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Abstract

Detection of feature points in images is an important pre-
processing stage for many algorithms in Computer Vision.
We address the problem of detection of feature points in
video sequences of 3D scenes, which could be mainly used
for obtaining scene correspondence. The main feature we
use is the zero crossing of the intensity gradient argument.
We analytically show that this local feature corresponds to
specific constraints on the local 3D geometry of the scene,
thus ensuring that the detected points are based on real 3D
features. We present a robust algorithm that tracks the de-
tected points along a video sequence, and suggest some cri-
teria for quantitative evaluation of such algorithms. These
criteria serve in a comparison of the suggested operator
with two other feature trackers. The suggested criteria are
generic and could serve other researchers as well for per-
formance evaluation of stable point detectors.

1. Introduction
Context-free detection of specific image points (“features”)
is being addressed in Computer Vision for a long time, as it
is the basis of many higher level algorithms of visual infor-
mation processing.

Despite the large amount of work invested in detection
of feature points, there is no clear definition of its goal. The
“Attentional” attitude to this task (sometimes called: “In-
terest Points” or “Regions of Interest” detection) states that
detected points should attract computational resources, as is
apparently the case in biological systems [3].

A different view of the task defines it as a consistent
selection of a subset of image pixels, regardless of their
“attentional” value. Different names for this approach are:
“Anchor Points” or “Stable Point” detection. These meth-
ods do not attempt to generally focus attention, but rather,
to consistently locate image points relating to the same 3D
scene points. Such points could either be used for object
recognition, or as correspondence points for recovering 3D
characteristics of the scene. Corners ([1], [7], [2]) and
junctions ([4]) are considered Anchor Points. Other non-

attentional sources of stable point detection: [5] selects sta-
ble points at maxima and minima of a Difference of Gaus-
sian function applied in scale space. [8] uses direct gray
values processing for anchor points in object recognition;
see a survey of interest point detectors there.

The main goal of this paper isrobust detection of scene-
consistent feature points in video sequences. “Robust”
means consistent detection of points in noisy images, while
“scene-consistent” means that the algorithm should consis-
tently detect the same 3D scene point over multiple video
frames, regardless of illumination changes, pose variations
or parallax. This implies that detection which depends
merely on the local geometry of scene objects would be
appropriate. The intrinsic property that we use isconvex-
ity ; we use an operator for detection of convex or concave
patches in the image.

This paper is structured as follows: Section 2 sketches
the operator for detection of scene-consistent points in static
images, that was suggested in [10]. Section 3 then shows
analytically that this method detects specific features of
the image intensity function I(x,y), and proves that these
image-space features correspond to the local 3D geometry
of objects in the scene. These theorems are novel. They
completely characterize the domains of strong (i.e., infinite)
response of the operator, thus forming the theoretical basis
explaining why the operator is highly robust.

Section 4 presents a simple algorithm, based on Kalman
filter, that robustly tracks these features in video sequences.
The usage of video sequences confronts the operator with
new effects which could not be dealt with by static images
alone: parallax, camera motion and 3D object transforma-
tions. The operator copes well with these effects, because
it responds to intrinsic properties of 3D objects (as Sect. 3
proves). In Sect. 5, we rigorously define two measures for
evaluating tracking algorithms: completeness (w.r.t correct
tracking of 3D points) and stability. These measures are
generic and could be of use for other researchers as well.
The measures serve in a comparison between the suggested
tracker and two other trackers (Sect. 6). Section 7 concludes
the discussion.
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2. Operator for Feature Detection
In order to accomplish scene-consistent detection of fea-
ture points in video sequences, we first present an operator
that has been suggested [10] for detecting points in static
images. It detects convex or concave image patches. In-
tuitively, it looks for local “circles” where the gradient of
the intensity function points outward along the whole cir-
cle. Such “circles” yield either convex or concave intensity
functions. However, the operator doesnot look for these cir-
clesexplicitly, but rather, it takes advantage of the disconti-
nuity of the 2Darctan function for fast and robust detection
of such domains. This section defines the operator.

The gradient map of an image in Cartesian coordinates
is: ∇I(x, y) = ( ∂

∂x I(x, y), ∂
∂y I(x, y)). In polar coordi-

nates, the gradient argument is:θ(x, y) = arg(∇I(x, y)) =
arctan( ∂

∂y I(x, y), ∂
∂x I(x, y)), where the 2Darctan func-

tion is defined by:

arctan(y, x) =





arctan( y
x ), if x ≥ 0, x2 + y2 6= 0

arctan( y
x ) + π, if x < 0, y ≥ 0

arctan( y
x )− π, if x < 0, y < 0

0, if x = 0, y = 0

Notice (Fig. 1 (Left)) the well known discontinuity at the
negative part of thex-axis, which is the basis for our
method. We define the operator as:

Yarg
def
=

∂

∂y
θ(x, y) ≈ [Gσ(x)Dσ(y)] ∗ θ(x, y) (1)

whereGσ(t) is the 1D Gaussian with mean 0, and standard
deviationσ, andDσ(t) = d

dtGσ(t).
SinceYarg is orientation dependent, we use the isotropic

versionDarg, which sumsYarg over all orientations. The
intuition behind the operator is that only specific intensity
structures give rise to a zero crossing of the intensity gra-
dient argument. In this case, they-derivative approaches
infinity due to the discontinuity ray of the 2D arctan. In
practice, this appears as a strong response ofYarg. An ex-
ample of the domains where the strongD2

arg response oc-
curs appears in Fig. 1 (Right). In Sect. 3.1, we characterize
the specific features of the intensity surface which cause an
infinite response ofDarg, and in Sect. 3.2, we show that
these intensity surface features relate to specific details of
the local 3D geometry of the scene.

Since we are looking for a qualitative shape description,
the Yarg operator is very robust, in contrast with classic
methods of shape-from-shading.

3. Response ofYarg to the Intensity
Surface and Scene Geometry

This section presents the mathematical basis of our claim
that the response ofYarg is stable.

Figure 1:Left: The 2D arctan.Right: An image with the
areas of maximalD2

arg response marked.

3.1. Response to the Intensity Surface
We qualitatively characterize the behavior ofYarg in contin-
uous (“well-behaving”) image domains, namely when the
original graylevel functionf(x, y) is twice continuously
differentiable. Our basic observation is that∂

∂y θ(x, y) ap-
proaches infinity at(x0, y0) due to a jump-discontinuity at
θ(x0, y0):

1. Becausef(x, y), ∂f(x,y)
∂x and ∂f(x,y)

∂y are continuously
differentiable, and for all points(x0, y0) the left- and
right-hand side limits:limy→y0± arctan(y, x0) exist,
it follows thatθ(x, y) has left- and right-hand limits in
they-direction, anywhere.

2. If at point(x0, y0) the left- and right-hand side limits
are equal,θ(x0, y) is continuous or has a removable
singularity.

(a) If θ(x, y) is continuous: ∂f(x,y)
∂x and ∂f(x,y)

∂y

are differentiable anywhere, so at(x0, y0),
arctan(y, x0) is continuous. Because
arctan(y, x0) is differentiable at all its con-
tinuity points,θ(x, y) is also differentiable.

(b) If θ(x, y) has a removable singularity: The esti-
mation ofYarg is achieved using a convolution
(Eq. 1), which is an integral. The integral of a
function with a removable singularity is identical
to that of the fixed function (i.e., when the value
at the singular point is set to create a continuous
function). The result of the convolution doesnot
approach infinity.

3. If the left- and right-hand limits are different, the
derivative would approach infinity. This is the jump-
discontinuity case.

We are interested in domains whereYarg approaches infin-
ity; they are the stable feature points. Formally,

Theorem 1 Let f : R × R 7−→ R ∈ C2 (i.e., f(x, y)
is twice continuously differentiable w.r.t bothx and y) be
the graylevel function. Let(x0, y0) be a point where:
limy→y0

∂
∂y θ(x, y)|x=x0 = ±∞, then there existsε > 0

so that for ally, for which| y − y0 |< ε, one of the follow-
ing cases holds:
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1. ∀y, ∂f(x,y)
∂y |x=x0 = 0 and ∀y < y0,

∂f(x,y)
∂x |x=x0 ≥ 0, and ∀y > y0,

∂f(x,y)
∂x |x=x0 < 0.*

2. ∀y < y0,
∂f(x,y)

∂y |x=x0 > 0 and

∀y > y0,
∂f(x,y)

∂y |x=x0 = 0, and *

(a) ∀y > y0, ∂f(x,y)
∂x |x=x0 = 0, or:

(b) ∀y < y0, ∂f(x,y)
∂x |x=x0 = 0, or:

(c) ∀y < y0, ∂f(x,y)
∂x |x=x0 > 0, and

∀y > y0, ∂f(x,y)
∂x |x=x0 < 0. *

3. ∀y < y0,
∂f(x,y)

∂y |x=x0 < 0 and

∀y > y0,
∂f(x,y)

∂y |x=x0 = 0, *

except when:∀y : y 6= y0, ∂f(x,y)
∂x |x=x0 > 0.

4. (x0, y0) is a local extremum off(x0, y), except when:
∀y : y 6= y0, ∂f(x,y)

∂x |x=x0 > 0.

* The case where the conditions fory < y0 are swapped
with those fory > y0 is also valid; it is an equivalent case
and was therefore omitted.

Due to lack of room, we will only survey the main ideas
of the proof of theorem 1 (see [11] for the complete proof).

As f(x, y) is twice continuously differentiable,∂f(x,y)
∂x

and∂f(x,y)
∂y are continuously differentiable. Because the 2D

arctan function is differentiable in the whole plane except
for the negativex-axis and the origin (that is, differentiable
at domain{(x, y) ∈ R2 |x > 0 or y 6= 0}), the com-
position of the functions (i.e.,θ(x, y)) is differentiable at
{(x, y) ∈ R2 | ∂f(x,y)

∂x > 0 or ∂f(x,y)
∂y 6= 0}. It follows

that ∂
∂y θ(x, y) → ±∞ may hold merely in the domain

D
def
= {(x, y) ∈ R2 | ∂f(x,y)

∂x ≤ 0 and ∂f(x,y)
∂y = 0}. How-

ever, as claimed above, only jump discontinuities would
lead to ∂

∂y θ(x, y) → ±∞. In order to get a complete
and precise characterization of configurations that lead to
a jump discontinuity, we assume point(x0, y0) is in domain
D, and examine∂f(x,y)

∂x and ∂f(x,y)
∂y in a y-neighborhood

of (x0, y0) (we use ay-neighborhood, because we derive
θ(x, y) in the y-direction). Namely, we examine the signs
of ∂f(x,y)

∂x |x=x0 and ∂f(x,y)
∂y |x=x0 at the left- and right-

hand sides ofy0, to see whether substituting them into
arctan(y, x) would causeθ(x, y) to cross the discontinu-
ity ray of arctan(y, x). If at a certain neighborhoodθ(x, y)
indeed crosses the discontinuity ray (=domainD), a jump
discontinuity occurs there. In this case∂∂y θ(x, y) → ±∞
holds. Let us examine one such a case (the same modus
operandi serves at the analysis of the rest of the cases):

Let us assume(x0, y0) is a local minimum off(x0, y):
∀y : y < y0, ∂f(x,y)

∂y < 0 and∀y : y > y0, ∂f(x,y)
∂y > 0:

1. If ∀y : y < y0,
∂f(x,y)

∂x ≤ 0:
∀y < y0: θ(x, y) = arctan(∂f

∂y /∂f
∂x )− π ≤ −π

2 .

Because∀y : y > y0, ∂f(x,y)
∂y > 0

(i.e., quadrants I, II), necessarily:
Fory < y0: θ(x, y) > 0. ⇒ Jump discontinuity.

2. If ∀y : y > y0,
∂f(x,y)

∂x ≤ 0:

∀y > y0: θ(x, y) = arctan(∂f(x,y)
∂y /∂f(x,y)

∂x )+π ≥ π
2 .

Because∀y : y < y0, ∂f(x,y)
∂y < 0

(i.e., quadrants III, IV), necessarily:
Fory < y0: θ(x, y) < 0. ⇒ Jump discontinuity.

3. If ∀y : y 6= y0,
∂f(x,y)

∂x > 0:
Quadrants I, IV⇒ continuousθ(x, y) or removable
singularity. [This is the “except” part of case (4) of
Theorem 1.] Pay attention, that when∀y : y 6=
y0,

∂f(x,y)
∂x > 0, the 2D functionf(x, y) hasno ex-

tremum (only the 1D function:f(x0, y) has). In other
words, when the 2D functionf(x, y) has an extremum,
necessarily∂

∂y θ(x, y) → ±∞ (only the non-“expect”
cases hold).

This proves the part of case (4) in theorem 1 referring to
minimum. The complete proof analyzes the rest of the cases
as well. The important point to note, is that the domains are
characterized according to the signs of∂f(x,y)

∂x and ∂f(x,y)
∂y ;

these changes of signs of derivatives occur in specific differ-
ential geometry structures of the intensity function (e.g., at
extremum points). The next section would show that these
specific intensity structures relate to specific 3D scene struc-
tures. Doing so would mean that certain 3D scene structures
lead to certain intensity structures, which, in turn, lead to
Yarg approaching infinity. In other words, what we detect
usingYarg is certain 3D scene structures. This would ex-
plain the stability ofYarg: it responds to intrinsic properties
of the scene object.

3.2. Response to Local 3D Scene Structure
So far, the analysis referred merely to the connection be-
tweenYarg and the intensity function. The following the-
orem and corollaries would establish a connection between
some of the domains whereYarg approaches infinity and
the three dimensional scene object.

Theorem 2 Let R(p, q) be the reflectance map of a 3D
surfacez(x, y)¸ wherep(x, y) = ∂z(x,y)

∂x and q(x, y) =
∂z(x,y)

∂y . Let us assumeR(p, q) is differentiable at
(p(x, y), q(x, y)) andp(x, y) andq(x, y) are differentiable
w.r.t bothx andy. Let us also assume thatp(x, y), q(x, y),
∂
∂xq(x, y) and ∂

∂y p(x, y) are continuous, and these deriva-
tives are defined in an open domain containing point(x, y).
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If at point (x, y): ∂
∂y R(p, q) = 0 and ∂

∂xR(p, q) <

0 [i.e., domain whereθ(x, y) is discontinuous], then if
∂2z(x,y)

∂y∂x 6= 0 or ∂2z(x,y)
∂y2 6= 0:

∆(x, y) > 0 or ∆(x, y) < 0

and if ∂2z(x,y)
∂y∂x = 0 and ∂2z(x,y)

∂y2 = 0:

∂2z(x, y)
∂x2

> 0 or
∂2z(x, y)

∂x2
< 0

where:∆(x, y) = ∂2z(x,y)
∂x2

∂2z(x,y)
∂y2 −

(
∂2z(x,y)

∂x∂y

)2

is the

discriminant of the surface:z(x, y). [i.e., the 3D point is
elliptic, hyperbolic or parabolic, according to the case].

Again, the complete proof of theorem 2 can be found
in [11], and next is a brief survey of the main ideas.

From the differentiability demands of the theorem and
the constraints∂

∂y R(p, q) = 0 and ∂
∂xR(p, q) < 0:

∂R(p, q)
∂y

=
∂R(p, q)

∂p

∂p(x, y)
∂y

+
∂R(p, q)

∂q

∂q(x, y)
∂y

= 0

(2)
∂R(p, q)

∂x
=

∂R(p, q)
∂p

∂p(x, y)
∂x

+
∂R(p, q)

∂q

∂q(x, y)
∂x

< 0

(3)
assuming ∂

∂y p(x, y) = ∂2z(x,y)
∂y∂x 6= 0, dividing (2) by

∂
∂y p(x, y), and substituting into (3) yields:

∂R(p, q)
∂x

= −∂R(p, q)
∂q

∆(x, y)
/

∂q(x, y)
∂x

< 0

where∆(x, y) is defined above. This implies:∆(x, y) > 0
or ∆(x, y) < 0. The other part of the proof is similar in
nature.

Corollary 1 [Qualitative Classification of Response
Points]Under the conditions of theorem 2, if at point(x, y):
∂R(p,q)

∂y = 0 and ∂R(p,q)
∂x < 0, then if ∂2z(x,y)

∂y∂x 6= 0 or
∂2z(x,y)

∂y2 6= 0, then at this point the 3D surfacez(x, y) has
either anelliptic point (∆(x, y) > 0) or a hyperbolicpoint

(∆(x, y) < 0), and if ∂2z(x,y)
∂y∂x = 0 and ∂2z(x,y)

∂y2 = 0, then
at this point the 3D surface has aparabolicpoint .

Recalling that the reflectance map of a Lambertian sur-
face illuminated by a point light source at infinity is:
R(p, q) = 1+ps p+qs q√

1+p2
s+q2

s

√
1+p2+q2

, where(−ps, −qs, 1) is

the light source direction, another corollary follows di-
rectly:

Corollary 2 [Qualitative Classification of Yarg Response
to Lambertian Surfaces] Let z(x, y) be a Lamber-
tian surface, illuminated by a point light source at in-
finity. If at point (x, y), Yarg approaches±∞ and

arg
2D Blob

Centers

Multi-Target Kalman
Filter Tracker

Remove
Short Tracks

Stable-Point
Tracks

Image
Sequence

Threshold and
Remove Small Blobs

Figure 2: Scene-consistent points detection and tracking
algorithm. Upper row blocks: The stable-points locator.
Lower row blocks: The tracking facility. Tracking is inde-
pendent of feature detection.

∂
∂xR(p(x, y), q(x, y)) < 0 there (e.g.,(x, y) is an extremum
of f(x, y) as a function ofy), than point(x, y) is an elliptic,
hyperbolic or parabolic point of surfacez(x, y).

The last corollary shows, thatYarg would respond to cer-
tain elliptic, hyperbolic or parabolic points on a Lambertian
surface illuminated by a point light source at infinity. This
establishes the connection betweenYarg response and the
geometricfeatures of the 3D scene object, leading to sta-
bility of the detected points. The discussion is incomplete
without referring to specular reflection: Specular reflection
indeed distractYarg, being [to a certain extent] a virtual im-
age of the light source.

4. The Algorithm
The algorithm can be divided up into two independent parts:
stable point location, and point tracking.

Thestable-point locator is based on theDarg operator:
Locations whereD2

arg → ∞ are stable, or in other words:
consistently follow a 3D object. As the input is discrete and
bounded, the algorithm actually looks for the maximum of
D2

arg (by thresholding). The stable points are the centers
of gravity of the blobs of thresholdedD2

arg. These sta-
ble points are the only input to the point tracker: it has no
knowledge about the mechanism producing its input points,
or any additional knowledge of the image.

Thepoint tracker is a classic multi-target 2D Kalman-
filter tracker, assuming constant velocity. We compensate
for the lack of a-priori knowledge of the real motion model
by setting the position components of the state vector to the
measurements themselves each time a point is associated
with a track. The velocity components remain unchanged.
This reinforces the claim that stability is due to the stable-
point locator, rather than the filtering process.

4.1. Demonstration by Video Sequences
Let us present three of the video sequences we used to test
the algorithm. Tracking one of these sequences (“parking-
lot”) and the well-known “Flower Garden” sequence using
the suggested algorithm is presented in the attached MPEG
movie. Only the interior of the marked black frame partici-
pates in the tracking (to avoid boundary conditions). Track
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Frame #8

1
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Frame #28

3
5

7

8

9

10

Frame #16

1
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Frame #36

3
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9
11

Frame #24

3
5

6
7
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9

10

Frame #44

5

8
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11

Figure 3:Toys: Video sequence of objects in the laboratory.
Note, for example, track 3 which follows the same object
as long as it is in the frame, or track 8 which consistently
detects the tennis ball. Some erroneous effects occur, but in
general, tracking is consistent with the 3D scene.

numbers are marked on the images. The exact feature point
is the center of each label.

Figure 3 (“toys”) contains frames from a video sequence
taken in the laboratory. The sequence demonstrates a no-
table change in viewing angle. Most of the detected points
are stable, despite camera motion. Track 5 (for exam-
ple) has a short erroneous detection at its beginning (for 4
frames), but for most of the sequence (37 frames out of 46)
it tracks the 3D object correctly.

Figure 4 (“parking-lot”) shows frames of a video se-
quence of a parking lot, taken by a hand held camera. The
left column exhibits consistent tracking in spite of a con-
siderable zoom. In the right column, track 10 correctly(!)
follows the background building; track 11, the car. The par-
allax depicted in the relative motion of these tracks could be
used for 3D scene correspondence.

Figure 5 (“traffic”) samples a video of a highway. The
scene is very dynamic and combines several effects: fast
camera motion, scene objects motion (cars) and zooming.
This yields frequent dynamic changes: scene points disap-
pear more often, so the length of tracks is objectively lim-
ited. As expected, the results of this sequence are worse

Frame #50

1
2

3 4
5

67

Frame #200

910

11

Frame #100

1

2

3
6

7

8

Frame #225

10

11

Frame #150

1

7

9

Frame #250

10

11

Figure 4: Parking-lot: An outdoors video sequence.Left:
Tracks 1 and 7 correctly tracks the tree and car despite sig-
nificant scale differences and parallax.Right: Tracks 10
and 11 demonstrate howDarg copes well with parallax.

then of the previous two examples, yet still, most of the
tracks are correct most of the time, even for this challenging
video, and can thus serve as an input to algorithms requiring
correspondence of points between successive frames.

5. Evaluating the Performance of the
Algorithm

An important issue in scene-consistent point tracking is
how to evaluate algorithms. The following sections de-
fine two measures: one is more relevant when the goal is
maximal-time point tracking; the other, when correspon-
dence of points in successive frames is sought. The goal of
these measures is to quantify the consistency of the tracks
with the 3D scene.

Scene-consistency might not be enough for certain tasks
(e.g., collinear points do not fit a 3D scene reconstruction
task, although they might be tracked well). To overcome
this, one may apply a-priori weights to pixels in the video
sequence according to the higher level task, and calculate
weighted versions of the completeness and stability mea-
sures we are about to present.
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Frame #70
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Figure 5:Traffic: A sight of a highway.Left: Camera ro-
tates clockwise; tracks 11 and 12 consistently follow scene
points.Right: Tracks 1, 3, 5, 7 remain in place, as the back-
ground is static, while tracks 2, 4, 8 follow cars in motion.
Track 6 is erroneous in this part of the sequence.

5.1. Completeness of Tracking

One way to evaluate the performance of the algorithm is to
evaluate its completeness. Intuitively, a track iscomplete,
if the same 3D scene point is being tracked, up to a certain
level of noise, in every frame where it appears.

5.1.1 Definition of a Track

Let us define the video sequencepixel spaceas:Ω = Nn ×
Nm × Nk where each frame is ofn ×m pixels, and there
arek frames in the sequence. Let theset of detected points
D ⊂ Ω = Nn × Nm × Nk be the set of all pixels which
the tracker selected. Thetrack ID function: t : D 7−→
N defines the track ID, as determined by the tracker. Let
(a, b, c) ∈ D. ∀(a′, b′, c′) ∈ D \{(a, b, c)}, if t(a′, b′, c′) =
t(a, b, c), thenc′ 6= c. This formally states that in a certain
frame, only one pixel can get a certain track ID. We say that
image point setQ = {q1, ..., qα} ⊆ D has track IDT iff
t(q1) = ... = t(qα) = T . Let Q denote the maximal point
set which has track IDT ; i.e.,∀p ∈ D \Q, t(p) 6= T .

Theset of all pixels at a distance ofε pixels from track

T is the maximal set of pointsPT
ε = {p1, ..., pβ} ⊂ Ω such

that∀pi = (u1, v1, f) ∃qj = (u2, v2, f) ∈ Q : ‖ pi−qj ‖≤
ε (i = 1, ..., β, j = 1, ..., α). That is,PT

ε is the set of all
image points whose distance from the point with track IDT
in their frame is less than or equal toε.

5.1.2 Selecting The Correct Scene Point of a Track

Let Γ : PT
ε 7−→ R3 be a mapping which, given a point

pi = (u1, u2, f) ∈ PT
ε (1 ≤ i ≤ β), returns the 3D scene

point Γ(pi) whose projection on the image plane of frame
f is pi. We say that pointΓ1 (Γ1 ∈ R3) is thecorrect scene
point of trackT , if the cardinality of the set of pixels whose
3D scene point isΓ1: {pi ∈ PT

ε |Γ(pi) = Γ1} is maximal
among all scene points whose projection is at distanceε
from trackT ( Γ(PT

ε ) = {Γ(pi) | pi ∈ PT
ε } ):

‖ {pi ∈ PT
ε |Γ(pi) = Γ1} ‖>‖ {pj ∈ PT

ε |Γ(pj) = Γ2} ‖
for all Γ2 ∈ R3. If more than one 3D scene point attains
maximal cardinality, thenΓ1 is the correct scene point of
track T , if its tracking in trackT began earlier (i.e, at an
earlier frame) than trackingΓ2 in trackT . Formally: Let

‖ {pi ∈ PT
ε |Γ(pi) = Γ1} ‖≥‖ {pj ∈ PT

ε |Γ(pj) = Γ3} ‖
for all Γ3 ∈ R3, and letΓ2 ∈ R3 be such that:

‖ {pi ∈ PT
ε |Γ(pi) = Γ1} ‖=‖ {pj ∈ PT

ε |Γ(pj) = Γ2} ‖
Let us take a look only at frames where the projections ofΓ1

andΓ2 (i.e., pointspi, pj) are different (=their distance>
2ε). Formally, we assume that∃fi, fj : ∃pi = (u1, v1, fi) ∈
PT

ε , Γ(pi) = Γ1, ∃pj = (u2, v2, fj) ∈ PT
ε , Γ(pj) = Γ2, so

that‖ pi−projfi(Γ(pj)) ‖> 2ε, whereprojf : R3 7−→ R2

is the projection transformation of a 3D scene point onto the
plane of framef . Under this assumption, we say thatΓ1 is
the correct point iff:

min{fi | pi = (ui, vi, fi) ∈ PT
ε and Γ(pi) = Γ1} <

min{fj | pj = (uj , vj , fj) ∈ PT
ε and Γ(pj) = Γ2}

This definite minimum is assured to exist because in every
frame, trackT has at most one detected point.

Intuitively, if two scene points were allocated the same
track ID T for the same (maximal) time, we choose the
scene point whose tracking began earlier in the video se-
quence to be the correct scene point.

As a minor case, if for allfi, fj so that ∃pi =
(u1, v1, fi) ∈ PT

ε , Γ(pi) = Γ1 and∃pj = (u2, v2, fj) ∈
PT

ε , Γ(pj) = Γ2, the points are close enough:
‖ pi − projfi(Γ(pj)) ‖< 2ε, then one may arbitrarily (but
consistently) select whetherΓ1 or Γ2 is the correct point
(as their projections are close enough). For example, one
may always choose the scene point whose projection on the
earliest frame where the point is being tracked has lowest
y-rate, and if they-rates are equal, lowestx-rates.
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5.1.3 Defining Completeness

The completeness measure of track T is the percent of
frames where the correct point has been tracked with track
ID T from the set of all frames where that correct point ap-
pears (i.e., the potential maximal track time):

completeness
T

def
= 100×Actual Correct Track Time

Potential Track Time
=

= 100×‖ {fi | ∃pi = (ui, vi, fi), pi ∈ PT
ε and Γ(pi) = Γ1} ‖

‖ {p ∈ Ω | Γ(p) = Γ1} ‖
Thecompleteness measure of a tracker for a video sequence
is the average completeness measure over all the tracks it
detected for the specific video sequence.

5.2. Stability of Tracking
For many practical purposes (e.g., the correspondence prob-
lem), a full tracking of 3D points is not a must. In such
applications, we look for a reliable association of several
feature points in one frame with the points in the successive
frame, which are the projection of the same scene point.
When associating points in the successive frame with points
in the frame following it, the set of scene points the associ-
ation refers to, might change. This leads to the stability
criterion.

Let us examine a pair of successive frames:fi, fi+1.
W.L.O.G, let1, ..., r denote all track IDs which are com-
mon to both frames. Letpi

1, ..., p
i
r andpi+1

1 , ..., pi+1
r be the

detected points for the corresponding tracks and frames. Let
projf : R3 7−→ R2 be the projection transformation of a
3D scene point onto the plane of framef . Thestability mea-
sure of framesfi andfi+1 with allowed noise ofε pixelsis:

stabilityε(i, i + 1)
def
=

= 100×| {j ∈ {1, . . . , r} : ‖ proji+1(Γ(pi
j))− pi+1

j ‖≤ ε} |
r

(This measure resembles the “repeatability” measure of
[8]; there, however, only the detection part is handled, thus
implicitly assuming a correct association of corresponding
points (i.e., tracking)).

6. Experimental Results
Various feature trackers have been suggested in the liter-
ature; examples are: [12], [9], [6]. In order evaluate the
performance of our tracker, we compare ourDarg-based
tracking algorithm with two other algorithms: Junction De-
tection [4] and KLT [9].

Junctions are detected in [4] according to the curvature
of the level curves of the intensity function, multiplied by
the gradient magnitude raised to the power of three. Scale

is automatically selected by normalizing the derivatives. We
track the junctions of [4] using a Kalman-filter tracker.

The KLT (Kanade-Lucas-Tomasi) tracking algorithm1

[9] is based on a model of affine image change. Features are
selected to maximize tracking quality. Monitoring tracking
quality is based on a measure of dissimilarity.

In all trackers, tracks shorter then a certain percentage
of video sequence length are ignored: 25% for the toys and
parking-lot sequences, and 10% for the traffic sequence (the
traffic video sequence has a higher variability). Identical
thresholds were set for all trackers.

6.1. Completeness Comparison
Figure 6 (Left) shows graphs of the completeness measure
for the toys, parking-lot and traffic sequences, for each of
the three algorithms.

In order to follow the development in time of the com-
pleteness measure, a sliding window over frames in the
video sequence is employed. The window length is: 30
frames; it shifts by 5 frames each time. The allowed noise
level in all sequences is:ε = 3 pixels.

The graphs show that the completeness ofDarg is at least
comparable to that of the other two trackers. For the toys se-
quence, in part of the sequenceDarg performs better than
the other two trackers. For the parking-lot sequence,Darg

performs significantly better than the other two trackers, es-
pecially at the last part of the sequence, where its ability to
cope with parallax is displayed. For the traffic sequence, the
three trackers attain similar results.

6.2. Stability Comparison
Figure 6 (Right) introduces the stability criterion for the
three trackers on the three video sequences. The graphs
show the sliding average stability over windows of 30
frames, shifted by 5 frames each time. The allowed noise
level in all sequences is:ε = 3 pixels. As the graphs show,
the stability ofDarg is higher than that of either Junction
Detection or KLT for the toys and parking-lot sequences. In
parts of the parking-lot sequence, KLT equates withDarg.
For the traffic sequence, KLT performs better thanDarg,
andDarg performs better than Junction Detection. In parts
of this sequenceDarg equates with KLT.

We see thatDarg is more stable than Junction Detec-
tion, and sometimes (toys seq.) also more than KLT; Some-
times (parking-lot and traffic seq.)Darg and KLT equate.
One should also take into account the fact that the perfor-
mance ofDarg in terms of stability is not at the expense of
completeness, asDarg maintains its level of completeness
of tracking at least comparable to the other trackers (some-
times even a better completeness).

1Implementation: Stan Birchfield, Stanford Univ., ver. 1.1.5, 7/10/98.
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Figure 6:Left: Completeness comparison.Darg performs
as well as the other two trackers on the toys and traffic se-
quences, and better on the parking-lot sequence.Right:
Stability comparison. Tracking byDarg is more stable than
Junction Detection. For the toys sequence,Darg is more
stable than KLT. For the parking-lot and traffic sequences,
Darg and KLT equate.

6.3. No-Tracking Comparison
Our last criterion for tracker comparison would be theno-
track time: the total time a tracker failed to trackanypoint at
all. We compare the total no-track time over all three video
sequences together, for each of the three trackers. The total
length of the 3 video sequences is:46 + 252 + 227 = 525
frames.

Darg achieves the minimal no-track time: only 4 frames
without any tracking in all three video sequences. This no-
track time is significantly less then that of the other two
methods (KLT: 81 frames; Junction Detection: 121 frames).

7. Conclusions
We have presented a convexity-based method for scene-
consistent feature points detection in video sequences. Ob-
serving that the zero crossing of the gradient argument is
a highly prominent feature, we analytically show that this
zero crossing relates to specific features of the intensity sur-

face, which, in turn, relates to specific local features of the
3D scene geometry. Based on this operator, a commonly
used algorithm for stable point tracking (using a 2D multi-
target Kalman filter tracker) is described. Several video se-
quences demonstrate the high robustness maintained by the
algorithm.

Two measures, completeness and stability, are intro-
duced in order to evaluate performance of algorithms for ob-
ject tracking as well as correspondence establishing tasks.
These measures overcome various flaws in existing evalua-
tion measures of feature point trackers. We have used them
in a comparison of our tracker with two other trackers. The
completenessmeasure is aimed at maximizing the tracking
time of a 3D scene point. The goal of thestability measure
is to keep consistent tracking of 3D scene points between
successive frames (but the set of tracked scene points may
change between frames).

The suggested measures are generic; they can serve as
a basis for comparison of 3D point tracking algorithms for
other researchers as well.
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