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Abstract

Detection of Regions of Interest is usually based on edge
maps. We suggest a novel non-edge-based mechanism for
detection of regions of interest, which extracts 3D infor-
mation from the image. Our operator detects smooth 3D
convex and concave objects based on direct processing of
intensity values. Invariance to a large family of functions
is mathematically proved. It follows that our operator is
robust to variation in illumination, orientation, and scale,
in contrast with most other attentional operators. The op-
erator is also demonstrated to efficiently detect 3D objects
camouflaged in noisy areas. An extensive comparison with
edge-based attentional operators is delineated.

1. Introduction

Automatic detection of regions of interest in images (also
referred to as “Attentional” algorithms) is usually based on
edge maps. Some mechanisms use the points of high cur-
vature of the edge map as their interest points [11]. Corner
detection [9] is another means of detection of interesting
points in the image. The common feature of all these mech-
anisms and many others (see [10]) is that directly or indi-
rectly the attentional mechanisms are based on edge maps.
Even more recent attentional mechanisms such as the gener-
alized symmetry transform [4] receive the edge map as their
input. This excludes some works which utilize color [2]
or motion [7] as attentional mechanisms, and direct gray
value processing for anchor points in object recognition [6].
Though one cannot disregard their advantages, edge maps
sustain severe flaws such as:

• Sensitivity to illumination: Strong illumination
might change the strength of the edges, and thus, the
region of interest.

• Scale: Existing attentional operators search for inter-
esting objects of a predetermined scale. Multi-scale
approaches (e.g. [3], [8]), are computationally heavy.
They are not a neat solution as they apply a heuristic
to a scale-dependent method.

• Strong effect of the surroundings: The outline edges
are not intrinsic to the object, but are affected from
background objects.

• In cluttered/textured scenes: Edge-based methods
are unable to separate different objects.

Our main goal is, thus, to develop a novel attentional
mechanism, that will overcome the typical pitfalls of edge
based methods. The operator we propose is applied to the
intensity image, and responds to 3D convex or concave re-
gions. The purpose of the suggested operator is the detec-
tion of regions of interest. The operator is robust to illumi-
nation, scale, and orientation. It is capable of focusing the
attention in noisy environments; e.g, in a strongly textured
background. It is even capable of breaking very strong cam-
ouflage of 3D objects, including camouflage which might
delude a human viewer. The invariance and robustness fea-
tures of the operator are mathematically proven. The ap-
plication of the operator to real-life images demands a rela-
tively short running time, and its robustness leads to reliable
results.

2. Attentional operator for detection of convex
regions

We next define the suggested attentional mechanism.

2.1. Defining the argument of gradient

Let us estimate the gradient map of image I(x, y) by:

∇I(x, y) ≈ ([Dσ(x) Gσ(y)] ∗ I(x, y),



[Gσ(x) Dσ(y)] ∗ I(x, y))

where Gσ(t) is the 1D Gaussian with zero mean and stan-
dard deviation σ, and Dσ(t) is the derivative of that Gaus-
sian. We turn the Cartesian representation of the intensity
gradient into a polar representation. The argument is de-
fined by:

θ(x, y) = arg(∇I(x, y))

= arctan
(

∂
∂y

I(x, y) ,
∂
∂x

I(x, y)
)

where the two dimensional arc tangent is defined by:

arctan(y, x) =











































arctan( y
x
), if x ≥ 0

arctan( y
x
) + π,

if x < 0 , y ≥ 0

arctan( y
x
) − π,

if x < 0 , y < 0

and the one dimensional arctan(t) denotes the inverse
function of tan(t) so that: arctan(t) : [−∞,∞] 7→
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. The attentional mechanism is simply the deriva-
tive of the argument map with respect to the y-direction:
∂
∂y

θ(x, y) ≈ [Gσ(x) Dσ(y)] ∗ θ(x, y). The attentional op-

erator, ∂
∂y

θ(x, y), is denoted: Y-Arg.
The intuition for the operator is: We are looking for zero-

crossings of the argument of the intensity gradient. The
zero-crossings are singled out using the derivation of the
arctan, since at the negative x-axis the arctan is discontin-
uous, and its derivative there tends to infinity. These zero-
crossings enforce a certain range of angles on the argument
of the intensity gradient. This range of angles ensures that
the detected object is either convex or concave.

2.2. Y-Arg response to paraboloids

The projection of concave and convex objects can be es-
timated by paraboloids (Fig. 1(a)), since paraboloids are
arbitrarily curved surfaces (see [12]). Our mathematical
formulation refers to a general paraboloid of the form:
f(x, y) = a(x − ε)2 + b(y − η)2, where a > 0 , b > 0
are constants, and (ε, η) is the center of the paraboloid. The
gradient argument is therefore: θ(x, y) = arctan(b(y −
η), a(x − ε)) (See Fig. 1(b)). The derivative of the gradi-
ent argument exists in the whole plane except for the ray:
{(x, y) | y = η and x ≤ ε}. At this ray, θ(x, y) has a
first order discontinuity (in the y-direction), so its deriva-
tive there tends to infinity. The strong (infinite) reaction at
that ray appears in Fig. 1(c).

The reader should note, that the argument of the gra-
dient is being used in Computer Vision for a long time.

(a) (b) (c) (d)

Figure 1. (a) The spheric gray-levels: I(x, y) =
10x2 + 10y2. (b) The argument of gradient of
(a). The discontinuity ray is at 180◦ from the
positive x-axis. (c) Y-Arg of (a). (d) Response
of D-Arg, the isotropic operator.

Hough transform [1], for example, uses the argument of the
gradient to reduce the space of parameters when searching
straight lines or circles in the image. Image improvement by
argument-based methods is also known, and can be found in
[5]. Nonetheless, the novel idea in the suggested operator is
not the argument of the intensity gradient, but rather the us-
age of the discontinuity ray formed by the argument of the
intensity gradient. The key idea for the detection scheme
we describe lies in this discontinuity ray, which is detected
by derivation of the gradient argument, to receive a strong
response to that ray. The search for zero-crossings in the
argument of the intensity gradient is very stable.

2.3. D-Arg: The isotropic variant

The strong reaction of Y-Arg at the negative part of the
x-axis is caused when θ(x, y) changes sharply from high
values (approx. π) to low values (approx. −π). This need
not happen only on paraboloidal gray-levels: cropping a
small strip around the negative part of the x-axis from the
spheric gray-levels would still produce high values, since
∂
∂y

θ(x, y) → ∞ there. In order to avoid Y-Arg dependence
on convexity orientation, we define an isotropic operator;
i.e., an operator that would strongly react to all convexity
orientations. A general way of doing so would be to ro-
tate the original image by π − α degrees, calculate Y-Arg
for the rotated image, and rotate the result back to the orig-
inal angle (by α − π degrees). We call the result of this
process: α-Arg. Our isotropic operator is defined to be the
sum of α-Arg for the angles: α = 0◦, 90◦, 180◦, 270◦. We
call this operator: D-Arg. Figure 1(d) shows the D-Arg of
the paraboloidal gray-levels. As expected, a strong reaction
appears in all axes.

3. Features of D-Arg

We next consider several features of Y-Arg. The same
features hold for D-Arg too, by definition.

Planar objects of constant albedo form linear gray-level



functions, and are usually of little interest (e.g., walls). The
following properties can be shown:

• Y-Arg has zero response to planar objects.

• The response of Y-Arg to edges of planar objects is
finite, and is, consequently, smaller than its response
to paraboloids.

• Y-Arg depends on the image scale linearly.

The 2D convexity of 2D objects (e.g. a circle in the
plane) is the convexity of their edges referred to as con-
tours. As we saw above, D-Arg does not strongly respond
to edges, but rather to paraboloidal gray levels. In this man-
ner, the convexity detected by D-Arg is three dimensional.
Thus, D-Arg exploits the 3D information concealed in the
image.

Nonetheless, the most important property of Y-Arg is:

Y-Arg is invariant under any derivable strongly mono-
tonically increasing transformation of the gray-level func-
tion.

The following theorem proves the claim mathematically:

Theorem 1 Let f(x, y) [the original gray-level function]
be a derivable function at each pixel (x0, y0) with respect
to x and y.
Let T (z) [the transform] be a function derivable at point
z0 = f(x0, y0), whose derivative there is positive in
the strong sense. The composite function: g(x, y) =
T (f(x, y)) [the transformed gray-level function].
The y-derivatives of the gradient arguments of f(x, y) and
g(x, y) at point (x0, y0) are identical:

∂θg(x0, y0)

∂y
=

∂θf (x0, y0)

∂y

Proof: By the chain rule, the composite function: g(x, y) =
T (f(x, y)) is derivable with respect to both x and y at point
(x0, y0), and its derivatives are:

gx(x0, y0) = T ′(f(x0, y0))fx(x0, y0)

gy(x0, y0) = T ′(f(x0, y0))fy(x0, y0)

Let f0 = f(x0, y0), f0

x = fx(x0, y0), f0

y = fy(x0, y0).
The argument of the gradient at point (x0, y0) can be written
as:

θg(x0, y0) = arctan
(

T ′(f0)f0

y , T ′(f0)f0

x

)

Since we have required that T ′(f0) > 0, the point
(

T ′(f0)f0

x , T ′(f0)f0

y

)

lies in the same quarter of the

plane as point (f0

x , f0

y ). It follows that:

θg(x0, y0) = arctan
(

T ′(f0)f0

y , T ′(f0)f0

x

)

= arctan
(

f0

y , f0

x

)

= θf (x0, y0)

The last equation states that the argument of the intensity
gradient is invariant under the transformation T . Deriving
the gradient argument with respect to y preserves this in-
variance:

∂θg(x0, y0)

∂y
=

∂θf (x0, y0)

∂y

2

The practical meaning of the theorem is that Y-Arg is
invariant, for example, under linear transformations, posi-
tive powers (where f(x, y) > 0), logarithm, and exponent.
It is also invariant under compositions and linear combina-
tions (with positive coefficients) of these functions. These
functions are common in image processing for lighting im-
provement. This implies that Y-Arg is robust to a large va-
riety of lighting conditions. Figure 2 demonstrates Y-Arg
invariance to log(log(log(I))) and exp(exp(exp(I))) in a
real-life scene.

Image: I log(log(log(I))) exp(exp(exp(I)))

Figure 2. Invariance to derivable strongly
monotonically increasing transforma-
tion of the gray-level function. Top
row: The original image I(x, y) is
compared to log(log(log(I(x, y)))) and
exp(exp(exp(I(x, y)))). Bottom row: D-Arg.
The similarity between the D-Arg of the origi-
nal image and the D-Args of the transformed
images is obvious.

3.1. Regions of interest

The goal of this work is to overcome the problems inher-
ent to edge-based detection. Edge maps fails to convey the
necessary information for the detection of the subject when
the background contains many strong edges. This kind of
background has two disadvantages: First, the background
distracts the attention from the subject when an edge-based
technique is employed. Second, backgrounds full of edges
are imitated by camouflage. The camouflage extends the
edges of the natural environment by artificial edges on the
cover (or clothes) of the concealed object. We cope with



Image: (D-Arg)2: Image: (D-Arg)2: Image: (D-Arg)2:

Figure 3. Left: Robustness to illumination directions. D-Arg strongly reacts to the canteen, and is
independent of the lighting direction. Each row corresponds to an illumination direction with an
azimuth of −90◦, 0◦ or 90◦, respectively. Middle: Robustness to scale. A film box in 3 different scales.
The maximal D-Arg reaction is marked on each original image. Right: Robustness to orientation.
D-Arg strongly reacts to the cylindric bottle, independent of its orientation.

these problems by the D-Arg operator, which detects re-
gions of interest characterized as smooth 3D convex and
concave objects. By using three dimensional convexity, D-
Arg can handle the above-mentioned problems even in very
noisy images.

4. D-Arg robustness demonstration

D-Arg is robust to the following three factors: illumina-
tion, scale, and orientation. The robustness to the last two
factors is gained mainly due to the fact that ∂

∂y
θ(x, y) → ∞

at the negative x-axis of paraboloids, which is a very stable
feature. Scale and orientation variations preserve this diver-
gence to infinity. Robustness to illumination changes has
been proved in detail in Sect. 3. For all examples, the same
dimensions for the environments were used: 2×2 pixels for
the first-order derivation, and 14 × 14 pixels for the deriva-
tion of θ(x, y).

Robustness to illumination. In Fig. 3, a single point light
source illuminates the scene. The light source is placed in
seven positions which are equidistant from the subject, to
form the azimuths −90◦, 0◦, 90◦, with respect to the line
connecting the subject and the camera. In each of the im-
ages, the regions of the highest D-Arg values are those of
the canteen.

Robustness to scale. In Fig. 3, a cylinder-like black film
box is photographed in 3 different scales. Each image is ac-

companied by its D-Arg. The film box is detected by D-Arg
in each of the scales. It should be noted that throughout this
article the environments for calculating D-Arg (and simi-
larly, Y-Arg) are fixed. The robustness to scale is main-
tained since ∂

∂y
θ(x, y) → ∞ at the negative x-axis of

paraboloids, which is a very stable feature. Regardless of
the scale of the paraboloid, a small environment around its
center would cause an infinite response.

Robustness to orientation. The D-Arg operator is
isotropic by definition. Figure 3 demonstrates its robustness
to the orientation of the maximal convexity of the object.
In all orientations the bottle has been correctly and consis-
tently detected as the region of interest in the image. Again,
as ∂

∂y
θ(x, y) → ∞ at the negative x-axis of paraboloids,

any orientation of the paraboloid which is not exactly per-
pendicular to the x-axis would result in an infinite response
of Y-Arg. By definition, D-Arg overcomes the perpendicu-
lar extreme case as well.

4.1. Superiority of D-Arg on edge-based detection

We delineate the results of an extensive comparison be-
tween D-Arg and edge maps. We confront D-Arg with an-
other context-free attentional mechanism: the radial sym-
metry operator (defined in [4]). This operator seeks for a
generalized notion of radial symmetry in the edge map of
the original image. As we would see, D-Arg performs bet-
ter than edge-based methods in a large variety of situations.



A vase vs. a drawn face. A human face vs. a drawn face.

(D-Arg)2. Detection by D-Arg.

Radial symmetry (r=30). Edge-based detection.

(D-Arg)2. Detection by D-Arg.

Radial symmetry (r=10). Edge-based detection.

Figure 4. Reaction to 3D objects. Edge-based detection locates the drawn “Smiley”, though it is a
flat drawing. D-Arg detects the vase or the human face, as they are 3D convex objects.

Reaction to 3D objects. Smooth 3D convex objects ex-
hibit a gradual change in gray levels, so their edges are
weak. Therefore, in Fig. 4 the edges produced by the “Smi-
ley” face predominate the edge maps, despite the presence
of the vase or the human face, respectively. The drawn face
is much more prominent in the edge map, and is therefore
detected by edge-based methods. D-Arg, on the other hand,
strongly reacts to 3D convex objects, while maintaining a
relatively low reaction to 2D objects. This makes the re-
sponse of D-Arg to a 2D drawn “Smiley” face relatively
low in comparison with its response to the detected three
dimensional vase or human face.

Stability in textured backgrounds. The existence of tex-
ture in an image makes the task of separating the subject
from the background very hard. Figure 5 illustrate D-Arg
robustness in dominant textures. Since the texture is 2D (i.e.
drawn on a flat paper), D-Arg reacts relatively low to tex-
ture. The edge map contains a significant image area cov-
ered with edges. This contrasts with our intuition that edges
describe the contours of objects, rather than areas. Areas
covered with edges prevent attentional operators from dis-
tinguishing between different objects.

5. Camouflage breaking

The stability of D-Arg under various conditions (illumi-
nation, scale, orientation, texture) makes it suitable for us-
age as a camouflage breaker.

A camouflage approach taken by hunters in woods is
mimicking the environment by clothes with stripes whose
distribution is as close as possible to the stripes formed by
the trees. This camouflage is exactly of the kind which de-
ceives edge-based detection of regions of interest. The con-
vexity of the gray-levels of the hunter is much stronger then
that of the background. The usage of stripes does not con-
ceal the convexity of the hunter, and thus D-Arg is capable
of detecting the hunter, as can be seen in Fig. 6.

Another type of camouflage, used especially by the mili-
tary, is achieved by covering most of the body or the equip-
ment under branches of trees (i.e, edges) common in the
area of operation. The camouflaged forces are detectable
by means of convexity, as can be seen in Fig. 7: a machine-
gun position manned by two soldiers is camouflaged by
branches of trees. Edge-based techniques fail on this im-
age. D-Arg detects the soldiers, as their (uncovered) faces
are 3D and convex.

6. Conclusions

Currently, the vast majority of attentional operators are
based on edge maps. Nevertheless, many images show
that edge-based information is not enough to detect cam-
ouflaged objects, or objects in cluttered images. This im-
plies, that a wide range of images cannot be successfully
handled by edge-based methods. To answer these cases, we
have proposed the use of three dimensional information. We
have introduced a novel attentional operator, D-Arg, for the



A vase on a highly textured background. A human face on a highly textured background.

(D-Arg)2. Detection by D-Arg.

Radial symmetry (r=30). Edge-based detection.

(D-Arg)2. Detection by D-Arg.

Radial symmetry (r=10). Edge-based detection.

Figure 5. Highly textured environments. D-Arg detects the vase or the human face being a 3D object,
despite the strong dominant texture.

Original image. (D-Arg)2. Detection by D-Arg.

Gradient modulus. Radial symmetry (r=10). Edge-based detection.

Figure 6. A camouflaged hunter in the woods. The natural environment and the hunter’s camouflage
unite to form a uniform-looking edge map. D-Arg detects the subject based on convexity information.



Original image. (D-Arg)2. Detection by D-Arg.

Gradient modulus. Radial symmetry (r=10). Edge-based detection.

Figure 7. Camouflaged soldiers. The camouflage trees disguise edge-based detection schemes.
Edge-based detection fails to detect any specific region of interest. Nevertheless, the soldiers faces
are 3D and convex, and thus lead to their detection by D-Arg.

detection of regions emanating from smooth convex or con-
cave three dimensional objects. The D-Arg attentional op-
erator should be used as a complementary method to edge-
based techniques, to answer those cases where edge-based
schemes are doomed to fail. The suggested operator is not
based on edge maps, and is thus free of their flaws (e.g.,
it is robust in dominant textures). D-Arg is proved invari-
ant under any derivable strongly monotonically increasing
transformation of the image gray-levels, which practically
means robustness to illumination changes. Robustness to
orientation and scale is also shown. D-Arg serves as a de-
tector of regions of interest in real-life images. An exten-
sive comparison between D-Arg and a typical edge based
method is depicted. This comparison exhibits the advan-
tages of D-Arg over edge-based techniques in a wide range
of scenes, and suggests that it is highly efficient in many
real-world applications.
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