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Abstract

Improving the resolution of magnetic resonance imaging (MRI), or, alternatively, reducing the acquisition time, can be quite beneficial for

many applications. The main motivation of this work is the assumption that any information that is a priori available on the target image

could be used to achieve this goal. In order to demonstrate this approach, we present a novel partial acquisition strategy and reconstruction

algorithm, suitable for the special case of detection of pseudoperiodic patterns. Pseudoperiodic patterns are frequently encountered in the

cerebral cortex due to its columnar functional organization (best exemplified by orientation columns and ocular dominance columns of the

visual cortex). We present a new MRI research methodology, in which we seek an activity pattern, and a pattern-specific experiment is

devised to detect it. Such specialized experiments extend the limits of conventional MRI experiments by substantially reducing the scan time.

Using the fact that pseudoperiodic patterns are localized in the Fourier domain, we present an optimality criterion for partial acquisition of the

MR signal and a strategy for obtaining the optimal discrete Fourier transform (DFT) coefficients. A by-product of this strategy is an optimal

linear extrapolation estimate. We also present a nonlinear spectral extrapolation algorithm, based on projections onto convex sets (POCSs),

used to perform the actual reconstruction. The proposed strategy was tested and analyzed on simulated signals and in MRI phantom

experiments.

D 2004 Published by Elsevier Inc.
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UNCOR1. Introduction

Incorporating all prior knowledge in the process of

estimation always leads to better results. This trivial truth

could be used efficiently to improve the resolution (or,

alternatively, the acquisition time) of magnetic resonance

imaging (MRI) processes, when there exists an a priori

model of the target. A prominent case where such a model

does exist is manifested by the pseudoperiodic patterns that

are typical of columnar functional organization in the

cerebral cortex [1– 4]. An example is the ocular dominance

columnar structure, found in layer 4 of the striate cortex.

Ocular dominance columns are attributed to be stereoscopic

processing units, but there is no single computational model
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for their action [5]. These columns exhibit a pseudoperiodic

pattern of alternating stripes (500–1000 Am wide) of left-

eye dominated cells and right-eye dominated cells.

Our work presents a framework that enables inclusion of

an underlying model in order to improve upon imaging

results. Using the columnar model that results in a

pseudoperiodic pattern, we have designed a specific

model-dependent MRI experiment, which may be able to

detect such patterns in a fraction of the time required by

straightforward imaging. While the presented technique is

general enough to fit to other kinds of patterns, it may

provide exceptionally high scan-time reduction for pseudo-

periodic patterns. Some MRI methods are inherently limited

in spatial resolution due to timing constraints. A prominent

example is the single-shot echo-planar imaging (EPI)

technique, widely used for functional MRI (fMRI) studies

of task-related brain activity. For such methods, the option

of tailoring the sensitivity of the data acquisition sequence

to specific patterns may be particularly useful.
aging xx (2004) xxx–xxx
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In the Theory Section, we discuss pseudoperiodicity and

describe an optimality criterion for partial acquisition of MR

signals. This criterion yields an optimal linear extrapolation

estimate of the data. We then introduce an algorithm based

on projections onto convex sets (POCSs) used to reconstruct

the data. In the Computer Simulations and MRI Phantom

Experiments Sections, we present an implementation of the

suggested method using both computer-generated images

and MRI scans. We conclude by discussing the implications

of our method.
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2. Theory

Our goal is to perform high-resolution imaging of

pseudoperiodic patterns. We assume that, as in single-shot

EPI, the appropriate high-resolution data cannot be fully

acquired due to signal decay over time. We approach the

problem by acquiring only a part of the data, that is, an

optimally sampled fraction of the discrete Fourier transform

(DFT) coefficients. The percent of acquisition is determined

by the scanner capabilities: sample as many DFT coef-

ficients as possible before signal loss is too great. In order to

choose the optimal DFT coefficients to sample, a model-

based preprocessing is performed and the results are fed to

the scanner. After partial acquisition, the raw data are

transmitted to postprocessing used to reconstruct the full

image from the partial data.

The entire acquisition and reconstruction strategy used in

this work is depicted in Fig. 1. The preprocessing stage

computes an acquisition strategy whose initial estimation is

based on prior knowledge (sample model images). The

initial estimation feeds into an iterative improvement

procedure, using simulated annealing. A product of this

process is an approximately optimal acquisition strategy for

linear extrapolation and an optimal linear extrapolator.

Using this acquisition strategy, an MRI partial acquisition

experiment can be conducted. After partial acquisition, a

postprocessing reconstruction takes place. The raw k-space
UNC

Fig. 1. The overall scheme: boxes represent algorithms and ellipses represent data.

acquisition. Stage 4 is a postprocessing stage used to reconstruct the image.
ED P
ROOF

data feeds a nonlinear iterative extrapolation algorithm,

based on POCS (discussed in this section) and constrained

by prior knowledge. The linear extrapolator (dby-productT of
the preprocessing) can also be used to enhance the nonlinear

extrapolation. The restored image is the output of the

algorithm. In this section, we outline the qualities of

pseudoperiodic signals and describe our new strategy for

partial acquisition of such signals. Next, we describe a new

POCS-based algorithm for spectrum extrapolation, suitable

for partially acquired signals. We end the section by

comparing the POCS extrapolation to Bayesian extrapola-

tion techniques and describe a generalization of POCS,

which enables the use of nonconvex projections.

2.1. Pseudoperiodic signals

In this work, we deal with a broad class of random

signals, denoted pseudoperiodic signals. This class includes

the set of almost-periodic random signals [6]. In practice,

the only requirement of a random signal to be regarded as

pseudoperiodic is that its covariance function oscillates,

with a dpseudoperiodT, though not necessarily in the form of

a sinusoid. Consequently, we expect to find several peaks in

the spectrum of such processes. In other words, most of the

energy of pseudoperiodic processes is concentrated in

several peaks in the frequency domain. We can use this

characteristic to approximate a signal by sampling a few

Fourier coefficients (partial acquisition) and restore the

other coefficients (spectrum extrapolation) using prior

information about the signal. Pseudoperiodic patterns

include harmonic processes and many more dreal-lifeT
examples, which makes them a practical model.

2.2. Optimal acquisition of pseudoperiodic processes

The acquisition model we use is the linear model

y=Px+n, where x is the original signal vector, P is the

acquisition system function, n is an additive noise vector

and y is the acquired image. xe denotes the estimate of x.n is

assumed to be zero-mean white Gaussian noise with
Stages 1 and 2 are the preprocessing steps. In Stage 3, we perform the actual
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variance r2 so that Rnn=r2I, where Rnn is the autocorre-

lation matrix of n. We will denote by Rxx the autocorrelation

matrix of x. We assume that x has been normalized to be a

zero-mean vector, so that Rxx is also the covariance matrix

of x. P depends on the used acquisition strategy. In case of a

full acquisition, P denotes the matrix appropriate for the

exponential signal decay. In general, the error measure we

use is the mean square error (MSE).

In our context of high-resolution restoration of pseudo-

periodic signals, we would like to assure that low-error

estimations correspond to high-resolution estimates. Practi-

cally, this means we might give up the optimality in the

MSE sense for an increased resolution of the estimate.

Suppose we are interested in identifying small, pseudoperi-

odic details of size rR. Let G be a real, linear, FIR high-pass

filter with an appropriate cut-off frequency. The convolution

of (x�xe) with G corresponds to the exclusion of coarse

details in the difference signal. Let W denote the operator of

convolution with G. The error measure

E
�
x� xe

�T4
WT4W

�
x� xe

�#"
ð1Þ

is a weighted mean-square error that discounts the error of

coarse details. A better approach is to balance between

coarse and fine details. This trade-off is expressed in the

filter vector:

Gk ¼ dK þ kG; kz 0 ð2Þ

Gk is a high-enhance filter (e.g., unsharp filter). Let Wk

denote the operator of convolution with Gk. Thus, the

weighted mean-square error used is

E
�
x� xe

�T4
WT4

k Wk

�
x� xe

�#"
ð3Þ

We will later denote Wk simply by W. We next describe

the utilization of principal component analysis for the

problem of determining the partial acquisition DFT coef-

ficients. This technique is suboptimal and leads to several

implementation problems. Afterwards, we describe a new

technique for finding the approximately optimal DFT

coefficients along with an optimal linear extrapolation filter.

2.2.1. Principal component analysis

Principal component analysis using the Karhunen–Loeve

(KL) transform can be used to determine the DFT

coefficients in a partial acquisition problem. It is well

known that DFT is the KL transform for periodic random

processes [6]. For circular wide-sense stationary or almost-

periodic processes, the DFT and the KL transforms are very
ED P
ROOF

similar. This implies that it is possible to approximately

express the KL basis vectors using a few DFT coefficients.

However, finding the optimal DFT coefficients given the KL

basis is not trivial. In Ref. [7], it is suggested to approximate

the KL basis using a partial acquisition of the DFT where

the optimal DFT coefficients are found by an exhaustive

search. This method is not practical even for short signals

(e.g., signals of length 64), and the authors recommend the

use of simulated annealing for solving this problem. In Ref.

[8], a branch and bound algorithm is used to improve the

efficiency of the technique. However, it is not clear that the

KL basis is optimal for the case of partial acquisition of the

DFT. In Ref. [9], it is suggested to directly acquire the KL

expansion instead of the DFT. This method should be

optimal in theory, but it has some practical problems, and it

requires the use of nonstandard MRI acquisition techniques.

In the next subsection, we describe an efficient algorithm to

find an approximation of the optimal subset of DFT

coefficients to acquire.

2.2.2. An optimal solution

As before, let us denote by x and y the spectrum of the

original signal and the acquired signal, respectively. Let b

denote the number of acquired DFT coefficients. Let us

describe the partial acquisition model by the expression

yb�1 ¼ PExN�1 þ EnN�1 ð6Þ

where E is a binary (b�N) acquisition matrix. That is, the

vector Ex contains only b nonzero DFT coefficients. P is a

constant (b�b) diagonal degradation matrix modeling the

decay of the signal during acquisition time. Given P and E,

we seek an optimal filter G, which can be viewed as a linear

extrapolator, such that the estimate xe=Gy would bring the

weighted MSE to a minimum. The optimal operator G is the

Wiener filter:

Gopt ¼ RxxE
T4PT4

�
PERxxE

T4PT4 þ ERnnE
T4
��1

ð7Þ

and the resulting error is

erropt ¼ Tr
n
W
�
Rxx �GPERxx

�
WT4

o
¼ Tr

n
W
�
Rxx � RxxE

T4PT4
�
PERxxE

T4PT4

þ ERnnE
T4
��1

PERxxÞWT4
o

ð8Þ

The MSE is minimal for every given E. Consequently,

the optimal acquisition matrix E is given by minimizing the

MSE with respect to E. A similar optimality criterion is used

in Ref. [10]. Minimizing the expression cannot be achieved

by derivation because the space of matrices E is discrete.
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Exhaustive search is not practical either, from the same

reasons discussed previously. Minimizing the MSE is

equivalent to the maximization of f where

f ¼ Tr
n
W
�
RxxE

T4PT4
�
PERxxE

T4PT4

þ ERnnE
T4
��1

PERxx

�
WT4

o
¼ Tr

nh
ET4PT4

�
PERxxE

T4PT4

þ ERnnE
T4
��1

PE
i
RxxW

T4WRxx

o
ð9Þ

For many common processes (almost stationary process-

es in particular), most of the energy of Rxx is concentrated

on the main diagonal. In this case, the matrix PERxxE
T*PT*

is a matrix with a dominant main diagonal. If the additive

noise is white, Rnn=r2I and ERnnE
T*=r2Ib, where Ib is

the identity matrix of size (b�b). We can make the

approximation

ET4PT4
�
PERxxE

T4PT4 þ ERnnE
T4
��1

PE �ET4PT4Diag

� ðPERxxE
T4PT4 þ ERnnE

T4
��1

PE ð10Þ

The resulting approximation is a diagonal matrix. This

allows us to write

f � Tr
nh

ET4PT4Diag
�
PERxxE

T4PT4

þ ERnnE
T4
��1

PE
i
RxxW

T4WRxx

o
¼ Tr

nh
ET4PT4Diag

�
PERxxE

T4PT4

þ r2
n Ib

��1

PE
i
Diag

�
RxxW

T4WRxx

�o
¼ Tr

nh
Diag

�
PERxxE

T4PT4 þ r2
nIb

��1i
�
h
PEDiag

�
RxxW

T4WRxx

�
ET4PT4

io
ð11Þ

Assume for the moment that P=Ib. In this case, the

expression we seek to maximize can be thought of as a

partial sum of diagonal elements. E determines which

elements are accumulated in the partial sum. Denote

ai ¼
n
Diag

�
Rxx þ r2

n I
�o

i;i

bi ¼
n
Diag RxxŴW

T4ŴWRxx

�o
i;i

	
ð12Þ

Then, Eq. (11) is maximized by choosing E so that the b

maximal elements of the ratio bi/ai will be acquired. When

P=Ib, there is no significance to the row order of E.
ED P
ROOF

Otherwise, E should be found by other methods described in

Ref. [11]. By choosing E, this method also provides an

approximation to the optimal linear extrapolation filter Gopt.

If the assumption of the approximation in Eq. (10) is not

valid, other methods should be used in order to maximize

the expression in Eq. (9). In this work, the maximization

was implemented using a simulated annealing process,

whose iterations were initialized by the described approx-

imation. The optimal extrapolation filter is linear and it

relies heavily on the accuracy of Rxx. Note that in practice,

we cannot guarantee the precision of Rxx because it is

generated from a model. Moreover, our simulations show

that even with an exact covariance matrix, linear extrap-

olation offers a low-quality restoration in our setting,

which makes it unsuitable for our strict requirements.

Nevertheless, it is an optimal linear acquisition and

extrapolation and it outperforms any other linear extrap-

olation technique. Next, we describe a nonlinear spectral

extrapolation algorithm, which does not make direct use of

Rxx. Thus, our scheme provides a clear separation between

acquisition and extrapolation, which is useful where no

high-resolution reference can be acquired (as assumed in

Ref. [12]) and only an approximate model is supplied.

2.3. Spectrum extrapolation

In this subsection, we give an overview of the POCS

algorithm and its use in restoration problems. Afterwards,

we describe a new POCS-based algorithm for spectrum

extrapolation of partially acquired signals. This algorithm

utilizes prior knowledge, specific for our application.
2.3.1. Projection onto convex sets

Projections onto convex set are an iterative algorithm for

finding elements that lie at the intersection of closed convex

sets. That is, if C1,. . ., Cn are closed convex sets and we

wish to find any x such that:

xaC1 \ N \ Cn ð13Þ

Projections onto convex set provide an iterative method

for finding such an element x, assuming that the intersection

is not empty. The algorithm relies on the knowledge of the

projections Pi onto the convex sets Ci. It is shown [13] that

the cyclic control sequence

fkþ1 ¼ PnPn�1
: : :P1 fk ; k ¼ 0;1; N ð14Þ

converges to an element in the intersection of C1,..., Cn. In

our context, y is a distorted signal and we seek the original

signal x. The prior knowledge consists of n properties, each

restrict x to lie in a convex set:

xaC1

v
xaCn

ð15Þ

Projections onto convex set are used to seek a feasible

solution, that is, a solution that is consistent with all the
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prior knowledge on x. Note that the projection operators are

generally nonlinear. Thus, POCS provides a straightforward

method to incorporate nonlinear prior knowledge in the

restoration process. Ignoring issues of run-time, adding

constraints that decrease the size of the intersection set

improves the quality of the solution. In the next subsection,

we present the prior knowledge we use in this work and the

appropriate projections.

2.3.2. Applied projections

We now present the actual projections that were used in

this work. We denote by x the original signal and by y the

acquired signal. We denote by xe the dcurrentT (in terms of

iterative algorithm) estimation of x. In order to simplify the

presentation, we treat x as a 1D vector, though an extension

to 2D is straightforward. We use the Fourier domain and the

image domain interchangeably, where the domain is

understood from the context. Proofs of correctness of the

projections and the convexity of sets, not detailed here, can

be found in Refs. [13–16].

2.3.2.1. Data constraint. The data constraint restricts xe to

agree with the acquired k-space data. Let d be a binary

vector such that d[i]=1 if the ith element in k-space was

acquired. Thus, a projection Pdata is defined by

Pdata xeð Þi ¼ xe i½ 
 1� d i½ 
ð Þ þ y i½ 
d i½ 
 ð16Þ

2.3.2.2. Bounded support constraint. The bounded support

constraint restricts xe to a bounded support, dependent on

the signal. For instance, the size and the location of the

scanned object in an MRI experiment are usually known

from preliminary scans. Let b be a binary vector such that

b[i]=1 if the ith element in xe is a part of the signal’s

support. A projection Psupport is defined by

Psupport xeð Þi ¼ xe i½ 
b i½ 
 ð17Þ

2.3.2.3. Real signal constraint. The real signal constraint

restricts xe to be a real vector. This constraint is equivalent

to the k-space’s conjugate symmetry constraint. A projec-

tion Preal is given by

Preal xeð Þi ¼ real xe i½ 
ð Þ ð18Þ

2.3.2.4. Nonnegative signal constraint. The nonnegative

signal constraint restricts xe to a vector with nonnegative

elements. It is usually the case in image restoration that

pixel values cannot be negative, particularly in MRI. A

projection Pnonnegative is given by

Pnonnegative xeð Þi ¼
n
xe i½ 
 xe i½ 
z0

0 otherwise
ð19Þ

2.3.2.5. Reference signal constraint. The reference signal

constraint restricts xe to lie in a sphere centered at a vector r,
ED P
ROOF

known to be dcloseT to x. It is well known in MRI that a

reference scan can be used to improve the extrapolation of a

partially acquired image (e.g., keyhole imaging). The set

Creference ¼ fxe jNxe � rNV eg ð20Þ

specifies a sphere and is therefore convex. A projection

Preference on the sphere Creference is given by

PreferenceðxeÞ ¼
(

xe Nxe � rNV e
rþ xe�r

Nxe�rN e otherwise
ð21Þ

2.3.2.6. Bounded energy constraint. The bounded energy

constraint restricts the energy of xe. The bound B can be

estimated using preliminary scans. The set

Cenergy ¼ fxejNxeNV Bg ð22Þ

defines the constraint. Thus, the bounded energy constraint

is a specific case of the reference signal constraint. A

projection Penergy is given by

Penergy xeð Þ ¼
(

xe NxeNV B
xe

NxeN
B otherwise

ð23Þ

2.3.2.7. Bounded MSE constraint. The bounded MSE

constraint restricts xe to the set CMSE

CMSE ¼ fxejNPxe � yNV Eg ð24Þ

where P is the degradation matrix, and E is an MSE error

bound.

The projection w=PMSE(xe) can be found by minimizing

tw�xet given tPw�ytVE.
The result of the minimization is:

w ¼
�
Iþ kPT4P

��1�
xe þ kPT4y

�
ð25Þ

where k is a nonnegative number chosen to satisfy

tPw�yt=E. If P is shift invariant, the projection w is

easier to obtain in the Fourier domain:

w i½ 
 ¼ xe i½ 
 þ kPP i;i½ 
y i½ 

1þ kjP i;i½ 
j2

ð26Þ

and we set k such that

NPw�yN2 ¼
X
i

 
P i;i½ 
xe i½ 
 þ kjP i;i½ 
j2y i½ 


1þ kjP i;i½ 
j2
� y i½ 


!2

¼
X
i

�
P i;i½ 
xe i½ 
 � y i½ 


�2
�
1þ kjP i;i½ 
j2

�2

¼
X
i

d i½ 
�
1þ kjP i;i½ 
j2

�2 ð27Þ
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Recalling that k is nonnegative and noting that the

expression in Eq. (27) is a continuous and monotone-

decreasing function of k, we can find a unique solution to

Eq. (27) using the Newton method. The bounded MSE

constraint is a generalization of the data constraint. It is a

more accurate constraint in case the noise is not negligible

or the degradation operator cannot be ignored.
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2.3.2.8. Smoothness constraint. The smoothness constraint

restricts xe to the set Csmooth

Csmooth ¼ fxejNSxeNV Eg ð28Þ

where S is taken as a spatially invariant finite difference

operator. This is a specific case of the bounded MSE

constraint ( y=0), and the projection is obtained in the same

manner.

2.4. Bayesian techniques and generalized projections

Bayesian techniques are widely used for solving resto-

ration problems. In this subsection, we compare the POCS

algorithm to an application of Bayesian techniques for the

problem of spectral extrapolation used in Ref. [17].

Maximizing the a posteriori probability (MAP) of the

estimate xe given the acquired signal y is obtained by

maximizing the expression P(yjxe)P(xe).
In the linear degradation model y=Px+n, the likelihood

is given by the probability density of the noise

P yjxeð Þ ¼ P nð Þ ¼ P y�PxeÞð ð29Þ

The prior probability density P(xe) expresses the

statistical model of the signal. In Ref. [17], a MAP

algorithm called BAISE is used for MR image reconstruc-

tion from a partially acquired k-space. The BAISE

algorithm relies on the following prior knowledge:

1. n is an additive noise, whose real and imaginary parts

are white Gaussian processes.

2. The scanned object O has a known bounded support.

Any signal outside the support of the object is due to

noise.

3. The object is real. Any imaginary component in the

image is due to noise.

4. The partial derivatives of the object (approximated

by a finite difference) have a Lorentzian distribu-

tion.

The Lorentzian distribution characterizes partial deriva-

tives (edges) of general real-world images. It captures

general image characteristics like flat regions and sharp

edges. Let xR and xI be the real and imaginary parts of xe,

respectively. Thus, the resulting expression for P(xejy)
[ignoring the denominator P(y)] is
ED P
ROOF

P xejyð Þ¼ c1exp

"
� 1

2r2

�
y�Pxe

�T4�
y�Pxe

�#

� c2exp

"
� 1

2r2

X
ig0

xR i½ 
2
#
�j

ia0

1

p
�
aþ dxR i½ 
2=a

�
� c3exp

"
� 1

2r2

X
8i

xI i½ 
2
#

ð30Þ

where c1, c2 and c3 are normalization factors and a is the

Lorentzian distribution parameter. By maximizing

log(P(xejy)) and discarding additive constants we get"
� 1

2r2

�
y� Pxe

�T4�
y� Pxe

�#
þ
"
� 1

2r2

X
ig0

xR i½ 
2
#

�
X
iaO

log
�
aþ dxR i½ 
2=a

�
þ � 1

2r2

X
8i

xI i½ 
2
#

ð31Þ
"

Maximizing Eq. (31) is equivalent to the minimization of

�
y� Pxe

�T4�
y� Pxe

�
þ
X
ig0

xR i½ 
2 þ
X
8i

xI i½ 
2

þ 2r2
X
iaO

log aþ dxR i½ 
2=a
�

ð32Þ
�

The first three terms are the following norms (squared):

1. MSE.

2. Energy of the noise outside the object’s support.

3. Energy of the noise in the imaginary components.

Ignoring the last term, this MAP algorithm is equivalent

to the minimization of the sum of these squared norms.

Minimizing a function f(xe) can be performed by POCS if f

is a convex function of xe. If we can estimate that the

optimal solution xopt satisfies f(xopt)V l (and l is dtightT), then
the set C={xejtf(xe)tV l} is convex and we can project on

it. This is indeed the case for the first three terms in Eq. (32).

Unfortunately, the last term in Eq. (32), representing the

Lorentzian distribution, is not a convex function, so it

cannot incorporate directly to the POCS approach. Utilizing

the Lorentzian constraint can be done using either an

optimization approach or a generalized projection approach.
2.4.1. Optimization approach

In this approach, a gradient search is used such that the

search direction is projected on the convex constraint. That

is

x nþ1ð Þ
e ¼ P1

: : :Pk x nð Þ
e � kjF x nð Þ

e

�� ��
ð33Þ

where k is the gradient step size. This form of projected

gradient can be very slow to converge [18].
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Fig. 2. Two-dimensional data used in the computer simulations.
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2.4.2. Generalized projections approach

In this approach, the POCS method is generalized to

incorporate a projection onto nonconvex sets — in this case,

the Lorentzian distribution of partial derivatives. Using the

cyclic control, it is shown in Ref. [19] that if up to two

nonconvex projections are used, the sum of distances of the

estimate from the constraint sets is known to converge.

Projecting xe on the set

CL ¼ fxj
X
iaO

log aþ dxR i½ 
2=a
�
VeLg

�
ð34Þ

is performed by minimizing the Lagrangian

L w;kð Þ ¼ � Nw� xeN
2 þ k

� X
iaO

log aþ dw i½ 
2=a
�
� eL

� �
ð35Þ

The resulting expression for w is

w i½ 
 ¼
(
xR i½ 
þk

�
w i½ 
�w i�1½ 
ð Þ

a2þ w i½ 
�w i�1½ 
ð Þ2 þ
w i½ 
�w iþ1½ 
ð Þ

a2þ w i½ 
�w iþ1½ 
ð Þ2
�

iaO

xR i½ 
 otherwise

ð36Þ

k should be chosen to satisfy the equality in Eq. (34). The

generalized POCS approach is the method used in the

simulations and phantom experiments described in this

article.

3. Computer simulations

3.1. Overview

In this section, we discuss the methods and results of

computer simulations used to test the theory presented in the

Theory Section. Two-dimensional data were generated and

MR partial acquisition was simulated on the generated data.

The generalized POCS algorithm presented in the previous

section was applied to restore the data where the selection of

the DFT coefficients to acquire was done according to the

optimality criterion in Eq. (8). The optimal DFT coefficients

were first chosen according to the approximation in Eq.

(12), and then an optional simulated annealing process was

used to improve the approximation. The chosen DFT

coefficients determined the linear extrapolation filter in

Eq. (7). The POCS iterations were initialized either by the

partially acquired data or by the linear extrapolation

estimate. We end this section by discussing the results of

a control simulation used for sensitivity analysis.

3.2. Simulation data

The 2D data used for the simulation were the single

image depicted in Fig. 2. The image is a sum of a base

image of a human brain and a template containing several

pseudoperiodic patterns. The pseudoperiodic patterns were

generated using a multinormal stationary distribution with a

decaying sinusoidal covariance (i.e., the first row of the

Toeplitz covariance matrix is defined by a sinusoidal
ED P
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multiplied by a Hanning window). The brain image and the

template were normalized to a zero mean and unit standard

deviation and then they were added. Overall, the 2D data

contain coarse details and very fine details with a spatial

frequency close to the Nyquist frequency.

3.3. Partial acquisition simulation

White Gaussian noise was added to the real and

imaginary parts of the 2D DFT of the image so that the

total SNR was 5. The SNR was computed relative to the

standard deviation of the human brain image. Partial

acquisition was simulated by using only a subset of the

columns of the 2D DFT. This is not the optimal partial

acquisition strategy, but it is a practical method of partial

acquisition that suits the data acquisition strategy of EPI, the

prevalent rapid acquisition technique used in fMRI. The

subsets used comprised, respectively, 10%, 20%, 30% and

40% of the 2D DFT columns. The first and second statistical

moments of the data, needed for the linear extrapolation,

were computed using the rows of the data image as a sample

set. The linear extrapolation was used to determine which

columns to acquire in the 2D-DFT of the image. The error

measure used for the linear extrapolation was a weighted

MSE of the form in Eq. (2).

3.4. Signal restoration

The image was restored using the generalized iterative

POCS algorithm, described previously. The iterative algo-

rithm was initialized by the zero-filled DFT of the partially

acquired image or the linear extrapolation estimate. The

following constraints were used in the algorithm:

1. Reference image constraint: The reference image was

set as the subsampled (ratio 1:2) original image.

2. Bounded MSE constraint: The image was restricted to

agree with the acquired data up to a norm determined

by the level of noise.

3. Smoothness constraint: The energy of the image’s

partial derivatives (approximated by a finite difference)

was restricted to lie below a threshold set by

corresponding energy of the original image.



T

ARTICLE IN PRESS

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

582
583
584

585
586
587
588
589

590591

592

593
594

595596

597

598

599

600

601

602

603

604

605

606

607
608

O. Boiman et al. / Magnetic Resonance Imaging xx (2004) xxx–xxx8
4. Bounded energy constraint: The image’s energy was

restricted not to be higher than the energy of the original

image.

5. Bounded support constraint: The support of the image

was restricted to the support of the human brain

depicted in Fig. 2.

6. Real image constraint.

7. Lorentzian distribution of the partial derivatives: The

nonconvex constraint was set by approximating the

Lorentzian distribution of the partial derivatives of the

original image. The e parameter was set according to the

Lorentzian likelihood of the original image.

8. Reference image constraint: The second reference image

used was the linear extrapolation estimate. Constraint

no. 8 was applied only when the linear extrapolation

estimate was used to initialize the POCS iterations. The

e parameter was chosen according to the true norm-

distance between the original image to the linear

extrapolation estimate. Herein, it is assumed that these

bounds are found using a thorough parameter tuning.

Some useful heuristics for tuning these parameters are

described in Discussion. Moreover, a control experiment

(presented in Control Simulation Section) was con-

ducted in order to test the sensitivity of these parameters.

3.5. Results

Fig. 3 displays several samples of images reconstructed

using the POCS algorithm (initialized by the acquired data),

given different acquisition percents. Even using as little as
UNCORREC

Fig. 3. Samples of 2D reconstructed data. Projections onto convex set is initialize

20%, (c) 30% and (d) 40%. SNR is set to 5.
ED P
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10% of the acquired image, the reconstruction enables the

detection of the pseudoperiodic pattern. Fig. 4a shows the

relative reconstruction error as a function of the acquisition

percent. The relative MSE is the ratio of the MSE to the

norm of the signal:

Rel MSE ¼ NIr � IN

NIN
;

where I denotes the original image, and Ir denotes the

restored image.

Another error measure is used to quantify the quality of

fine-detail restoration as follows

MSE ratio ¼ NIr � IN

NIr � IbN
; ð37Þ

Ib denotes the brain image without the added template. The

MSE ratio is zero for an exact restoration and might get to

infinity if the restored image is identical to the brain image

without the fine details. The MSE ratio as a function of the

acquisition percent is shown in Fig. 4b. According to these

results, an increase in the acquisition percent has a steady

effect (almost linear) on the relative MSE and the MSE

ratio. Projections onto convex set initialized by the acquired

data perform better than the linear extrapolator and worse

than POCS initialized by the linear extrapolation results.

3.6. Control simulation

A control experiment was conducted in order to test the

sensitivity of the quality of reconstruction as a function of
d by the acquired data for the following acquisition percents: (a) 10%, (b
)
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Fig. 4. Results of the 2D computer simulations. The figures show the reconstruction error as a function of the acquisition percent. The compared algorithms are

the linear extrapolator, the POCS algorithm initialized by the acquired data (POCS) and the POCS algorithm initialized by the linear extrapolation estimate

(Lin. Ext.+POCS). SNR is set to 5. (a) The relative MSE of the reconstruction. (b) The MSE ratio of the reconstruction.
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the quality of the prior knowledge. The POCS algorithm is

dependent on several parameters that define the constraints.

The tightness of each constraint is represented by a threshold

parameter (epsilon). We should choose this threshold

according to the certainty of our estimations. The control

simulation applied a single quality factor to all the thresholds.

A quality factor of one does not change the thresholds. A

quality factor >1 relaxes the constraints and a quality factor

b1 tightens them. The other settings for the control

simulation are as described above, where the SNR was set

to 5% and the acquisition percent was set to 20%. The results

of the simulation are presented in Fig. 5. The results show

that setting the thresholds with an error of ~25% has little

effect on the quality of reconstruction. Moreover, it is clear

that whenever there is uncertainty in setting the thresholds,

the upper bound should be selected. The reason is that

reducing the thresholds might create a situation where the

intersection of the convex sets is empty, or that it does not

contain the original image. Increasing the thresholds

increases the size of the intersection set, but it has a moderate

effect on the reconstruction quality.
UNC

Fig. 5. Results of the control simulation. The compared algorithms are the POCS

initialized by the linear extrapolation estimate (Lin. Ext.+POCS). SNR is 5. Acquis

MSE ratio as a function of the quality factor.
ED P
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4. MRI phantom experiments

4.1. Overview

In this section, we present the results of applying the

restoration algorithm presented in previous sections to raw

data of MRI scans. We also discuss the general methods used

in the acquisition and in the preprocessing of the raw data.

4.2. General methods

All MRI scans were conducted on a 1.5-T GE Signa

Horizon LX MM scanner using a standard head coil. Two

plastic gratings were constructed: each grating contained 10

compartments separated by thin plastic separators. In the

first grating, each compartment was 2 mm wide. In the

second grating, each compartment was 1 mm wide. Both

gratings were placed in a water-filled fish bowl with a

volume of 3000 ml. In order to lower the relaxation times of

the water, 10 ml of Gd-DPTA was added to the water

(concentration of 0.3%). The resulting T2* was measured to

be ~320 ms. In order to generate k-space data from which to

choose lines, two spin-echo EPI scans were conducted with
algorithm initialized by the acquired data (POCS) and the POCS algorithm

ition percent is 20%. (a) Relative MSE as a function of the quality factor. (b)
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parameters: 128�512 (readout�phase); FOV=240 mm;

slice thickness, 3 mm; bandwidth, 62.5 kHz; TR, 2 s. The

gratings were set perpendicular to the phase-encoding

direction. Two scans were conducted: a full scan and a half

scan. One scan covered the entire extent of k-space, starting

in the higher frequencies. The other scan covered half of k-

space (plus several more phase-encode lines near the middle

of k-space), starting in the lower frequencies. Effective TE for

half k-space scans was 27.5 ms and for full scans was 645.3

ms. In addition, lower resolution EPI scans (128�256) were

also acquired and were used as a reference in the restoration

algorithm. Data from both scans were combined to create a

single k-space as described in the next section.

4.3. Preprocessing scanned data

Raw k-space data were acquired and preprocessed

before applying the restoration algorithm. For each type

of scan (full scan or half scan), 50 repetitions of the scans

were acquired and recorded. These were used for supplying

images of increased SNR (by averaging). The whole

restoration algorithm was applied four times, each time

using a different number of repetitions (n=1,9,25,49), and

thus with a different SNR. Given an averaged k-space in

the two scanning modes, the two images were registered to
UNCORRECT

Fig. 6. (a) Echo-planar imaging acquisition results (SNR is 9.4): merged image (

pixels); (c) T1 acquisition results: entire image (512�512 pixels); (d) zoom on st
 P
ROOF

the reference (T1 weighted) image by a simple correlation.

Afterwards, the two images were normalized in order to fit

the norm of the reference image. Then, the two images

were merged into a single k-space by taking from each

image the part of k-space scanned first (i.e., without

significant signal loss due to T2 and T2* signal decay).

Finally, a phase correction algorithm using phase estimation

based on the middle ky lines in k-space [20] was applied to

result in a single image. The same steps were also taken for

the low-resolution images. SNR was computed as the ratio

of the standard deviation of the noise (as estimated in the

merged image) to the phantom standard deviation (i.e., the

standard deviation of the phantom in the merged image).

Fig. 6 displays the merged image, generated from all the ky
lines in two spin-echo EPI scans (Fig. 6a,b), and the

reference image acquired using a T1 scan (Fig. 6c,d). After

averaging 49 images, resulting in an SNR of 9.4, the EPI

image exhibits the periodic line pattern only on the right

part of the 1-mm phantom. The line pattern is more

consistently apparent in the 2-mm phantom, although both

are far from the clarity of the pattern in the T1 reference

image. Note that due to the fact that the partial acquisition

simulation is done on this EPI data set, we cannot expect to

reconstruct better results.
E

128�512 pixels); (b) zoom on the structure in the merged image (65�150

ructure (260�150 pixels).
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4.4. Simulation of nonuniform sampling

Deciding which ky lines to acquire was accomplished as

discussed in the Theory Section. Analysis was performed

relative to a reference (T1-weighted) image (i.e., model

image). Linear approximation was used to initialize a

simulated annealing optimization. The resulting ky lines

(partial acquisition strategy) were dsampledT from the

merged image. These data were fed to the postprocessing

algorithm.

4.5. Projections used with POCS

The projections were designed carefully so as not to bias

the results toward the reference image in a trivial manner

(e.g., bound the distance of the restored image from the

reference image). Each projection contributes genuine

(though approximate) information on the image to restore.

The following projections were used with the POCS scheme:

1. Bounded support constraint: The support of the image

was estimated using the reference image.

2. Real signal and nonnegative signal constraints: Note

that in general, EPI-acquired images are not real and

positive, but this projection assumes that a phase
UNCORRECT

Fig. 7. Restoration using 15% partial acquisition, zoom on restored structure (65�1

(c) and 9.43 (d).
 P
ROOF

correction algorithm was previously performed. Alter-

nately, it is possible to incorporate into POCS the phase

correction as a projection [21], prior to the real signal

and nonnegative signal projections.

3. Bounded energy constraint: The image’s energy was

restricted to be not higher than the energy of the

reference image.

4. Smoothness constraint: The energy of the image’s partial

derivatives (approximated by a finite difference) was

restricted to lie below a threshold estimated using the

reference image.

5. Lorentzian distribution of the partial derivatives: The

nonconvex constraint was set by estimating the Lor-

entzian distribution parameters of the partial derivatives

of the reference image.

6. Bounded MSE constraint: The image was restricted to

agree with the acquired data up to a norm determined

by the ddistanceT of the reference image to the acquired

data. Three projections were designed. The first con-

strained the acquired data in the low frequencies of k-

space. The second constrained the acquired data in the

high frequencies of k-space. The third constraint was

applied on the low-resolution reference scan. The main
ED

50 pixels). SNR (of merged image) in the phantom region is 2 (a), 4.3 (b), 7
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UNCORREintention of this low-resolution constraint is to provide a

suitable dbackgroundT for the details.

4.6. Results

Fig. 7 displays the restoration results using 15% partial

acquisition at different levels of SNR. After a certain point,

SNR does not appear to affect the quality of reconstruction.

Fig. 8 displays cross-sectional profiles through the small

grating for different acquisition percentages. Gradual accu-

racy is achieved by increasing the acquisition percent.

However, the peak locations and the prime features of the

pattern can be processed from the 15% partially acquired and

restored image. Even by using a 10% partial acquisition, one

can compute approximations to the peak locations, the

number of peaks and the periodicity of the pattern. In other

words, for pseudoperiodic models, it is possible to find a

small fraction of the DFT coefficients that captures most of

the energy.
807
808
809
810
811
812
5. Discussion

In this section, we discuss the qualities of the proposed

technique. First, we compare its scan-time reduction

capabilities, comparing to other widely used techniques.
Then, we elaborate on some issues regarding the practical

use of this method and its application for fMRI uses.

5.1. Scan-time reduction

The acquisition and restoration technique we used in this

work allowed a scan-time reduction of up to 90% with an

acceptable level of restoration, depending on the SNR. This

significant reduction is possible due to the assumption of

pseudoperiodic patterns in the MR image that can be well

localized in the Fourier domain. A high-resolution restora-

tion was achieved without a high-resolution reference

(as assumed in Ref. [12]) by relying on an approximate

model. In Ref. [17], nonuniform acquisition of the k-space is

used to reduce the scan time by up to ~52%, even then, at the

expense of fine details. In Ref. [22], 75% scan-time reduction

is achieved in MR spectroscopic imaging (MRSI), with a

significant loss of detail. This apparent high scan-time

reduction is achieved due to the flexibility in the choice of

k-space coefficients to acquire, which is inherent in the

acquisition of MRSI data. Fast imaging methods usually

limit the choice of coefficients that can be efficiently

acquired; EPI, for example, is limited to rows in k-space.

In Ref. [7], up to 87.5% of scan-time reduction is used for a

small (16�16 pixel) phantom. The SNR of the used images

was relatively high (SNR=26). This technique is not
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practical for larger images because the acquired phase-

encode lines are chosen by brute force search. In Ref. [8], a

branch and bound optimization is used on larger images. In

that work, lower scan-time reductions are reported. In Ref.

[9], better performance of this method is reported when the

KL basis vectors are acquired directly at the expense of SNR.

Obviously, given a small number of phase-encode lines,

MSE has to be sacrificed for resolution. Our method directs

the search of optimal phase-encode lines suitable for the

acquisition of images containing fine, pseudoperiodic

details. Although our approach supplies an optimal linear

extrapolator, we do not use it for extrapolation because of its

low-quality restoration and its dependence on the precision

of the autocorrelation matrix of the data. Nevertheless, it is

optimal and it outperforms any other linear extrapolator with

the same acquisition mode. Instead of the linear filter, a

POCS algorithm is used for k-space extrapolation. This

allows the use of many useful prior knowledge constraints,

improving the quality of extrapolation.

5.2. Issues regarding the practical implementation

of the method

Three issues may seem to limit the utility of the

technique presented in this work:

1. Calculation of the covariance matrix of the data.

2. Setting the correct bounds and thresholds in the POCS

constraints.

3. Implementing the technique for nondirectional (isotro-

pic) pseudoperiodic patterns.

It was shown above that the covariance matrix can be

computed from an image of a weighting different from the

acquired image. This is probably also true for images of

different modalities, as long as image-processing techniques

are used to register between the modalities. In the extreme

case, where no reference image can be achieved, the

covariance matrix can be approximated. For instance, a

dtypicalT reference image can be constructed by using all the

prior knowledge of the image, for example, energy of the

signal, finite support of the signal, mean value of pixels, etc.

This reference image can be used to compute the covariance

matrix. The covariance matrix is needed for determining the

acquisition strategy and for the linear extrapolation. If the

covariance matrix used is a rough approximation of the

correct covariance matrix, the linear extrapolation estimate

will be highly inaccurate. In this case, it is better not to use the

linear extrapolation estimate as a reference image constraint

in the POCS algorithm.We have demonstrated that our POCS

algorithm is rather independent of its initialization and the use

of the linear extrapolation estimate as a reference image.

Consequently, the covariance matrix should be used only for

determining the partial acquisition strategy (in this case, the

phase-encode lines to acquire) and might therefore be

approximated using the prior knowledge on the image.

The second issue involves the POCS algorithm. Using

incorrect prior knowledge can cause the POCS algorithm to
ED P
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diverge or to converge to a nonacceptable solution. However,

we showed that a limited relaxation of the POCS constraints

does not greatly affect the quality of the restored image.

Therefore, the thresholds used in constraints should be relaxed

if their value is not certain. The POCS iterations themselves

offer information regarding the correct value of the thresholds.

Changing a threshold, which causes POCS to diverge, implies

too strict a constraint. In contrast, changing of a threshold,

causing the constraint to be never active (size of projection is

zero), implies too relaxed a constraint. The convergence

properties of POCS can be inferred from the norm of

the difference between consecutive iterations and by the

sum of projection sizes. The process of tuning the parameters

can be automated, using the heuristics described above.

The third issue is dependent on the acquisition method

and on the geometric shape of the pseudoperiodic pattern. In

all the simulations, we assumed a rectangular acquisition of

the 2D DFT and that the pattern had a clear orientation. In

the case of an isotropic pattern, it is preferable to use a spiral

acquisition methodology. The only part of the proposed

technique, which is not trivial to adapt to spiral imaging, is

the selection of the DFT coefficients to acquire. Finding an

optimal method for selecting the DFT coefficients to acquire

with spiral imaging is an issue for further research.

5.3. Using the method for fMRI

The initial motivation for this work was to enable high-

resolution (submillimeter) fMRI. This is not possible in

general, but this work suggests that pseudoperiodic patterns

can be acquired at a high resolution using a small number of

phase-encode lines. Pseudoperiodic patterns are abundant in

parts of the mammalian cortex that are organized in

functional columns. Using a low number of phase-encoding

lines (~10% of the k-space), a large ensemble can be

acquired and used for averaging (increasing the SNR). In the

Computer Simulations Section, we used an image in which

the pseudoperiod was apparent. Obviously, in fMRI experi-

ments, the pseudoperiodic pattern appears only in averaged

difference images. Because of the linearity of the Fourier

transform, the application of our technique is straightfor-

ward: partially acquire the DFT coefficients of each dstateT,
form the state’s difference and average the difference

images. Note that the calculation is done upon the partially

acquired DFT coefficients. The resulting image is the input

to the POCS algorithm. Clearly, the statistical model of the

signal and the prior knowledge, which is used in POCS,

should be based on the averaged difference image and not

on the original signal. Other statistical analysis techniques

(e.g., correlation with a time sequence) can be implemented

as well.

6. Summary

In this paper, a new technique for partial acquisition and

reconstruction of MR images was suggested and demonstrat-

ed. While being general, the technique was specifically
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designed to detect a spatial pattern by utilizing the attributes

of pseudoperiodic patterns in order to allow high reduction of

the scan-time. This approach represents a new MRI research

methodology in which an experiment is designed to allow

detection of pseudoperiodic spatiotemporal patterns that

characterize, for example, the activity patterns of cortical

columns. The detection ignores all the details not related to

the pattern—this contrasts the typical methodology accord-

ing to which analysis is made after a complete acquisition.

Utilizing the proposed technique, it has been shown that the

quality of the restored images is acceptable even at a very low

SNR. The algorithm relies on prior knowledge in the form of

constraints that can be relaxed without a significant degra-

dation of the restored image. The algorithm presented is

practical and efficient enough to be implemented in real time,

and thus offers a new option for visualizing pseudoperiodic

patterns in general.
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