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Abstract. Foveated sampling and representation of images is a power-
ful tool for various vision applications. However, there are many inherent
difficulties in implementing it. We present a simple and efficient mech-
anism to manipulate image analysis operators directly on the foveated
image; A single typed table-based structure is used Lo represent various
known operators. Using the Complex Log as our foveation method, we
show how several operators such as edge detection and Hough trans-
form could be efficiently computed almost at frame rate, and discuss the
complexity of our approach.

1 Introduction

Foveated vision, which was originally biologically motivated, can be efficiently
used for various image processing and image understanding tasks due to its inher-
ent compressive and invariance properties ([14,13,16]). It is not trivial, however,
to efficiently implement it, since we conceptualize and design algorithms for use
in a Cartesian environment. In this work, we propose a method that enables
implementation of image operators on foveated images that is related to ([14]),
and show how it is efficiently used for direct implementation of feature detection
on foveated images. Following the classification of Jain (in [3]), we show how
local, global, and relational (edge detection, Hough Transform and Symmetry
detection, respectively) are implemented by our method.

Both our source images and the feature maps are foveated, based on Wil-
son's model ([16,15]). To achieve reasonable dimensions and compression rates,
the model’s parameters are set in a way that follows biological findings - by
imitating the mapping of ganglions between the retina and V1. In order to use
camera-made images, we reduced the field of view and the foveal resolution. Our
simulations are done from initial uniform images with 1024 x 682 pixels, which
are mapped to a logimage L = upjay X Upax = 38 x 90 {ogpizels.
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2 The Complex Log Mapping

The complex log mapping was suggested as an approximation to the mapping
of visual information in the brain ([10,11] and others). The basic complex-log
function maps a polar coordinate to a Cartesian point by (u(r,8),v(r,8)) =
{logr,#). We follow [12,13,15,16] and remove a circular area from the center of
the source image, assuming that it is treated separately.

In addition to [15,16], we select the relevant constants in the model in a way
that follows biological findings. In order to achieve meaningful dimensions and
compression rates, we follow the path and number of ganglions.

2.1 Modeling the Human Retina

. The sampling model: According to [15,16] the retinal surface is spanned
by partially overlapping, round-shaped receptive fields; Their centers form a
complex log grid. The foveal area is excluded from the model. Using these as-
sumptions — the eccentricity of the nth ring (0 < n < «) Ry, is ;&,emﬁm, where

w = log (l + é%—f_—-_?;-b%“:), Ry is the radius of the fovea (in degrees), ¢, is the
ratio between the diameter (in degrees) of the receptive field and its eccentricity
(in degrees), o, is an overlap factor and p is the number of photoreceptors in a
radius of one receptive field. The radius of the receptive field on the nth ring

i 5“.'3-3“ and the number of receptive fields per ring is v = :ﬁ“_—a”} Ganglion
cells appear to obey these assumptions ([(9,16]). Following [11] and others, and
extrapolating the model towards the > 30° periphery, we can use ganglions as

the modeled elements and let o, = 0.5.

. Field of view: The retinal field of a single eye is 208°x 1407 ([5,8]). The foveal
area is a circle with a radius of 2.6° in the center of this field. We therefore let
Ry = 2.6°, and note that A, = 104° (The number of ganglions in the extreme
periphery is very small, thus we neglect the fact that the field of view is not
really circular).

. Number of modules: There are ==10% neurons in the main optic nerve, 75%

of them are peripheral. The number of modules (halves of hypercolumns) in one
hemifield of V1 is 2500, 1875 of them represent the periphery ([1]).

. Computing u, ¢y, and p: Following [16] we first model the spatial mapping
of modules. For u and e,,, we solve i, = 104 and u - v = 15875, which gives
w =33, and ¢, = 0.221, or a grid of 33 x 56.8 modules. If 750000 ganglions
are equally divided to the receptive fields, we get 400 cells per receptive field.
Roughly assuming that these cells are equally distributed inside every field in a
20 = 20 matrix, we get a grid of 660 = 1136 ganglions for the peripheral area.

2.2 Modeling Foveated Images

. Foveal resolution: Polyak's cones density in the foveaola matches Drasdo's
foveal resolution of up to 30000 ganglions/deg?®, assuming a ganglions/cones
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ratio of 2 ([6,2]). We therefore define F' = 28648 ganglions/deg” to be the max-
imal ganglions density (we ignore the density of 22918 cones/deg? in the very
central 20° of the foveaola).

. Selecting the portion of the view: In practice images with a field of
view of 208° are rarely used. Our suggested model uses the central 74° = 53° of
the human visual field. This portion has the same field as a 24mm camera lens,
projected on a 35mm film ([4]). It is wider than the human eye’s portion (around
39° x 26°, achieved using a 50mm lens), but not too wide to create distortions.

Viewing this portion with the resolution F we get 12525x8970 pixels; Ex-
cluding the foveal area leaves =51.11 - 10® pixels. The logarithmic mapping of the

portion results uxv = 24x56.8 modules, or 480:x11362:545280 ganglions (The v
parameter remains the same and u is the minimal n such that R, > B}).

. Lowering the foveal resolution: We now adjust the above portion to the
dimensions of a typical screen, which has a lower resolution. Dividing the uniform
portion by 12.66 in each dimension we fit it into 1024 x 682 pixels - a reasonable
size for input images. On a 14" monitor such an image takes = 74® x 53°, when
viewed from about 20em. We also reduce the sampling rate of the modules by
the same factor — from 202 ganglions to 1.6”. The 24 x 56.8 modules will now be
composed of about 38 x 80.8 =~ 3408 ganglions.

2.3 Summary and Example

Tahle 1 summarizes the dimensions of the human retina and our model.

Table 1. Numerical data about the human eye and our model. Additional constants
are: w = (.11081, o, = 0.5, cm = 0.221, Hp = 2.6.

[[Parameter I]Human eye||Portion of the eye| Mur:lel-ﬂ
Fov. resolution (units/deg”) || 28648 || 28648 180 ||
Horizontal field 208 T4 T4
Vertical field 140 a3 53
Horiz. field (w.) 35205 12525 1024
Vert. field (k) 23696 8970 682

“Uni[orm units 8.34-10° ||  1.12-10° 706910
Uniform units (ex. fovea) 8.33-107 1.11-10° TO3080
Log units {ex. fovea) Ta0000 H45H280 3408
Logmap’s width (ex. fovea) 660 480 38
Logmap’s height 1136 1136 89.8
Peripheral compression (z:1)|| 1110 203 203
P " 10 0.8
Ry 104 a7 |

The following pictures (Figure 1) illustrate the sampling models we presented
above. The left image shows our 780 = 674 input image and the middle image



Fig. 1. Left: An input image; Middle: Its Logimage; Right: Reverse logmap

shows its 38x 90 logimage. The center of the image was chosen to be the origin
for our mapping. The right image shows the reverse mapping of that logimage
(the central black area is the foveal area that is not mapped).

3 The Logmap and Operator Tables

A lograp is a table with .. * Uyax entries, each containing a list of the uniform
pixels that constitute the receptive field of this logpixel entry. Given that table,
and if we assume (for simplicity) that the receptive field’s kernel is just averaging,
we can transform a uniform image with pixel values z for each z to a logimage.
For every | with an attached list {z),... 2, }, we assign the logpixel value [ to be
1r=m

An operator table Op, () is defined VIEL as

{(a®)} 1)

where LEH = (E,-“*",.. : ,E;m) is a k-tuple of fi{ﬂ' € L, and k is constant.

Suppose that F is a function of k& parameters. For any | € L we define
Apply(Opy(l)) as

N el ——
ZW{F(I,'{U,- .-,L‘{H} [2}

=]

For k = 1 we use F(;V) = 1,'"). Applying is the process of “instantiating”
the operator on a source logimage, resulting in a target logimage. Preparing the
tables can be done in a preprocessing stage, leaving minimal work to be done
at applying time. Usually the preprocessing and applying stages can be carried
out in parallel for each logpixel.
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An operator table of [ can be normalized by multiplying every weight in the
list of Opy(l) by a given constant. Since each | has a different index list, we can
multiply each list by a different constant , thus normalizing a global operator.

Two operator tables can be added. The resulting table for each [ will contain
all the k-tuples from the souree tables; k-tuples that appeared on both tables
will appear once in the resulting table with a summed weight.

4 Edge and Phase Maps

Let (ug, vg) be an arbitrary logpixel, with a corresponding field center of (zg, 40)
in the uniform space. Let (s,1) = (w(z,v),¥(z,y)) be the transformation de-
fined by a translation of a Cartesian coordinate by (—zg, —wp) and a rotation
by (— arctan (yp/z0)). Projecting a logimage to the uniform space, we can ex-
press the result as functions of both the z-y and the s-i eoordinate systems,

by Flz,y) = flelz, ), ¥(z,y)). It can be easily shown that [%}2 + (%ﬁ-')z -

2 2
(gf) + (%{) . Thus the magnitude of the gradient vector VF can be approx-
imated using the s-t system as follows: We define G,, G; and VL(u,v) to be

Gelu,v) =(u+1,v)—(u—1,v)
Geluw,v) = (u,v+ 1) — {u,v —1) (3)
VL(u,v) = (GI +G})"".
(G¢/G) approximates the tangent VF', relative to the s-¢ coordinates. Since
this system is rotated, the phase of L will be

#L(u,v) = arctan (&) Y (4)

G, Uhfaz

5 Spatial Foveated Mask Operators

We suggest operators that use different masking scales: Logpixels that reside on
peripheral areas will have a larger effective neighborhood than central logpixels
(using fixed-scaled neighborhood yields poor peripheral detection). Suppose that
we are given a spatial mask g with M xN = {2M+1]X(2N+ 1) elements, and let
A € R* be an arbitrary constant. We mark the rounded integer value of x € R
by [z], the set of pixels in ['s receptive field by Ry, and its size by |Ry|. For
any uniform pixel (x,vy) we can find the closest matching logpixel I, and define a

neighborhood P around (z,y) as { ([z +mAVIRi|, [y + nAV/IRi|) }, where
Im| < M,|n| < N are reals.

Every p € P corresponds to a logpixel I, € L. We add the logpixels I, to I's
operator list; Each addition of [, that corresponds to a pixel (z + mm,y +
nAy/TRi]) will have a weight of (gq[m], [nw(mmﬁ]. A is used to control

our masking area (usually A = 1). Normalizing the weight compensates for our



222 E. Nattel and Y. Yeshurun

sampling method: |R;| compensates for the several additions to the same [, that
may occur using different (z,y) pairs. An additional A*| R;| compensates for the
different sizes of P. Note: In [14] this normalization is done in the “applying”
stage.

Mask building and applying can be viewed in terms of translation tables
(see [14]). A translation by (x,y) can be viewed as a spatial mask Ty, ), with
T{—=z,—y) = 1 and T'(#,7) = 0 for every other (i, 7). For each of the possible
offsets we build T{I_y} = T{#}'m-ﬂ*v’(m_ﬂ) Any mask operator G can now be de-

fined as G(u,v) = Ef;_mEf:_piy(m 1)-Tgmny (1, v), giving Apply(G(u,v)) =
S SN ng(m,n) - Apply(Tim,ny(u, v)).

6 The Foveated Hough Transform

We construct a Hough map that detects lines in a given edge-logimage. Let I"
be a set of k angles, I' = {71 < i < k,% = (%)}, let z be an arbitrary pixel
in a uniform image Z, and q the respective logpixel in L.

For each z € Z we find the parameterization of the & lines A; passing through
z and having angles of -y;, respectively. We define (p;, #;) (the coordinates of the
normal vector of A; that passes through 0) as these parameterizations. For an
arbitrary i we observe (u(ps, 8;), v(pi, 8;)). For up < p; < upgax and &; there is
a logpixel p € L with these coordinates. Thus we can add the coordinates of
q to p's operator table, which will function as the voting plane of the Hough
transform. MNote that the actual results of the voting depend on the logpixels'
values. They can be calculated once a logimage with the values 7 is given.

The operator table of a single p is made of a series of logpixels which lie on a
“band” in Z. That band passes through its parameterizing source logpixel, and is
orthogonal to the line {p;, #;). We define the thickness of that band as the number
of pixels along (py, #;) that intersect p. As the u-value of a logpixel p gets larger,
more parameterizations fall into the same p: The number of these contributers
increases linearly with p's thickness, which can be shown to be proportional to
the diameter of its receptive field. We therefore normalize the table during its
construction, by dividing every contribution to a logpixel p by p's diameter,

7 The Foveated Symmetry Operator

We show a foveated version of the Generalized Symmetry Transform ([7]), that
detects corners or centers of shapes. As in the case of mask operators, our op-
erator is scale dependent; It detects both corners and centers, smaller near the
fovea and larger in the periphery. OQur input is a set of logpixels Iy = (g, ve),
from which an edge logmap (rg,8:) = (log(l + ||V{er)||). arg(Vier))) can be
obtained. We define L—'(l) as the uniform pixel that corresponds to the cen-
ter of I's receptive field. Qur operator table for a logpixel [ will be of the form

{'w'l'! {iﬂi! Ebi]h:l..ﬁ I:a.ssigning k= 2, F{Erml = E 'E_b: in {1)1 {En
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Fig. 2. Foveated edge detection

9 Results

Figure 2 demonstrates our edge detector. We transferred the left image to a
logimage and applied the edge operator. The back-projection of the result is
shown in the right image, and can be compared with the uniform equivalent
(middle).

To demonstrate a spatial mask detector, we set a 5§ x 5 mask that detects
“I"-shaped corners. The image in Fig. 3(a) is used as our input; It is a logmap
of uniform squares with sizes that are proportional to the eccentricity of their
upper-left corners. We constructed a set of translation operators and used them
to construct a corner-detector. The result of applying the operator (along with
the original image) is shown in Fig. 3(b).

Fig. 3. Corner detection using a foveated spatial mask. Highest peaks designated by
their order

The Hough operator is demonstrated on an image with 5 segments that was
transferred into logimages using two fixation points (Fig. 4, left). The edge and
hough operators were applied (middle) and the 5 highest local maxima were
marked. The derived lines are drawn over the edge-logimage (right), they all
had similar votes.

For symmetry extraction we created a uniform image with 6 squares. The
applied operator when A = 2 and 4 are shown in Fig. 5. The two leftmost figures
show the resulting logimages, the right figure shows the projection along with
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For any ! we find all the pairs (I, ) of its cireular neighborhood I'(l): We
traverse all the possible logpixels-pairs ({5, 13), find mid(l,, ls) and add this pair
to i's list if mid(l., ) = [ mid{ls,{) is defined to be the closest matching
logpixel to the pixel ((L~Y(la) + L™Y))/2). When adding a pair, we compute
o and add a weight of D% to that pair in ['s list. & and D} are defined as —

o{lay Ib) = A/ | Rimidta )|

Lt (7Y ot A T8
TN Y]

ifitis > e~1
otherwise

Dy(lale) = { =
0

) is a constant that acts as the symmetry radius (¢ in [7]). After the construc-
tion is done, we divide each weight by the number of elements in its respective
list. The number of elements in each list is approximately the same for all the
lists in a single table. Thus the normalization is done only to equalize weights of
tables with different A values.

Applying the symmetry operator for [ results in Z}Zl wi P, b;)ra, rs,, Where
a;; is the angle between the z-axis and the line (ay, b;); and Pla;, b;) = (1 —
cos(fa, + By, — 204;))(1 — cos(B,, — 05, )) (for a detailed definition, see [7]).

8§ Complexity

Suppose that we are given an operator Op,. We define the difference operator
Opdny(u,v) as Opg(u, vin) — Shift{Op,(u, v), n) where + means +medup. - We
also define the Shift{Opy(u, v),n) of Op, by n as the operator which is defined
by {(wi,{uhvpltn]m,.. : ,{u,-_,lrl--f-n}l{k}) e

We say that Op,, has radial invariance if for every (x,v), the squared sum
of weights in OpAy,,(x,v) is < from the one of Opg. If an operator is radial
invariant, only one representative for each u in the table needs to be stored.
This cuts the storage complexity and preprocessing time by a factor of vnga.

For the Hough operator, it can be shown that a list with length of O(unax +
thax) is attached for each [. Since the Hough operator is radial-invariant, the
space complexity of the operator is O{tiuax - (Uniax + Uhax))-

Similarly, it can be shown for the symmetry operator that the total space
complexity is Otpaz tigasx). The symmetry operator is radial invariant, thus
it can be represented by (Mups..) elements and the bound on the preprocessing
time can be tightened to Ofw ez ).

The preprocessing time for the mask operators is large (computations for
each mask element is proportional to the size of the uniform image). However
the resulting operator requires only O{uaserUasez) space.

In our model, a relatively small number of elements in each logpixel's list
(< 25 for each translation mask, = 440 for the Hough operator, = 70/295 for
the symmetry with A = 2/4) enables almost a frame rate processing speed. Note
that sinee we build feature maps, the number and quality of interesting points
we may extract from a map does not affect the extraction complexity.
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Fig. 4. The foveated Hough operator. See text for details
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the source image, for A = 2. The symmetry operators indeed detect the corners
of the squares (for A = 2) or their centers (for A = 4).

10 Conclusions

In this paper we have presented an efficient mechanism that can be used to
implement various image analysis operators directly on a foveated image. The

L]
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.

&
-

Fig. 5. Foveated corner and center detection using the symmetry operator. Highest

peaks designated by their order
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method is based on a space variant weighted data structure. Using this approach,
we show how some common global and local operators can be implemented
directly, at almost frame rate, on the foveated image.
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