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Abstract

We consider a first-come first-served single-server system with open-
ing and closing times. Service durations are exponentially distributed,
and the total number of arrivals is a Poisson random variable. Natu-
rally each customer wishes to minimize his waiting time. The process
of choosing an arrival time is presented as a (non-cooperative) multi-
player game. Our goal is to find a Nash equilibrium game strategy.
Glazer and Hassin (1983) assume that arrivals before the opening time
of the system are allowed. We study the case where early arrivals are
forbidden. It turns out that unless the system is very heavily loaded,
the equilibrium solution with such a restriction does not reduce the
expected waiting time in a significant way. We also compare the equi-
librium solution with the solution which maximizes social welfare. Fi-
nally, we show how social welfare can be increased in equilibrium by
restricting arrivals to certain points of time.

Keywords: Queues: Markovian, Non-stationary, Equilibrium Arrivals.

1 Introduction

Many real life service systems work in noncontinuous manner, having open-
ing and closing times. Post office services, banks, government offices, li-
braries, shops, drugstores, and bag drop-off services supplied by airlines are
just a few of these services. However, with only few exceptions, existing
theory assumes that service systems are continuously open to accept new
arrivals.

A notable exception is the paper by Glazer and Hassin (1983); we adopt
their assumptions in this paper. The model considers a single-server sys-
tem, which opens at time zero, closes at time T , and applies a first-come
first-served discipline. All customers who arrive before closing time are ad-
mitted to the queue, and the server is available to complete their service as
necessary. Customers choose their arrival times independently. Customers
are indifferent to the exact time of the day they spend in the system, and
their goal is to minimize their expected length of waiting time.

A central assumption in our model is that customers are free to choose
their arrival time and have no preference to their exact time of service during
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the day. We discuss this full flexibility assumption and its implications in
Section 3.3.

The waiting time of a customer is affected by the decisions of the other
customers, and this turns the process into a non-cooperative multi-player
game. A strategy in this game is expressed by a density function giving
the probability distribution of arrival time for a random customer. The
equilibrium strategy, in general, is not optimal, in the sense that it doesn’t
minimize the expected total waiting time of all customers. The reason is
that when deciding when to use the system, a user does not take into account
the effect of his decision on the waiting time of other users (which is referred
to as the external cost).

Assuming exponential service distribution and that the total number
of arrivals is a Poisson random variable, Glazer and Hassin compute the
equilibrium arrival density. An important feature of this model is that early
arrivals, that is, arrivals before opening time, are allowed.

A common way to reduce waiting time is by setting appointments. The
use of appointments has been studied extensively, see for example Cayirli
and Veral (2003). Such systems are commonly seen in health-care services,
but not used by banking systems, for example.

In this paper we approximate the optimal density function, which min-
imizes the expected waiting time over all arriving customers (it is not an
equilibrium solution and therefore arrivals at different instants are associ-
ated with different expected waiting time).

Since one usually cannot force customers to behave in a non-equilibrium
manner, this solution cannot be implemented. However, one might still
try to reduce the waiting time by restricting the instants when arrivals are
admitted. We consider two types of such restrictions. In the first, early
arrivals are eliminated (for example by randomly ordering the customers at
time 0). In the second, new arrivals are admitted only at a small set of
instants. We show that such restrictions often make it possible to obtain an
equilibrium with reduced expected waiting time.

The following illustrative example is a variation of the model, and the
insights we obtain can also help in finding ways to deal with such instances.
The port of Haifa is located in the north of Israel. Trucks line up to obtain
a container which they transport in most cases to the center of Israel, and
then return for another trip. Containers are released from 6am, at which
time there is a very long line of trucks whose drivers arrived earlier to secure
a position in the line. After the first delivery of the day, trucks normally
return in the afternoon for another pickup. It is reasonable to assume that
drivers are sufficiently flexible with respect to when they start their working
day, and that their main goal is to obtain a container at minimum wait as
long as it enables them to return for a second round. Is it possible to reduce
the drivers waiting time by applying a random service order for all those
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present at 6am?
We show that eliminating early arrivals reduces the expected waiting

time significantly only when the system’s load is heavy (equivalently, the
opening interval is short). However, when the server’s utilization is not very
low such a change will hardly save any waiting time. On the other hand, we
show how reduction in waiting can be achieved by other simple restrictions
on the admission times of customers.

The paper is structured as follows. In Section 2 we survey relevant
literature. The queueing model is presented and the equilibrium is computed
in Section 3. The optimal solution is studied in Section 4. In Section 5 we
present numerical results and compare the models, and in Section 6 we
analyze restrictions of the arrivals to small sets of points. Finally, in Section
7 we summarize our main results.

2 Literature Review

The model discussed in this paper is new and has not been studied in this
specific form. However, it draws many similarities to previous results. In
this paper we mention related models and discuss their relevance.

2.1 Transportation models

Research concerning equilibrium timing decisions was initiated in the con-
text of transportation models. Vickrey (1969) described a deterministic
model where commuters have complete knowledge about the other com-
muters choice, and can change their home departure time to avoid periods
of high congestion. This simple model assumes a single bottleneck and a
fixed number of commuters. Delay occurs when the traffic flow exceeds the
capacity of the bottleneck. Each commuter has a preferred time to pass the
bottleneck. There is a cost for arriving earlier than desired, and a cost for
a late arrival. For later developments on this model see Lago and Daganzo
(2007), Arnott (1999), Ostubo and Rapoport (2007), and their bibliogra-
phies. A major difference between these models and our queueing model is
that we assume that customers do not have time preference and the equilib-
rium we compute is symmetric. Moreover, congestion cannot be eliminated
(though it can be alleviated) even when customers behave in a socially op-
timal way.

2.2 Queueing models

The first queueing model where the arrival process is endogenously deter-
mined is Glazer and Hassin (1983), as already described in the introduction.

Rapoport, Stein, Parco and Seale (2004) (see also, Bearden, Rapoport
and Seale (2005)), considered a closely related discrete-time model of a
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queueing system with pre-specified and commonly known opening and clos-
ing times, a fixed and commonly known number of players, fixed service
time, and no early arrivals. A player who arrives late and his service cannot
be completed before closing time is not served. A companion paper, Seale
et al. (2005), studies the same queueing system but allowing early arrivals.
The papers compute equilibrium solutions and verify them experimentally.
The experimental results indicate convergence to equilibrium with experi-
ence in playing the game.

Glazer and Hassin (1987) compute equilibrium arrivals to a server with
batch service scheduled at published instants separated by intervals of a
constant length. Customers who arrive close to the beginning of service
may face a full batch and need to wait for the next service time. This model
has no opening and closing times, and what makes it non-stationary is the
common knowledge of the fixed schedule.

Lariviere and Van Mieghem (2004) assume that each customer chooses
a day within a given interval to arrive at a server. The waiting cost is
monotone increasing with the number of customers arriving on a particular
day. Ideally, customers should split as evenly as possible over the time
interval, and this is also an equilibrium if they have information on each
other’s decision. When this information is not available, in a symmetric
equilibrium, each customer uniformly chooses a day for arrival. In this case,
when the number of customers grows, the arrival distribution approaches
Poisson. Lariviere and Van Mieghem also consider a capacitated version
of their model which is more relevant to our discussion. In this version
customers not served in period t carry over to period t + 1. This version
resembles the model of Glazer and Hassin (1987).

Mazalov and Chuiko (2006) consider a single server with no queue buffer.
There is a “convenience” function C(t), that expresses a desirability of a
service starting at time t, that a player receives if his request arrives at time
t and is served successfully (i.e., the server is not engaged in serving another
request). A player’s strategy is a distribution density of arrival time t.

Wang and Zhu (2004) consider demand that is processed in shifts. Every
customer chooses one of a set of shifts. There is a different cost for waiting
till the shift and for waiting during the shift till the demand is processed. All
customers prefer service at an early time, but in equilibrium the expected
wait in early shifts is higher, and therefore they distribute their demand
over the shifts.

Guo, Liu and Wang (2009) consider equilibrium behavior in a single-
server two-period queueing model where customers decide in the first period
when to arrive to the queue based on their current information and antici-
pated future gains.

Queueing models with customers’ arrival-time decisions are the subject
of Chapter 6 of Hassin and Haviv (2003). Other recent non-queueing models
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with arrival-time decisions in equilibrium are Arbatskaya, Mukhopadhaya
and Rasmusen (2007) and Ostrovsky and Schwarz (2005, 2006).

3 Equilibrium arrival pattern

3.1 The model

The system consists of a single server open for arrivals each day during a
given time interval [0, T ]. The server is available to serve all who arrive
during this interval, including those who remain in the system after time
T . As mentioned in the introduction, the system with early arrivals has
been solved in Glazer and Hassin (1983). We now treat the model in which
arrivals are restricted to [0, T ].

The service duration of a customer is distributed exponentially with pa-
rameter µ. The number of customer arrivals in a day is a Poisson random
variable with parameter λ. Note that the Poisson distribution is obtained
when each individual from a large population independently decides at any
given day whether he needs service during that day (i.e., the Poisson distri-
bution here is the limit of the binomial distribution). Also note that there
is no need to require λ < µT for stability of the model, because the server
is available to continue service as necessary until all customers who arrived
during the day are served.

Each arriving customer independently chooses his arrival time, with the
objective of minimizing his expected waiting time. Since each customer’s
decision affects the waiting time of other customers, customers take into
consideration the strategies of the others. Hence, we consider (Nash) equi-
librium strategies: If we observe that a customer arrives at time t1, and
another arrives at time t2, then it must be that the expected waiting time
is identical at these two points, and moreover, it is not greater than the
expected waiting time at any other instant in [0, T ].

Let λ be the expected number of customer arrivals during the day. Let
N(t) be the number of customers in the system at time t, and let µ be the
service rate.

We compute symmetric solutions, assuming that customers draw their
arrival time using a common density function f(t) t ∈ [0, T ]. Since by
assumption, the total number of arrivals during the day is Poisson, the
equilibrium arrival process is non-homogeneous Poisson, and the numbers of
arrivals in disjoint intervals are independent random variables (see Kingman
(1993) §4.5 for a proof in a more general context). In particular, the rate of
arrivals at t, λ(t) = λf(t), is independent of the arrivals history, in particular
of N(t).

Customers who arrive simultaneously are served in random order. We
will see that the opening time is the only time where multiple arrivals are
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possible.

3.2 The solution

Let w be the equilibrium expected waiting time. Note that in this paper
the waiting time is the time a customer spends in the queue, not including
service time.

An equilibrium solution has the following properties:

• There is a positive probability of arrival at time 0. Otherwise arrival at
time 0 guarantees zero wait, contradicting the equilibrium conditions.

• There is an open time interval starting at 0, say (0, t′), where there
are no arrivals. The reason is that for t > 0 sufficiently small, arriving
at time 0 rather than at t would decrease the expected waiting time.
In fact, by this change the customer saves in expectation the wait for
half of the customers who arrive at time 0.

• There is no positive probability of arrival at any t > 0. If there was
such an instant then arriving just before it would guarantee a strictly
shorter expected waiting time.

Thus, the solution is characterized by the probability p0 to arrive at time
0, and a continuous density function f(t) t ∈ (0, T ] which determines the
arrival density after opening. We divide [0, T ] into three parts: the point 0,
the interval (0, t′], and the interval (t′, T ].

t = 0. The point 0 is special. There is a positive probability p0, for the
customers to arrive at time 0. The expected number of customers
arriving at time 0 is therefore λp0, and a customer who decides to
arrive at time 0 will have on the average to wait for half of these
customers. Hence, the expected waiting time of customers arriving at
0 is λp0

2µ
.

In equilibrium, the expected waiting time for every customer is w. In
particular, the expected waiting time for a customer arriving at 0 is
w. So, λp0

2µ
= w, and

p0 =
2µw

λ
. (1)

Note that if all customers arrived at the same instant then the expected
waiting time of a customer would be λ

2µ
, and this is an upper bound

on w. Therefore, p0 in (1) is in [0,1].

0 < t < t′. Suppose that a customer arrives immediately after time 0. Then, his
expected waiting time is λp0

µ
= 2w. Clearly, the density function has
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to vanish from 0 to some point t′, such that if the new customer arrives
to the system at time t′ then his expected waiting time would be w.
In other words, f(t) = 0 for all 0 < t < t′ and E[N(t′)] = µw.

E[N(0)] = 2µw, and as long as the server is busy, the expected num-
ber of customers in the system decreases at rate µ per time unit. This
means that if the server were guaranteed to be busy continuously dur-
ing [0, t] we would have E[N(t)] = E[N(0)] − µt = µ(2w − t) and
with t′ = w we would have E[N(t′)] = µw, so that the expected wait
of a new arrival at time w is w, and from this point we would have
f(t) > 0. However, there is a positive probability that all customers
who arrive at t = 0 are served before time t = w, and hence E[N(t)]
decreases at a lower rate than µ, giving that

t′ > w. (2)

t′ ≤ t ≤ T . The expected waiting time for a customer who arrives at t is E[N(t)]/µ.
(Note that we refer to the expected number of customers at t given the
equilibrium arrival process, and not to the overall expected number of
customers at a random instant, and therefore we do not need to claim
that the arrivals see time averages (PASTA).) We conclude that for a
customer’s expected waiting time to be constant in [t′, T ], also E[N(t)]
must be constant in this interval.

Let Pk(t) be the probability that exactly k persons are in the system
at time t. Then,

E[N(t + dt)] = E[N(t)] + λf(t)dt − µ(1 − P0(t))dt.

Applying the equilibrium’s condition E[N(t + dt)] = E[N(t)], we ob-
tain

f(t) = [1 − P0(t)]
µ

λ
.

Altogether we have the following equations:

p0 =
2µw

λ
, (3)

Pk(0) ∼ Poisson(2wµ). (4)

For 0 ≤ t ≤ t′:
f(t) = 0, (5)

P ′

0(t) = P1(t)µ, (6)

P ′

k(t) = µ [Pk+1(t) − Pk(t)] , k = 1, 2, . . . (7)
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The value of t′ is determined by

t′ = min

{

T, inf
{

t :

∞
∑

k=1

k · Pk(t) = µw
}

}

. (8)

For t > t′:
f(t) = [1 − P0(t)]

µ

λ
, (9)

P ′

0(t) = P1(t)µ − P0(t)λf(t), (10)

P ′

k(t) = Pk−1(t)λf(t) + Pk+1(t)µ − Pk(t)[λf(t) + µ], k = 1, 2, . . . (11)

For a given value of w we use the above formulas to compute f(t) 0 ≤

t ≤ T . Since the value of w is unknown, we search for a value such that the
resulting density function satisfies

p0 +

∫ T

t′
f(t)dt + pT = 1. (12)

3.3 The full flexibility assumption

The assumption that customers have no preference to the time of service
is central in our model. There are many situations where this assumption
cannot be made, such as patients waiting for emergency medical treatment or
drivers on their way to work. However, there are numerous situations where
customers are more flexible in choosing their arrival time, for example when
taking one’s car for an emission inspection, visiting the bank or the post
office, visiting the drugstore, etc. A similar decision is faced by a customer
making a telephone call to obtain information or order a service while trying
to avoid a long wait.

Our results are applicable in more general contexts where the population
consists of a mixture of flexible and inflexible customers. The inflexible cus-
tomers arrival times are exogenously fixed. Their expected number during
the day is λ1 and the arrival process they generate has probability q0 of
arrival at opening time and a density g(t) t ∈ (0, T ] afterwards. The flexible
customers are free to choose their arrival-time, and they choose it so as to
minimize their expected waiting time. Their expected number is λ2. These
customers take into consideration the existence of inflexible customers.

Such a mixed model is reflected in the experimental outcome of Rapoport
et. al (2004) who observed that “some players stick to the same arrival
time and others switch their arrival times across rounds in an attempt to
increase their payoffs.” We can think of the first type of players as inflexible
customers and the second type as flexible. In the experiments, in spite of
the existence of players of the first type, eventually in the equilibrium all
players had the same expected waiting time. Facing a mixed situation, and
trying to expedite convergence to an equilibrium, some servers announce
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recommended intervals for arrival, trying to induce its flexible customers to
avoid hours that are much used by its inflexible customers. For example,
the State of Delaware Division of Motor Vehicles recently announced that
“normally, the best times for short waits are between 8:00-11:00 a.m. and
2:00-4:00 p.m. on Tuesdays, Thursdays and Fridays when these days do not
fall close to a registration expiration period.”

Let p0 and f(t) t ∈ (0, T ] be the equilibrium solution obtained under the
full flexibility assumption with λ = λ1 + λ2. We observe that if λ1q0 ≤ λp0

and λ1g(t) ≤ λf(t) for t ∈ [0, T ] then the equilibrium solution will be exactly
as under the full flexibility assumption, and the expected waiting time of all
customers, flexible or not, will be identical. Therefore, our results apply as
long as the inflexible customers do not overload the system at any point of
time relative to the computed equilibrium.

Suppose now that the arrival rate induced by inflexible customers exceeds
the rate under the flexibility assumption. In this case a different equilibrium
will be obtained, in which flexible customers refrain from arriving at certain
time intervals where the expected waiting caused by the workload induced
by inflexible customers already exceeds the equilibrium expected waiting
time for flexible customers. The resulting equilibrium can be computed in
a similar way to the one followed in this section, for any given input q0 and
g(t).

4 Socially optimal solution

In the previous section we computed the equilibrium density function. In
this section we compute an approximation to the density function that min-
imizes the expected waiting time.

For numerical computation we applied twofold discretization: We define
two small positive quantities ∆t and ∆p. Customers’ arrivals are restricted
to discrete points 0,∆t, 2∆t, . . . , T . For every t = 0,∆t, . . . , T let pt denote
the probability of arrival at time t, with the obvious condition

∑T
t=0 pt =

1. We further restrict the probabilities pt to be integer multiples of ∆p.
The resulting model becomes exactly the outpatient scheduling problem
solved by Kaandorp and Koole (2007) where each probability quantum ∆p

represents a customer, and customers need to be scheduled to arrive at
0,∆t, . . . , 1.

Kaandorp and Koole (2007) prove that their objective function is mul-

timodular. Multimodularity was introduced by Hajek (1985) and extended
by Altman, Gaujal and Hordijk (2000). It is a property of functions on a
lattice, related to convexity. Koole and van der Sluis (2003) prove that for a
system under certain conditions, local search applied on a limited neighbor-
hood provides a global minimum. The crucial condition is multimodularity
of the objective function.
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We applied local search to compute an optimal density function, starting
from a trial vector p = (p0, p∆t

, . . . , pT ) and striving to reduce the expected
waiting time.

The size of the neighborhood required by a direct application of Koole
and van der Sluis (2003) is limited but still exponential in the number of
points T

∆ . However, satisfying results in practice can also be obtained by
considering only a subset of this neighborhood.

In each iteration we compute the expected waiting time for the given
probability vector p = (p0, p∆t

, . . . , pT ). First we calculate the probabilities
Pk(t) that exactly k customers are in the system at time t. Let Xt be a
Poisson random variable with parameter λpt, representing the number of
arrivals at discrete point t. The probabilities Pk(t) can be calculated using
the following recursive equations:

Pk(0) ∼ Poisson(λp0), (13)

P0(t + ∆t) = P0(t)P [Xt+∆t
= 0] + P1(t)P [Xt+∆t

= 0]µ∆t, (14)

Pk(t+∆t) =
k

∑

i=0

Pi(t)P [Xt+∆t
= k−i](1−µ∆t)+

k+1
∑

i=0

Pi(t)P [Xt+∆t
= k−i+1]µ∆t.

(15)
In equations (14) and (15) we assume that at most one service is completed in
the interval of length ∆t, since ∆t is small and the service time is distributed
exponentially.

Using Equations (13)-(15) we calculate the expected waiting time Et for
a customer who arrives to the system at time t:

E0 =
λp0

2µ
(16)

Et =

N
∑

k=0

Pk(t − ∆t)(1 − µ∆t)
k

µ
+

N
∑

k=0

Pk+1(t − ∆t)µ∆t

k

µ
+

λpt

2µ
, (17)

where t = 0,∆t, . . . , T and N is a number large enough such that the prob-
ability that there are more than N customers in the system at any time t
is negligible. The term λpt

2µ
in these equations arises due to the following

consideration: all customers arriving at the same time are served in random
order. Thus, on the average a customer will have to wait for half of the
customers who arrive with him to be served.

Finally, the expected waiting time is calculated as
∑

t Etpt.
We computed the solution for various values of λ and µ. All density

functions obtained have the same property: The density function is approx-
imately uniform in (0, T ), and there are positive probabilities p0 and pT , for
arrivals at time 0 and T , respectively. For example, in Figure 1 one can see
a typical density function. It gives the density function on (0, T ) and also
depicts the probabilities p0 and pT .

10



µ λ = 10 λ = 15 λ = 20
wopt wapx wopt wapx wopt wapx

8 .238 .239 .439 .443 .673 .681

10 .154 .155 .292 .295 .461 .466

12 .105 .106 .203 .205 .329 .332

14 .069 .075 .147 .147 .242 .244

15 .064 .064 .126 .126 .209 .230

16 .056 .056 .109 .109 .181 .183

18 .042 .042 .082 .083 .139 .140

20 .033 .033 .064 .064 .108 .108

30 .012 .012 .023 .023 .038 .038

Table 1: Minimum expected waiting time wopt vs. the expected waiting time
wapx under the approximate optimum

Consequently, we found that it is possible to assume with almost no loss
of accuracy that the density function which minimizes the expected waiting
time has this form. The desired function depends only on two parameters,
p0 and pT . This way the computations can be simplified. We refer to the
resulting solution as the approximate optimum.

Figure 1: Optimal density function

Table 1 compares the expected waiting time under the optimal solution
and the approximate optimum.
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µ λ = 10 λ = 12 λ = 15 λ = 20

8 .405 .583 .902 1.500
10 .238 .348 .562 1.009
12 .151 .220 .362 .691
14 .101 .146 .241 .479
15 .085 .121 .199 .403
16 .072 .102 .166 .336
18 .053 .074 .119 .240
20 .041 .056 .088 .174
30 .015 .020 .029 .050

Table 2: Expected waiting time in equilibrium with early arrivals

5 Numerical Results

In this section we present some numerical computations for the models de-
scribed above.

We first compute the equilibrium density function with early arrivals,
as in Glazer and Hassin (1983). Table 2 presents the equilibrium expected
waiting time w for various values of λ and µ. Density functions that bring
the system to equilibrium are presented in Figure 2 (left).

Figure 2: Equilibrium density functions with (left) and without (right) early
arrivals (λ = 10)
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µ λ = 10 λ = 15 λ = 20
w t′ p0 w t′ p0 w t′ p0

8 .397 .43 .635 .895 .92 .955 1.250 - 1
10 .231 .27 .470 .555 .58 .740 1.000 - 1
12 .148 .18 .355 .355 .38 .568 .690 .72 .835
14 .100 .14 .280 .238 .26 .439 .478 .50 .669
15 .083 .11 .249 .198 .23 .396 .399 .43 .605
16 .068 .09 .218 .166 .20 .354 .331 .35 .530
18 .050 .07 .180 .118 .15 .283 .238 .26 .428
20 .039 .06 .156 .088 .12 .235 .170 .19 .340
30 .012 .02 .072 .027 .05 .108 .049 .06 .147

Table 3: Equilibrium solutions without early arrivals

µ λ = 10 λ = 15 λ = 20
w p0 pT w p0 pT w p0 pT

8 .238 .082 .299 .443 .006 .391 .681 .048 .464
10 .154 .082 .248 .294 .006 .337 .466 .051 .412
12 .105 .081 .206 .205 .007 .289 .332 .053 .364
14 .069 .077 .172 .147 .007 .248 .244 .056 .321
15 .064 .075 .158 .126 .007 .230 .210 .057 .301
16 .059 .073 .146 .109 .007 .213 .183 .058 .282
18 .052 .069 .125 .083 .008 .183 .139 .059 .248
20 .033 .064 .108 .064 .008 .157 .108 .060 .217
30 .012 .044 .062 .023 .009 .080 .038 .051 .112

Table 4: The approximate optimum

Figure 2 (right) depicts equilibrium density functions and Table 3 presents
the expected waiting time w for various values of λ and µ when early arrivals
are forbidden. For each µ there are given p0, w, and t′.

Recall from Equation (2) that t′ ≥ w. In Table 3 we compare the values
of w and t′. Note that when λ is large and µ is small, all customers arrive
at the time of opening, i.e., p0 = 1.

Table 4 presents the approximate optimum (p0, pT ), and the correspond-
ing value of w for various values of µ and λ.
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µ λ = 10 λ = 15 λ = 20
w1 w2 wapx w1 w2 wapx w1 w2 wapx

8 .405 .397 .239 .902 .895 .443 1.500 1.250 .681
10 .238 .231 .154 .562 .555 .294 1.009 1.000 .466
12 .151 .148 .105 .362 .355 .205 .691 .690 .332
14 .101 .100 .075 .241 .238 .147 .479 .478 .244
15 .085 .083 .064 .199 .198 .126 .403 .399 .230
16 .072 .068 .056 .166 .166 .109 .336 .331 .183
18 .053 .050 .042 .119 .118 .083 .240 .238 .140
20 .041 .039 .033 .088 .088 .064 .174 .170 .108
30 .015 .012 .012 .029 .027 .023 .050 .049 .038

Table 5: Expected waiting time: w1 refers to equilibrium with early arrivals;
w2 to equilibrium without early arrivals; wapx to the approximate optimum

Table 5 compares the expected waiting time in the three models. We see
that the suboptimality of the equilibrium is greater when λ is large and µ
is small. For small λ and big µ the difference is very small.

Figure 3 presents expected waiting times for the three models. We see
that when the system is not heavily loaded, the expected waiting times for
the two models of the system in equilibrium are very similar, despite the
difference in the arrival density functions, as shown in Figure 4.
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Figure 3: A comparison of the three models. The results are presented for
λ = 10.

Figure 4: Density functions (λ = 10, µ = 10): equilibrium with early ar-
rivals; equilibrium when early arrivals are forbidden; approximate optimum
(The graphs do not integrate to 1 because of positive probabilities at 0 and
1)
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For an explanation of this result consider Figure 5. These graphs describe
E[N(t)], the equilibrium expected number of customers at time t, when early
arrivals are allowed (Figure 5(a)) and forbidden (Figure 5(b)).

wµ wµ

2wµ

0 0T−w Tt′

(a) Arrivals before opening (b) No arrivals before opening

E[N(t)] E[N(t)]

A

B

Figure 5: The expected number of customers

There are three intervals in Figure 5(a). In the first, from −w to 0,
f(t) = µ

λ
, and E[N(t)] increases linearly from 0 to wµ. From 0 to T the

expected number of customers is constant and equals wµ, and for t > T it
decreases.

There are also three intervals in Figure 5(b). The expected number of
arrivals at time 0 is 2wµ. From 0 to t′, the number of customers decreases
to wµ. Between t′ and T E[N(t)] stays equal to wµ, and then, for t > T it
decreases, as in the first model.

The area under E[N(t)] is proportional to the expected waiting time.
The effect of eliminating early arrivals is twofold. On the one hand, cus-
tomers who would otherwise arrive before opening now arrive at t = 0,
saving the wait represented by area A in Figure 5(a). On the other hand,
customers who would otherwise arrive in (0, t′) also arrive at the opening
time, and this adds area B in Figure 5(b). These changes have opposite
effects on the total (or expected) waiting time which, and when the system
is not extremely overloaded, they approximately cancel each other.

Consider again Figure 3. When the system is highly loaded (small µ or
large λ), the expected waiting time when early arrivals are forbidden be-
comes significantly smaller than when early arrivals are allowed. To under-
stand this behavior, consider the case with very large λ

µ
. This is equivalent

to assuming that T is very small. Consider the extreme case with T = 0. In
this case it is obvious that excluding early arrivals is desirable. In fact, when
early arrivals are allowed, w is the expected waiting time of a customer who
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arrives at t = 0 and is therefore guaranteed to be the last one. He will wait
for all of the other customers to be served so w = λ

µ
. If, on the other hand,

early arrivals are not allowed, all come at time 0 and w = λ
2µ

. Thus, in the
limit, excluding early arrivals saves half of the waiting time. However, as
we see from the figure, with λ = 10, excluding early arrivals has almost no
effect for µ > 5. Note that µ ≤ 5 means that the server needs at least twice
the length of time the system is open in order to serve the demand – quite
an uncommon situation.

6 Discrete points

We have seen that the expected waiting time of the equilibrium solution,
even when early arrivals are forbidden, may be much higher than under an
optimal solution. Clearly, in most cases it is not possible to induce customers
to cooperate and behave in the optimal way. In this section we show that by
restricting the time intervals in which the system admits new arrivals, it is
possible to obtain arrival density functions that better resemble the optimal
one, and in this way reduce the expected waiting time.

These “degenerate” solutions cannot be part of a first-best socially op-
timal solution, but customers do not follow a socially optimal behavior and
we should be satisfied with second-best solutions. It turns out that by re-
stricting the arrivals we can obtain better solutions than the unrestricted
equilibrium.

We consider two simple models that are easy to implement.

6.1 Two points

Suppose that we restrict admission to two points of time. The optimal choice
for these points is clearly 0 and T . The question is whether it is possible in
this way to reduce the expected waiting time relative to the original model.

In equilibrium, either all customers arrive at time 0, or the expected
waiting time of customers arriving at times 0 and T are equal. Consider
the latter case. The expected number of customers arriving at 0 is λp0, and
their expected waiting time is therefore p0λ

2µ
. Denote by R > 0 the expected

remaining time of service after time T , of customers who arrived at time
0. Then, taking into account that the expected number of customers who
arrive at T is λ(1−p0), the expected waiting time of a customer who arrives

at T is R + (1−p0)λ
2µ

. In equilibrium,

w =
p0λ

2µ
= R +

(1 − p0)λ

2µ
.

Since R > 0,
p0λ

2µ
>

(1 − p0)λ

2µ
=⇒ p0 > 0.5.
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Table 6 shows some numerical results comparing the equilibrium solu-
tions when customers are admitted continuously in [0, T ] (in the two columns
marked Continuous) and when they are only admitted at 0 and T .

The two-points solution reduces the expected waiting time when the
system is highly utilized, but not in the extreme cases where p0 = 1 under
equilibrium in the continuous model, because in this case we clearly also
obtain p0 = 1 in the two-points equilibrium.

6.2 Three points

Trying to further reduce the expected waiting time, we allow customer ar-
rivals in three discrete points. Clearly, the optimal choice contains 0,T and
some intermediate point which we will choose optimally. Some results are
presented in Table 7. The expected waiting time in this model is clearly
less then in the two-points model, since the two-points model is a special
case with two of the three points located together. For every three-points
solution we give the equilibrium expected waiting time w, the probabilities
p0 and pT of arriving at 0 and T , respectively, and the middle point tm.

Tables 8 and 9 compare the four models: approximately optimal solution,
equilibrium when early arrivals are forbidden, arrivals are allowed only at
two points, and arrivals are allowed at three points. As can be seen in
Table 8, the arrival probability at the opening time in equilibrium is much
higher than the desired one. This phenomenon is stronger when the system
is overloaded, with high λ and low µ, and in such cases the gap is narrowed
by restricting arrivals the arrivals to two or three points. Table 9 compares
the resulting expected waiting times.
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Continuous 2 points solution
µ λ w p0 w p0 pT

8 10 .397 .635 .346 .553 .447 X

10 10 .231 .470 .259 .518 .482
12 10 .148 .355 .211 .507 .493
14 10 .100 .280 .179 .502 .498
15 10 .083 .249 .167 .501 .499
16 10 .068 .218 .156 .501 .499
18 10 .050 .180 .139 .501 .499
20 10 .039 .156 .125 .501 .499
30 10 .012 .072 .083 .500 .500

8 15 .895 .955 .745 .794 .206 X

10 15 .555 .740 .429 .572 .428 X

12 15 .355 .568 .330 .527 .473 X

14 15 .238 .439 .274 .511 .489
15 15 .198 .396 .254 .508 .492
16 15 .166 .354 .237 .505 .495
18 15 .118 .283 .209 .502 .498
20 15 .088 .235 .188 .501 .499
30 15 .027 .108 .125 .500 .500

8 20 1.25 1 1.25 1 -
10 20 1 1 1 1 -
12 20 .690 .835 .495 .595 .405 X

14 20 .478 .669 .383 .537 .463 X

15 20 .399 .605 .349 .524 .476 X

16 20 .331 .530 .322 .516 .484 X

18 20 .238 ,428 .282 .507 .493
20 20 .170 .340 .252 .503 .497
30 20 .049 .147 .167 .501 .499

Table 6: Equilibrium without early arrivals vs. two-points equilibrium. The
right-most column indicates whether the two-points solution reduces w.
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Continuous 3 points solution
µ λ w p0 w p0 tm pT wapx

8 10 .397 .635 .319 .50 .50 .34 .238 X

10 10 .231 .470 .210 .40 .50 .32 .154 X

12 10 .148 .355 .162 .39 .44 .35 .105
14 10 .100 .280 .133 .37 .63 .28 .075
15 10 .083 .249 .124 .37 .67 .27 .064
16 10 .068 .218 .109 .35 .45 .34 .056
18 10 .050 .180 .095 .34 .52 .33 .042
20 10 .039 .156 .091 .34 .74 .28 .033
30 10 .012 .072 .057 .34 .76 .32 .012

8 15 .895 .955 .745 .79 - .21 .443 X

10 15 .555 .740 .429 .57 - .43 .294 X

12 15 .355 .568 .293 .47 .50 .34 .205 X

14 15 .238 .439 .217 .40 .51 .32 .147 X

15 15 .198 .396 .195 .39 .53 .31 .126 X

16 15 .166 .354 .183 .39 .62 .26 .109
18 15 .118 .283 .166 .38 .34 .39 .083
20 15 .088 .235 .132 .35 .34 .31 .064
30 15 .027 .108 .085 .34 .34 .34 .023

8 20 1.25 1 1.25 1 - - .681
10 20 1 1 1 1 - - .466
12 20 .690 .835 .495 .59 - .41 .332 X

14 20 .478 .669 .357 .50 .53 .34 .244 X

15 20 .399 .605 .312 .47 .50 .35 .210 X

16 20 .331 .530 .306 .49 .38 .45 .183 X

18 20 .238 .428 .221 .40 .48 .34 .139 X

20 20 .170 .340 .185 .37 .52 .32 .108
30 20 .049 .147 .114 .34 .63 .32 .038

Table 7: Equilibrium without early arrivals vs. three-points equilibrium.
The right-most column indicates whether the three-points solution reduces
w.

20



µ λ = 10 λ = 15 λ = 20
papx peq p2p p3p papx peq p2p p3p papx peq p2p p3p

8 .08 .63 .55 .50 .006 .95 .79 .79 .05 1 1 1
10 .08 .47 .52 .40 .006 .74 .57 .57 .05 1 1 1
12 .08 .35 .51 .39 .007 .57 .53 .47 .05 .83 .59 .59
14 .08 .28 .50 .37 .007 .44 .51 .40 .06 .67 .54 .50
15 .07 .25 .50 .37 .007 .40 .51 .39 .06 .60 .52 .47
16 .07 .22 .50 .35 .007 .35 .50 .39 .06 .53 .52 .49
18 .07 .18 .50 .34 .008 .28 .50 .38 .06 .43 .51 .40
20 .06 .16 .50 .34 .008 .23 .50 .35 .06 .34 .50 .37
30 .04 .07 .50 .34 .009 .11 .50 .34 .05 .15 .50 .34

Table 8: Probability of arrival at t = 0: papx - approximate optimal; peq -
equilibrium without early arrivals; p2p - arrivals at two points; p3p - arrivals
at three points

µ λ = 10 λ = 15 λ = 20
wapx weq w2p w3p wapx weq w2p w3p wapx weq w2p w3p

8 .24 .40 .35 .32 .44 .89 .74 .74 .68 1.25 1.25 1.25
10 .15 .23 .26 .21 .30 .55 .43 .43 .47 1.00 1.00 1.00
12 .10 .15 .21 .16 .20 .35 .33 .29 .33 .69 .49 .49
14 .07 .10 .18 .13 .15 .24 .27 .22 .24 .48 .38 .36
15 .06 .08 .17 .12 .13 .20 .25 .19 .21 .40 .35 .31
16 .06 .07 .16 .11 .11 .17 .24 .18 .18 .33 .32 .31
18 .05 .05 .14 .09 .08 .12 .21 .17 .14 .24 .28 .22
20 .03 .04 .12 .09 .06 .09 .19 .13 .11 .17 .25 .18
30 .01 .01 .08 .06 .02 .03 .12 .08 .04 .05 .17 .11

Table 9: Expected waiting time: wapx - approximate optimal; weq - equi-
librium without early arrivals; w2p - arrivals at two points; w3p - arrivals at
three points
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7 Concluding remarks

This paper considers a non-stationary queueing model with opening and
closing times. We characterize the equilibrium solution and describe the
underlying equations that govern it. Since an analytical solution of this
model is out of reach, we solve it numerically. Our model is a variation of
the one solved by Glazer and Hassin (1983), and it is motivated by natural
questions concerning the ability to reduce the waiting time of customers who
act independently and aim to maximize their individual welfare. This line of
research falls within the growing research on strategic behavior in queueing
systems.

We show that excluding early arrivals doesn’t yield a significant reduc-
tion in expected waiting time unless the system is very heavily loaded (i.e.,
it is open for a short time relative to the demand).

The optimal strategy can be approximated fairly well by uniform dis-
tribution in the open interval (0, T ) and positive probabilities p0 and pT ,
representing the probabilities for a customer to arrive at time 0 and T respec-
tively. Such approximate solution can be characterized by two parameters
only. We compare an approximate optimal solution with the equilibrium
solutions. The ratio between the expected waiting time under equilibrium
and under the optimal solution increases when the system becomes more
heavily loaded.

Finally, we computed the expected waiting time in equilibrium when
arrivals are restricted to time 0 or T , and when they are in addition allowed
at one internal point. Improved results are obtained by these restrictions
of the arrival instants when the system is heavily loaded. In these cases,
when the system is open continuously in [0, T ], too many customers tend to
arrive at t = 0 ignoring the effect their arrival has on those who arrive later.
The two and three-points restrictions reduce the probability that a customer
arrives at the opening instant and by this reduce the expected waiting time.

A nice feature of these results is the simplicity of their implementation, in
contrast, for example, to the common way of controlling customers behavior
through price mechanisms. In our case, such a mechanism could be a time-
dependent entry fee that seems quite impractical. We leave the question
of whether other practical alternatives exist for future research. Another
question for future research is whether restricting arrival times to small
sets can be useful in reducing customers’ waiting time in other models, for
example in the scheduled batch service considered by Glazer and Hassin
(1987).
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