Nerve cells types

Cortical Layers

Action Potentials

Action Potentials

Action Potentials

Synapses

Neural circuits

- Receptive field model: somatic/visual/auditory
 Binary/continuous
- Barlow's dogma
- Kernel representation

Neural circuits

- Spatial summation: amount of active fibers
- Temporal summation: intensity of firing
- Excitatory and Inhibitory circuits
- Converging signals
- Lateral Inhibition
- Reverberation by synaptic delay

Measuring methods

- Intra cellular
- Single unit Extra cellular
- PSTH
- Multi unit Extra cellular
- Large scale (CNV/P300)
- fIMAGING

McCulloch & Pitts 1943: Formal Neurons

Formal Neuron extensions

- Discrete continuous
- Different threshold functions
- Integrate & Fire models

Formal Neural Networks

Psychological level

If a cold material is applied and immediately removed, it feels hot. If it is not removed, it feels cold. If hot material is applied it feels hot.

Sensory level

"Heat receptors" and "Cold Receptors"

Logical level

C(dt) and C(2dt) --> "cold" C(dt) and not C(2dt) --> "hot" H(dt), H(2dt) --> "hot"

Psychological level

If a cold material is applied and immediately removed, it feels hot. If it is not removed, it feels cold. If hot material is applied it feels hot.

Sensory level

"Heat receptors" and "Cold Receptors"

Logical level

C(dt) and C(2dt) --> "cold" C(dt) and not C(2dt) --> "hot" H(dt), H(2dt) --> "hot"

Any behavior that can be unambiguously described in a finite number of words can be realized by a formal neural network

The fallacy of the first step

Models and reality: the right scale

- Evoked potentials
- Multi units
- Single units
- Intracellular
- Synaptic

Models and reality: the right scale

- Discrete or continuous ?
- Synchronized ?
- Uniform processor ?
- The information carrier is:

spikes/frequency/inter-spikes/synchrony?

Hebb principle (1949):

when an axon of cell A is near enough to excite cell B, and repeatedly and persistently takes part in firing it, some growth process or metabolic change take place in one or both cells, such that A's efficacy as one of B's excitators is increased

Interaction of presynaptic/postsynaptic excitation/inhibition

Implementing memory in NN

• Memory – variable strength synapses

$$y(t) = F\{x_1(t), x_2(t), ..., x_N(t)\}$$

$$y(t) = \sum_{r=1}^{N} \int_{0}^{M} h_r(\tau) x_r(t-\tau) d\tau + \sum_{r=1}^{N} \sum_{s=1}^{N} \int_{0}^{M} \int_{0}^{M} h_{rs}(\tau_1, \tau_2) x_r(t-\tau_1) x_s(t-\tau_2) d\tau_1 d\tau_2$$

kernels approximated by basis functions $\{Q_i(\tau)\}_{i=1}^{K}$

$$h_{r}(\tau) = \sum_{i=1}^{K} \alpha_{i}^{r} Q_{i}(\tau)$$
$$h_{rs}(\tau_{1}, \tau_{2}) = \sum_{i=1}^{K} \sum_{j=1}^{K} \alpha_{ij}^{rs} Q_{i}(\tau_{1}) Q_{j}(\tau_{2})$$

$$y(t) = \sum_{r=1}^{N} \sum_{i=1}^{K} \alpha_{i}^{r} g_{i}^{r}(t) + \sum_{r=1}^{N} \sum_{s=1}^{N} \sum_{i=1}^{K} \sum_{j=1}^{K} \alpha_{ij}^{rs} g_{i}^{r}(t) g_{j}^{s}(t)$$
$$g_{i}^{r}(t) = \int_{0}^{M} Q_{i}(\tau) x_{t}(t-\tau) d\tau$$