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Short Papers
A Model of Saliency-Based Visual Attention

for Rapid Scene Analysis

Laurent Itti, Christof Koch, and Ernst Niebur

Abstract—A visual attention system, inspired by the behavior and the
neuronal architecture of the early primate visual system, is presented.
Multiscale image features are combined into a single topographical
saliency map. A dynamical neural network then selects attended
locations in order of decreasing saliency. The system breaks down the
complex problem of scene understanding by rapidly selecting, in a
computationally efficient manner, conspicuous locations to be analyzed
in detail.

Index Terms—Visual attention, scene analysis, feature extraction,
target detection, visual search.

————————   F   ————————

1 INTRODUCTION

PRIMATES have a remarkable ability to interpret complex scenes in
real time, despite the limited speed of the neuronal hardware avail-
able for such tasks. Intermediate and higher visual processes appear
to select a subset of the available sensory information before further
processing [1], most likely to reduce the complexity of scene analysis
[2]. This selection appears to be implemented in the form of a spa-
tially circumscribed region of the visual field, the so-called “focus of
attention,” which scans the scene both in a rapid, bottom-up, sali-
ency-driven, and task-independent manner as well as in a slower,
top-down, volition-controlled, and task-dependent manner [2].

Models of attention include “dynamic routing” models, in
which information from only a small region of the visual field can
progress through the cortical visual hierarchy. The attended region
is selected through dynamic modifications of cortical connectivity
or through the establishment of specific temporal patterns of ac-
tivity, under both top-down (task-dependent) and bottom-up
(scene-dependent) control [3], [2], [1].

The model used here (Fig. 1) builds on a second biologically-
plausible architecture, proposed by Koch and Ullman [4] and at
the basis of several models [5], [6]. It is related to the so-called
“feature integration theory,” explaining human visual search
strategies [7]. Visual input is first decomposed into a set of topo-
graphic feature maps. Different spatial locations then compete for
saliency within each map, such that only locations which locally
stand out from their surround can persist. All feature maps feed, in
a purely bottom-up manner, into a master “saliency map,” which
topographically codes for local conspicuity over the entire visual
scene. In primates, such a map is believed to be located in the
posterior parietal cortex [8] as well as in the various visual maps in
the pulvinar nuclei of the thalamus [9]. The model’s saliency map
is endowed with internal dynamics which generate attentional
shifts. This model consequently represents a complete account of

bottom-up saliency and does not require any top-down guidance
to shift attention. This framework provides a massively parallel
method for the fast selection of a small number of interesting im-
age locations to be analyzed by more complex and time-
consuming object-recognition processes. Extending this approach
in “guided-search,” feedback from higher cortical areas (e.g.,
knowledge about targets to be found) was used to weight the im-
portance of different features [10], such that only those with high
weights could reach higher processing levels.

2 MODEL

Input is provided in the form of static color images, usually digit-
ized at 640 ¥ 480 resolution. Nine spatial scales are created using
dyadic Gaussian pyramids [11], which progressively low-pass
filter and subsample the input image, yielding horizontal and ver-
tical image-reduction factors ranging from 1:1 (scale zero) to 1:256
(scale eight) in eight octaves.

Each feature is computed by a set of linear “center-surround”
operations akin to visual receptive fields (Fig. 1): Typical visual
neurons are most sensitive in a small region of the visual space
(the center), while stimuli presented in a broader, weaker antago-
nistic region concentric with the center (the surround) inhibit the
neuronal response. Such an architecture, sensitive to local spatial
discontinuities, is particularly well-suited to detecting locations
which stand out from their surround and is a general computa-
tional principle in the retina, lateral geniculate nucleus, and pri-
mary visual cortex [12]. Center-surround is implemented in the
model as the difference between fine and coarse scales: The center
is a pixel at scale c Œ {2, 3, 4}, and the surround is the corresponding
pixel at scale s = c + d, with d Œ {3, 4}. The across-scale difference
between two maps, denoted “*” below, is obtained by interpolation
to the finer scale and point-by-point subtraction. Using several scales
not only for c but also for d = s - c yields truly multiscale feature
extraction, by including different size ratios between the center and
surround regions (contrary to previously used fixed ratios [5]).

2.1 Extraction of Early Visual Features
With r, g, and b being the red, green, and blue channels of the in-
put image, an intensity image I is obtained as I = (r + g + b)/3. I is

0162-8828/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� L. Itti and C. Koch are with the Computation and Neural Systems Pro-
gram, California Institute of Technology—139-74, Pasadena, CA 91125.
�E-mail: {itti, koch}@klab.caltech.edu.

•� E. Niebur is with the Johns Hopkins University, Krieger Mind/Brain Insti-
tute, Baltimore, MD 21218. E-mail: niebur@jhu.edu.

Manuscript received 5 Feb. 1997; revised 10 Aug. 1998. Recommended for accep-
tance by D. Geiger.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 107349.

Fig. 1. General architecture of the model.
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used to create a Gaussian pyramid I(s), where s Œ [0..8] is the
scale. The r, g, and b channels are normalized by I in order to de-
couple hue from intensity. However, because hue variations are
not perceivable at very low luminance (and hence are not salient),
normalization is only applied at the locations where I is larger than
1/10 of its maximum over the entire image (other locations yield
zero r, g, and b). Four broadly-tuned color channels are created:
R = r - (g + b)/2 for red, G = g - (r + b)/2 for green, B = b - (r + g)/2
for blue, and Y = (r + g)/2 - |r - g|/2 - b for yellow (negative
values are set to zero). Four Gaussian pyramids R(s), G(s), B(s),
and Y(s) are created from these color channels.

Center-surround differences (* defined previously) between a
“center” fine scale c and a “surround” coarser scale s yield the
feature maps. The first set of feature maps is concerned with inten-
sity contrast, which, in mammals, is detected by neurons sensitive
either to dark centers on bright surrounds or to bright centers on
dark surrounds [12]. Here, both types of sensitivities are simulta-
neously computed (using a rectification) in a set of six maps ,(c, s),
with c Œ {2, 3, 4} and s = c + d, d Œ {3, 4}:

,(c, s) = |I(c) * I(s)|.                                       (1)
A second set of maps is similarly constructed for the color

channels, which, in cortex, are represented using a so-called “color
double-opponent” system: In the center of their receptive fields,
neurons are excited by one color (e.g., red) and inhibited by an-
other (e.g., green), while the converse is true in the surround. Such
spatial and chromatic opponency exists for the red/green,
green/red, blue/yellow, and yellow/blue color pairs in human
primary visual cortex [13]. Accordingly, maps 5*(c, s) are created
in the model to simultaneously account for red/green and
green/red double opponency (2) and %<(c, s) for blue/yellow and
yellow/blue double opponency (3):

5*(c, s) = |(R(c) - G(c)) * (G(s) - R(s))|                   (2)

%<(c, s) = |(B(c) - Y(c)) * (Y(s) - B(s))|.                   (3)

Local orientation information is obtained from I using oriented
Gabor pyramids O(s, q), where s Œ [0..8] represents the scale and
q Œ {0o, 45o, 90o, 135o} is the preferred orientation [11]. (Gabor fil-
ters, which are the product of a cosine grating and a 2D Gaussian
envelope, approximate the receptive field sensitivity profile (impulse
response) of orientation-selective neurons in primary visual cortex
[12].) Orientation feature maps, 2(c, s, q), encode, as a group, local
orientation contrast between the center and surround scales:

2(c, s, q) = |O(c, q) * O(s, q)|.                           (4)

In total, 42 feature maps are computed: six for intensity, 12 for
color, and 24 for orientation.

2.2 The Saliency Map
The purpose of the saliency map is to represent the conspicuity—
or “saliency”—at every location in the visual field by a scalar quan-
tity and to guide the selection of attended locations, based on the
spatial distribution of saliency. A combination of the feature maps
provides bottom-up input to the saliency map, modeled as a dy-
namical neural network.

One difficulty in combining different feature maps is that they
represent a priori not comparable modalities, with different dy-
namic ranges and extraction mechanisms. Also, because all 42
feature maps are combined, salient objects appearing strongly in
only a few maps may be masked by noise or by less-salient objects
present in a larger number of maps.

In the absence of top-down supervision, we propose a map
normalization operator, 1(.), which globally promotes maps in
which a small number of strong peaks of activity (conspicuous loca-
tions) is present, while globally suppressing maps which contain
numerous comparable peak responses. 1(.) consists of (Fig. 2):

1)� normalizing the values in the map to a fixed range [0..M], in
order to eliminate modality-dependent amplitude differences;

2)� finding the location of the map’s global maximum M and
computing the average m  of all its other local maxima; and

3)� globally multiplying the map by M m−1 62 .

Only local maxima of activity are considered, such that 1(.)
compares responses associated with meaningful “activitation
spots” in the map and ignores homogeneous areas. Comparing the
maximum activity in the entire map to the average overall activa-
tion measures how different the most active location is from the
average. When this difference is large, the most active location
stands out, and the map is strongly promoted. When the difference
is small, the map contains nothing unique and is suppressed. The
biological motivation behind the design of 1(.) is that it coarsely
replicates cortical lateral inhibition mechanisms, in which neigh-
boring similar features inhibit each other via specific, anatomically
defined connections [15].

Feature maps are combined into three “conspicuity maps,” ,
for intensity (5), &  for color (6), and 2  for orientation (7), at the
scale (s = 4) of the saliency map. They are obtained through
across-scale addition, “≈,” which consists of reduction of each
map to scale four and point-by-point addition:
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For orientation, four intermediary maps are first created by
combination of the six feature maps for a given q and are then
combined into a single orientation conspicuity map:
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The motivation for the creation of three separate channels, , ,
& , and 2 , and their individual normalization is the hypothesis
that similar features compete strongly for saliency, while different
modalities contribute independently to the saliency map. The three
conspicuity maps are normalized and summed into the final input
6 to the saliency map:

6 1 , 1 & 1 2= + +
1
3 3 8 3 8 3 84 9 .                          (8)

At any given time, the maximum of the saliency map (SM) de-
fines the most salient image location, to which the focus of atten-
tion (FOA) should be directed. We could now simply select the
most active location as defining the point where the model should
next attend. However, in a neuronally plausible implementation,
we model the SM as a 2D layer of leaky integrate-and-fire neurons
at scale four. These model neurons consist of a single capacitance
which integrates the charge delivered by synaptic input, of a leak-
age conductance, and of a voltage threshold. When the threshold is

Fig. 2. The normalization operator 1(.).
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reached, a prototypical spike is generated, and the capacitive
charge is shunted to zero [14]. The SM feeds into a biologically-
plausible 2D “winner-take-all” (WTA) neural network [4], [1] at

scale s = 4, in which synaptic interactions among units ensure that
only the most active location remains, while all other locations are
suppressed.

The neurons in the SM receive excitatory inputs from 6 and are
all independent. The potential of SM neurons at more salient loca-
tions hence increases faster (these neurons are used as pure inte-
grators and do not fire). Each SM neuron excites its corresponding
WTA neuron. All WTA neurons also evolve independently of each
other, until one (the “winner”) first reaches threshold and fires.
This triggers three simultaneous mechanisms (Fig. 3):

1)� The FOA is shifted to the location of the winner neuron;
2)� the global inhibition of the WTA is triggered and completely

inhibits (resets) all WTA neurons;
3)� local inhibition is transiently activated in the SM, in an area

with the size and new location of the FOA; this not only
yields dynamical shifts of the FOA, by allowing the next
most salient location to subsequently become the winner,
but it also prevents the FOA from immediately returning to
a previously-attended location.

Such an “inhibition of return” has been demonstrated in human
visual psychophysics [16]. In order to slightly bias the model to
subsequently jump to salient locations spatially close to the cur-
rently-attended location, a small excitation is transiently activated
in the SM, in a near surround of the FOA (“proximity preference”
rule of Koch and Ullman [4]).

Since we do not model any top-down attentional compo-
nent, the FOA is a simple disk whose radius is fixed to one-
sixth of the smaller of the input image width or height. The
time constants, conductances, and firing thresholds of the
simulated neurons were chosen (see [17] for details) so that the
FOA jumps from one salient location to the next in approxi-
mately 30–70 ms (simulated time), and that an attended area is
inhibited for approximately 500–900 ms (Fig. 3), as has been
observed psychophysically [16]. The difference in the relative
magnitude of these delays proved sufficient to ensure thorough
scanning of the image and prevented cycling through only a
limited number of locations. All parameters are fixed in our
implementation [17], and the system proved stable over time
for all images studied.

2.3 Comparison With Spatial Frequency Content Models
Reinagel and Zador [18] recently used an eye-tracking device to
analyze the local spatial frequency distributions along eye scan
paths generated by humans while free-viewing gray-scale images.
They found the spatial frequency content at the fixated locations to
be significantly higher than, on average, at random locations. Al-
though eye trajectories can differ from attentional trajectories un-
der volitional control [1], visual attention is often thought as a pre-
occulomotor mechanism, strongly influencing free-viewing. It was,
hence, interesting to investigate whether our model would repro-
duce the findings of Reinagel and Zador.

We constructed a simple measure of spatial frequency content
(SFC): At a given image location, a 16 ¥ 16 image patch is extracted
from each I(2), R(2), G(2), B(2), and Y(2) map, and 2D Fast Fourier
Transforms (FFTs) are applied to the patches. For each patch, a
threshold is applied to compute the number of nonnegligible FFT
coefficients; the threshold corresponds to the FFT amplitude of a
just-perceivable grating (1 percent contrast). The SFC measure is
the average of the numbers of nonnegligible coefficients in the five
corresponding patches. The size and scale of the patches were cho-
sen such that the SFC measure is sensitive to approximately the
same frequency and resolution ranges as our model; also, our SFC
measure is computed in the RGB channels as well as in intensity,
like the model. Using this measure, an SFC map is created at scale
four and is compared to the saliency map (Fig. 4).

Fig. 3. Example of operation of the model with a natural image. Parallel
feature extraction yields the three conspicuity maps for color contrasts
(& ), intensity contrasts (, ), and orientation contrasts (2 ). These are
combined to form input 6 to the saliency map (SM). The most salient
location is the orange telephone box, which appeared very strongly in
& ; it becomes the first attended location (92 ms simulated time). After
the inhibition-of-return feedback inhibits this location in the saliency
map, the next most salient locations are successively selected.
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3 RESULTS AND DISCUSSION

Although the concept of a saliency map has been widely used in
FOA models [1], [3], [7], little detail is usually provided about its
construction and dynamics. Here, we examine how the feed-
forward feature-extraction stages, the map combination strategy,
and the temporal properties of the saliency map all contribute to
the overall system performance.

3.1 General Performance
The model was extensively tested with artificial images to ensure
proper functioning. For example, several objects of the same shape
but varying contrast with the background were attended to in the
order of decreasing contrast. The model proved very robust to the
addition of noise to such images (Fig. 5), particularly if the prop-
erties of the noise (e.g., its color) were not directly conflicting with
the main feature of the target.

                                       (1)                                                                   (2)                                                                    (3)

Fig. 4. (a) Examples of color images. (b) The corresponding saliency map inputs. (c) Spatial frequency content (SFC) maps. (d) Locations at
which input to the saliency map was higher than 98 percent of its maximum (yellow circles) and image patches for which the SFC was higher than
98 percent of its maximum (red squares). The saliency maps are very robust to noise, while SFC is not.
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The model was able to reproduce human performance for a
number of pop-out tasks [7], using images of the type shown in
Fig. 2. When a target differed from an array of surrounding dis-
tractors by its unique orientation (as in Fig. 2), color, intensity, or
size, it was always the first attended location, irrespective of the
number of distractors. Contrarily, when the target differed from the
distractors only by a conjunction of features (e.g., it was the only red
horizontal bar in a mixed array of red vertical and green horizontal
bars), the search time necessary to find the target increased linearly
with the number of distractors. Both results have been widely ob-
served in humans [7] and are discussed in Section 3.2.

We also tested the model with real images, ranging from natu-
ral outdoor scenes to artistic paintings and using 1(.) to normalize

the feature maps (Fig. 3 and [17]). With many such images, it is
difficult to objectively evaluate the model, because no objective
reference is available for comparison, and observers may disagree
on which locations are the most salient. However, in all images
studied, most of the attended locations were objects of interest,
such as faces, flags, persons, buildings, or vehicles.

Model predictions were compared to the measure of local SFC,
in an experiment similar to that of Reinagel and Zador [18], using
natural scenes with salient traffic signs (90 images), a red soda can
(104 images), or a vehicle’s emergency triangle symbol (64 images).
Similar to Reinagel and Zador’s findings, the SFC at attended lo-
cations was significantly higher than the average SFC, by a factor
decreasing from 2.5 ± 0.05 at the first attended location to 1.6 ± 0.05

Fig. 5. Influence of noise on detection performance, illustrated with a 768 ¥ 512 scene in which a target (two people) is salient by its unique color
contrast. The mean ± S.E. of false detections before target found is shown as a function of noise density for 50 instantiations of the noise. The
system is very robust to noise which does not directly interfere with the main feature of the target (left; intensity noise and color target). When the
noise has similar properties to the target, it impairs the target’s saliency and the system first attends to objects salient for other features (here,
coarse-scale variations of intensity).
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at the eighth attended location. Although this result does not neces-
sarily indicate similarity between human eye fixations and the
model’s attentional trajectories, it indicates that the model, like hu-
mans, is attracted to “informative” image locations, according to the
common assumption that regions with richer spectral content are
more informative. The SFC map was similar to the saliency map for
most images (e.g., Fig. 4.1). However, both maps differed substan-
tially for images with strong, extended variations of illumination or
color (e.g., due to speckle noise): While such areas exhibited uni-
formly high SFC, they had low saliency because of their uniformity
(Fig. 4.2 and Fig. 4.3). In such images, the saliency map was usually
in better agreement with our subjective perception of saliency.
Quantitatively, for the 258 images studied here, the SFC at attended
locations was significantly lower than the maximum SFC, by a factor
decreasing from 0.90 ± 0.02 at the first attended location to 0.55 ±
0.05 at the eighth attended location: While the model was attending
to locations with high SFC, these were not necessarily the locations
with highest SFC. It consequently seems that saliency is more than
just a measure of local SFC. The model, which implements within-
feature spatial competition, captured subjective saliency better than
the purely local SFC measure.

3.2 Strengths and Limitations
We have proposed a model whose architecture and components
mimic the properties of primate early vision. Despite its simple
architecture and feed-forward feature-extraction mechanisms, the
model is capable of strong performance with complex natural
scenes. For example, it quickly detected salient traffic signs of var-
ied shapes (round, triangular, square, rectangular), colors (red,
blue, white, orange, black), and textures (letter markings, arrows,
stripes, circles), although it had not been designed for this pur-
pose. Such strong performance reinforces the idea that a unique
saliency map, receiving input from early visual processes, could
effectively guide bottom-up attention in primates [4], [10], [5], [8].
From a computational viewpoint, the major strength of this ap-
proach lies in the massively parallel implementation, not only of
the computationally expensive early feature extraction stages, but
also of the attention-focusing system. More than previous models
based extensively on relaxation techniques [5], our architecture
could easily allow for real-time operation on dedicated hardware.

The type of performance which can be expected from this model
critically depends on one factor: Only object features explicitly rep-
resented in at least one of the feature maps can lead to pop-out, that
is, rapid detection independent of the number of distracting objects
[7]. Without modifying the preattentive feature-extraction stages,
our model cannot detect conjunctions of features. While our system
immediately detects a target which differs from surrounding dis-
tractors by its unique size, intensity, color, or orientation (properties
which we have implemented because they have been very well
characterized in primary visual cortex), it will fail at detecting tar-
gets salient for unimplemented feature types (e.g., T junctions or line
terminators, for which the existence of specific neural detectors re-
mains controversial). For simplicity, we also have not implemented
any recurrent mechanism within the feature maps and, hence,
cannot reproduce phenomena like contour completion and closure,
which are important for certain types of human pop-out [19]. In addi-
tion, at present, our model does not include any magnocellular motion
channel, which is known to play a strong role in human saliency [5].

A critical model component is the normalization 1(.), which
provided a general mechanism for computing saliency in any situa-
tion. The resulting saliency measure implemented by the model,
although often related to local SFC, was closer to human saliency,
because it implemented spatial competition between salient locations.
Our feed-forward implementation of 1(.) is faster and simpler than
previously-proposed iterative schemes [5]. Neuronally, spatial com-
petition effects similar to 1(.) have been observed in the nonclassi-

cal receptive field of cells in striate and extrastriate cortex [15].
In conclusion, we have presented a conceptually simple com-

putational model for saliency-driven focal visual attention. The
biological insight guiding its architecture proved efficient in re-
producing some of the performances of primate visual systems.
The efficiency of this approach for target detection critically de-
pends on the feature types implemented. The framework pre-
sented here can consequently be easily tailored to arbitrary tasks
through the implementation of dedicated feature maps.
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