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Abstract

Computer vision sysiems are becoming more and
more anthropemoerphic. In addition to taking an ac-
tive vision approach, researchers are now investigaling
robot heads with biologically motivated space-variant
sensors. We have designed such an ezploring eye
system for robol gaze conirol when observing an ar-
bitrary scene. Our approach uwses “retinal” images
consirucled from overlapping receplive fields thal are
mapped to form log-polar "cortical” itmages. We have
implemented this system on a parallel SIMD machine
using an efficient parallelization algorithm. In order io
demonstrate our approach, we have formulated various
types of attentional operalors thal are used to select
interest poinls fo drive the gaze contrel mechanism.
We show that our system efficiently integrates images
from space-varianl snapshots in an arbilrary natural
environment.

Introduction

Biological vision is foveated, highly goal-oriented
and task-dependent. This observation, which is rather
clear if we contemplate the behavior of practically ev-
ery vertebrate, is now being seriously considered by
the computer vision community, mainly in recent re-
search on active vision. A foveated retina offers several
important advantages, such as data reduction, as well
as object size and rotation invariance.

We use the term foveated image for the combina-
tion of periphery and fovea. The periphery possesses
an irregular pixel geometry and is postulated to de-
tect movement and points of interest in the scene.
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The fovea is a small uniformly sampled disk with high
resolution, thereby permitting a detailed analysis of
objects lying at the center of the visual field.

The use of such sensors requires efficient mech-
anisms for gaze control, that in turn, are directed
by specific attentional processes. In psychophysical
terms, these algorithms are either overt, analyzing in
detail the central foveated area, or coverl, analyzing
various regions within the field-of-view that are not
necessarily in the central foveated area.

In this work, we illustrate the performance of
gaze control, based on a parallel implementation of
a foveated retina, to explore and construct a compre-
hensive image of an unknown environment. We use a
winner-take-all algorithm to integrate the individual
space-variant snapshots into a unified high resolution
image mapped onto a geodesic dome.,

1 The FOVIA system
1.1 Receptive Field Distribution

Conventional video cameras perform image sam-
pling using a regular rectangular grid. However, in
the primate retina, sampling is achieved by receptive
fields (RF’s) which take their inputs from a contigu-
ous cluster of cones. Thus they combine information
from all photoreceptors within a "circular” area using
a particular weighting function. With such a strue-
ture, it becomes possible to everlap neighboring RF’s
as in the human visual system.

Wilson[6] has proposed a model to compute a
foveated retina with overlapping RF's. We have ex-
tended this model (see [7] for details) to yield n con-
centric rings containing overlapping RF’s in the pe-
riphery, which surrounds a uniform fovea. The radii
of these rings and the RF’s vary logarithmically and
linearly, respectively, with eccentricity.

For each RF in the periphery we use a Gaussian
weighting function :

fili,§) =) ) Gauss(i,j) I(i,5) (1)

L
where Gauss is a 2D Gaussian function centered on
the RF.



1.2 The Current FOVIA Design

FOVIA, an active vision system being developed in
our laboratory [1, 7], is a robot hand-eye configura-
tion. The computed foveated image, which is based
on overlapping receptive field theory, is obtained us-
ing a SIMD computer'. The hand-eye system uses the
foveated image to determine various saliency maps. It
then produces specific foveations or gaze trajectories
from the associated cortical image.

Our Maspar contains 2048 processors, structured
in an 32 x G4 array, which are connected to a front-
end machine. The images are digitized, blocked into
32 = 64 image tiles, and each pixel in each tile is read
into and processed on a single processor. Tiles are
analyzed sequentially.

The fixed array structure of the Maspar system per-
mits eight directional links, each with long distance
communications. All non-masked processors execute
the same set of instructions on their own data. The
algorithms must be entirely dedicated to this specific
architecture in order to provide fast execution times.
The minimization of processor inter-dependence, the
distances of inter-processor communications, and the
number of conditional statements plays an active role
in the efficiency of the implementation.

1.3 Computation of the Foveated Image

Rather than using equation (1) at each RF position
in the periphery we benefit from our parallel architec-
ture by using an iterative kernel convolution process.
Hence, a particular size of Gaussian template can be
obtained at each point in the periphery from the ini-
tial image by iteratively applying a fixed number of
3 x 3 convolutions [2]. Thus the required local aver-
ages within the RF’s on different rings, which clearly
have different radii, can be obtained by iteratlive con-
volution with a small weighting function or kernel.

The peripheral image f; (where | denotes the half-
size of the kernel Kj) can be obtained directly by par-
allel convolution with the full resolution input image
Jo using the recursive expression :

> K(m,n)fii(i+m,j+n)

A= 3
m=—1ln=-1

where K is the basic 3 x 3 kernel and f;_; is the pre-
vious weighted-image result. Hence the value at any
image pixel in the periphery is a weighted sum of its
neighborhood pixels. By making the ultimate size of
the Gaussian weighting function correspond to the ra-
dius of the RF, we can incrementally create the periph-
eral image. The foveal image is taken directly from the
input on a one-to-one basis.

I A Maspar, which is a massively parallel computer system.
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(a) RF positions

(c) Periphery
Figure 1: A foveated image.

Figure 1-(a) illustrates the position (R, #) of the re-
ceptive fields according to our retinal model. The cor-
tical representation of the foveal image is given in (b)
and that of the peripheral image in (¢). It can be
shown that the latter is a log-polar mapping of the
retinal image [1, 7).

2 The Saliency Map

Potential interest points are computed using the
same operator on the whole foveated image, which we
saw combines both the fovea and the periphery. This
greatly simplifies the implementation of our isotropic
point saliency operator. In comparison, the usual ap-
proach is to compute the interest points on the foveal
and peripheral cortical maps separately [5] after the
log-polar mapping. In this case, an isotropic operator
applied to a cortical map corresponds to a nonisolropic
Cartesian operator in the input image, since the size
of RF’s varies according to eccentricity.

(a) (b) (c)
Figure 2: Interest poinis detected in a foveated im-

age (a) The foveated image. (b) The edge image.
(d) Hadial symmetry.

To compute the saliency maps, we used edge, axial
and radial symmetry operators which are also imple-
mented in parallel on the foveated image. The edge
detector is standard. For symmetry detection, we em-
ployed an elegant solution based on the gradient mag-
nitude and direction [4]. Note that this operator does
not require prior object segmentation of the image and
is very robust with respect to changing lighting con-
ditions, perspective, and other noise degradations [3].



3 Foveational Control

Using the cortical saliency maps discussed in the
previous section, we can control the camera viewpoint
to conduct a context-free exploration of a scene. In the
illustrated experiments, we use only the saliency map
computed with the radial symmetry operator, chosen
because of its superior stability (see Figure 2). How-
ever, in future, we plan to investigate the exploration
of scenes using a combination of the different saliency
maps.

3.1 The Foveational Mechanism

Different modes for controlling attention are possi-
ble with our system. In the current implementation,
we use two sequential atientional mechanisms : an
exploration and a data updating mode. These are
necessary to acquire and maintain the necessary scene
information as time progresses,
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Figure 3: Foveational control.

Figure (3) illustrates the foveational control mech-
anism. At each cycle, we first compute the foveated
image and the saliency maps. Secondly, cortical map-
ping is performed. We then select the point with the
greatest saliency in the cortical image and use it as the
next interest point. The cortical position of this point
provides the next gaze point and thus a new region to
explore. This process is repeated until no new interest
points are detected.

3.2 Exploration

During exploration, the system uses the saliency
maps to plan a trajectory which covers the interesting
regions in the scene. A sequence of interest points
is selected and visited in turn. Each visited position
generates a restricted access area (80% of the foveal
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radius) around it. The next gaze point must lie outside
this region.

At each foveation, we visit the point with the max-
imum value in the symmetry map. The ensuing be-
havior exhibits the following characteristics -

# Small displacements of the gaze point are en-
couraged, since symmetry detection is more pro-
nounced near the fovea (related to progressively
coarser edge detection with eccentricity).

¢ Long range displacements within the field-of-view
are lolerated when the strongest response is in the
periphery.

¢ Because of the restricted access area around the
present gaze point, the local foveal region cannot
participate in the selection of the next point Thus
the system cannot get stuck at the same point.

After each foveation, the system provides image
and other pertinent information (such as the associ-
ated pan and tilt angles, the value of the saliency, ...)
about the gaze point to a long term memory resident
on a separate workstation. These space-variant im-
age snapshots of the environment are integrated into a
geodesic dome representation (taking the pan and tilt
angles as as the axes) using a winner-take-all strategy
based on image resolution [7] .

After a finite number of foveations, the interesting
parts of the image, as indicated by the symmetry op-
erator, have been explored. If the scene is static, the
systern will eventually stop since no new information
can be gathered,

3.3 Data Updating

For a scene in which the objects may move or
change, it is necessary to take into account the evolu-
tion of the already-visited gaze control positions. To
keep track of ongoing activity in the scene, we continu-
ously evaluate an activity indicator at each previously
visited position. This indicator is based on the change
in the saliency map value at that point. The infor-
mation in the long term memory is updated should
a change be detected at any of the visited positions.
Furthermore, a new gaze point will automatically be
selected since there would now be a previously wnvis-
tted gaze point with maximum saliency. Clearly this
permits tracking of objects and we are now investigat-
ing how to link the gaze points using Kalman filtering.

3.4 Experimental Exploration Results

We present some results which illusirate the he-
havior of our system when viewing a simple image.
In these experiments the object is a 2D image com-
posed of simple geometrical patterns. First we use a

-



static camera (" covert” attention). Figure 4 illustrates
the single foveated image (4.a) and the resulting scan-
path (4.b) determined from the fixation points. From
this experiment, we observe that the FOVIA system
visits all of the salient positions in the scene once and
then stops since no further change is detected. If we
were now to mask one of the ohjects, then the sys-
tern would return to the masked position in order to
update the associated information at that position.

(a) (b)
Figure 4: Gaze control on a stationary image
("covert” attention)

We may repeat the same experiment, but now us-
ing the robot hand-eye system. In this dynamic case,
the gaze control path and long term memory are both
different from the static case.

The FOVIA system permits us to build an image
representation of an environment. At each foveation,
we merge the foveated image into the geodesic dome,
thereby incrementally recreating the scene as shown in
Figure (5). This global map is maintained over time
by the updating activity.

Conclusions

The main goal of our project is to build a spe-
cific tool, based on analogies with biclogical systems,
to perform foveated gaze control in an active vision
system. Qur implemented solution incorporates scene
analysis to compute the foveated image and gaze con-
trol to move the sensor to the salient parts of the scene.

This paper presents the exploration activity of our
foveated robot eye system : FOVIA. Analogies with
human visual systems are integrated into the design of
the sensing model and in the way we perform explo-
ration of a scene without using contextual informa-
tion. We use retina-like images to compute interest
points and produce the corresponding cortical images
from a log-polar mapping. The computations are done
on the MASPAR, a massively parallel SIMD machine.
The cortical images are then used to drive the atten-
tion of the system to the salient points of the scene.
Foveational control permits us to build and maintain
a global and integrated long term representation of
the scene from a set of individual image acquisitions.
In future experiments, we intend to employ this ap-
proach with a miniature sensor mounted on a mobile
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robot. The sensor will permit excellent camera agility
and mobility, thereby producing very fast and accu-
rate foveations,

Figure 5: Projection of 23 images onto the gesdesic dome
which constitutes our long term memory map for room explo-
ration.
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