem of König-Egervary) in time O(|E|

√
|V |) [HK]. The connecting

vertices can easily be found in linear time. Hence, the combined time complexity is O(|V ||E|).

We can also approximate the following interesting generalization of the problem:

Problem 2.8 (Generalized Unweighted Tree Cover Problem) Given a graph G = (V,E) and a set
of edges E′ where E′ ⊆ E, find a tree, T1 ⊆ E, with minimum number of edges whose vertices cover all the
edges E′.

Theorem 2.9 Using the vertices of a maximal matching of E′ as a vertex cover approximation in step 3,
the performance ratio of our algorithmic scheme for the generalized unweighted problem is at most 1 + rSt.

Proof: Let t be the number of edges in the maximal matching of E′. If we assume that only the edges of
the matching are contracted, then t equals |S|, the number of terminals in the contracted network. If further
edges are contracted, it can only help in reducing the costs of connecting the edges of the matching into a
(Steiner) tree. Also, since an optimal tree cover must contain a point in each edge of the matching and must
connect them together, OPT1 ≥ OPTSt(G′, S). Hence,

APX1

OPT1
≤ |S|+ APXSt(G′, S)

OPTSt(G′, S)
≡ r1. (1)

The number of edges of an optimal Steiner tree is always at least one fewer than the number of terminals
|S|, but when equality holds the Steiner problem reduces to finding a spanning tree of the subgraph induced
by |S|. Thus, we may assume that |S| ≤ OPT1, and hence equation (1) yields r1 ≤ 1 + rSt.

In particular, a ratio of r1 ≤ 25/9 < 2.78 is possible using the Steiner tree algorithm of [BR]. Observe
that r1 to be minimized in equation (1) is of a special nature, and in fact a bound r1 ≤ 2.46 has been
shown [Ha].

3 Approximating the tour cover

The problem we discuss in this section is a modification of the previous one, asking for a tour instead of tree
cover. We use the word “tour”, although we allow repeated vertices and edges.

Problem 3.1 (Tour Cover Problem) Given a graph G = (V,E) and weight on the edges we ≥ 0 for all
e ∈ E, find a minimum weight closed walk, T2 ⊆ E, whose vertices cover all the edges E.

One possible approach for the design of an approximation algorithm is to use an approximated tree
cover, and then add to it either a matching or a duplicate of the tree cover, to obtain a tour. Our method
is somewhat different and yields better approximation bounds.

Our algorithm has five steps where the first three are identical to the weighted tree cover algorithm,
except the first step need only check if a trivial single-node solution exists. The last two steps are replaced
by:

4. Find a TSP approximation of the contracted graph, with distances modified (if necessary) to the
shortest paths distances. Map this solution back to a partial tour Q of G.

5. For each component formed by the edges in EC, form an Eulerian walk from the entry point to the
exit point of Q in the component. Output the tour formed by Q and the Eulerian walks, and let APX2

denote the length of the approximate solution obtained.

Let T2 be an optimal tour cover, OPT2 its weight, and t2 the number of vertices in the optimal tour
cover. We have:

5

Lemma 3.2 If t2 > 1 then OPTWV C ≤ OPT2.

Proof: The proof is very similar to that of Lemma 2.4. (In fact it is easier, since we do not have to treat the
root separately.) Consider the optimal tour T2. Arbitrarily direct all the edges of the tour to go around the
tour in one of the two possible directions. Define ŵ′

i to be the weight of the edge in the tour leaving vertex
i. (Note that by our choice of edge direction, this definition is unambiguous.) Clearly, OPT2 =

∑
i∈T2

ŵ′
i,

and for every vertex in the tour, ŵ′
i ≥ ŵi. Also, since T2 is a tour cover, it contains a vertex cover of all

edges, which we denote by Q. Hence,

OPTWV C ≤ ŵ(Q) ≤ ŵ′(Q) ≤ ŵ′(T2) ≤ OPT2.

The bound stated by Lemma 3.2 can be attained. This can be demonstrated by the same four points
example as in Lemma 2.4, where OPT2 = OPTWV C = 2.

Let OPTTSP (G′, S) (APXTSP (G′, S)) denote the weight of an optimal (an approximate) traveling sales-
man tour on the vertices S inside graph G′. Since edge weights in G′ are the lengths of the shortest paths,
the weights satisfy the triangle inequality. Let rTSP be the constant factor by which the TSP algorithm
given approximates the length of a tour, so APXTSP (G′, S) ≤ rTSP OPTTSP (G′, S). We know that assuming
symmetric distances, and using the fact that the triangle inequality holds, it is possible to get rTSP = 3

2
[Ch].

Theorem 3.3 The tour cover found by the algorithm above has weight at most 2rWV C + rTSP times the
optimal solution.

Proof: There is an Eulerian walk between any two vertices in a connected graph that uses each edge at most
twice. To see that, form a multigraph where every edge is repeated, and subtract from it one copy of some
path between the two vertices. Each vertex has an even degree except the starting and the ending vertex,
hence by the oldest theorem in graph theory, there is a walk that traverses every edge of the multigraph. It
follows from this that

APX2 ≤ 2 ·APXWV C + APXTSP (G′, S).

By Lemma 3.2, OPTWV C ≤ OPT2, and since every component must be connected by the optimal tour,
OPTTSP (G′, S) ≤ OPT2. The theorem now follows.

Finally, we analyze the running time of the algorithm: The first three steps of the algorithm are as for
the tree cover problem. The fourth step in which we use an approximation of the TSP is the most time
consuming part. To achieve the rTSP = 1.5 bound for the case of symmetric distances (and hence 5.5 overall)
we need O(|V |3) time.

An Eulerian walk of a minimum spanning tree of the reduced graph is a walk of all the vertices of cost
at most twice the optimal TSP solution, for a overall ratio of 6. This can be obtained in time O(|E| +
|V | log |V |) since MST computation does not require the triangle inequality, saving the expensive distance
graph computation.

For the unweighted problem, we can argue as in the previous section that a maximal matching as a vertex
cover approximation costs at most the length of a tour cover. This saves a factor of 2, for a ratio of 2 + rSt

in time proportional to the complexity of the TSP heuristic. In particular, this implies a ratio of 3.5 in time
O(|V |3) and a ratio of 4 in linear time. The same bounds hold for the the generalized unweighted problem,
where we are given a subset of the edges to be covered.

4 Open Problems and Discussion

A question arises from the proof of Theorems 2.5 and 3.3, in which we use the fact that an optimal tree or
tour cover must connect all connected components of EC. This is due to the fact that we require our cover
to cover all edges of the graph. If the problem asks for a cover that covers edges E′ ⊂ E our proof is not
valid, and in fact we do not know of a combinatorial approximation algorithm for the weighted version with
a guaranteed bound.

6

An alternative approach approximating the tour cover was suggested by Bienstock and Simchi-Levi
(private communications) similar to the one used in [BGSW] to approximate a prize collecting traveling
salesman tour. The approach uses an LP relaxation of the problem, and careful rounding of the solution.
This method is not as fast as the one we propose, but may yield lower error bounds.

Acknowledgement

We wish to thank David Shmoys and Jaikumar Radhakrishnan for helpful discussions.

References

[AN] Y. P. Aneja and K.P.K. Nair, “Location of a tree shaped facility in a network”, INFOR 30, 319–324,
1992.

[ALMSS] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, “Proof verification and hardness
of approximation problems”, Proc. 33rd IEEE Symposium on Foundations of Computer Science,
Pittsburgh, PA, 14–23, 1992.

[BE] R. Bar-Yehuda and S. Even, “A local-ratio theorem for approximating the weighted vertex cover
problem”, Annals of Disc. Math., 25:27–44, 1985.

[BGLR] M. Bellare, S. Goldwasser, C. Lund and A. Russel, “Efficient probabilistically checkable proofs:
Applications to approximations”, Proc. 25th ACM Symposium on the Theory of Computing, 294–
304, 1993.

[BR] P. Berman and V. Ramaiyer, “Improved approximations for the Steiner tree problem”, Proc. Third
Annual ACM-SIAM Symposium on Discrete Algorithms, Orlando, FL, January, 325–334, 1992.

[BGSW] D. Bienstock, M.X. Goemans, D. Simchi-Levi, and D.P. Williamson, “A note on the prize collecting
traveling salesman problem”, to appear Math. Prog. 1993.

[CN] W.P. Chin and S. Ntafos, “Optimum watchman routes”, Inform. Process. Lett. 28, 39–44, 1988.

[Ch] N. Christofides, “Worst-case analysis of a new heuristic for the traveling salesman problem”, Tech-
nical Report, GSIA, Carnegie-Mellon University, 1976.

[GJ] M. R. Garey, and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, 1978.

[HSL] S.L. Hakimi, E.F. Schmeichel and M. Labbé, “On locating path- or tree-shaped facilities on net-
works”, manuscript, 1990.

[Ha] M. M. Halldórsson, unpublished, 1993.

[Ho] D.S. Hochbaum, “Approximation algorithms for the set covering and vertex cover problems”, SIAM
J. Computing, 11, 555–556, 1982.

[HK] J.E. Hopcroft, and R.E. Karp, “An n5/2 algorithm for maximal matchings in bipartite graphs”,
SIAM J. Computing, 4, 225–231, 1973.

[KLM] R.K. Kincaid, T.J. Lowe and T.L. Morin, “The location of central structures in trees”, Comput.
Opns. Res. 15, 103–113, 1988.

[KLWF] T.U. Kim, T.J. Lowe, J.E. Ward and R.L. Francis, “A minimum length covering subgraph of a
network”, Annals of Operations Research 18, 245–260, 1989.

[La] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
1976.

7

[Me] K. Mehlhorn, “A faster approximation algorithm for the Steiner problem in graphs”, Inform.
Process. Lett., 27, 125–128, 1988.

[Mi] E. Minieka, “The optimal location of a path or tree in a tree network”, Networks 15, 1985.

[MS] B. Monien and E. Speckenmeyer, “Ramsey numbers and an approximation algorithm for the vertex
cover problem”, Acta Inf., 22:115–123, 1985.

[Mo] R. Motwani, “Lecture notes on approximation algorithms”, Volume I, Stanford University, 1992.

[Ong] H.L. Ong, “Approximate algorithms for the traveling purchaser problem”, Operations Research
Letters 1, 201–205, 1982.

[R] M. B. Richey, “Optimal location of a path or tree on a network with cycles”, Networks 20, 391–407,
1990.

[Ze] A. Z. Zelikovsky. “A faster approximation algorithm for the Steiner tree problem in graphs”, Inform.
Process. Lett., 46, 79–83, 1993.

8

