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Abstract attentional sources of stable point detection: [5] selects sta-
ble points at maxima and minima of a Difference of Gaus-

Detection of feature points in images is an important pre- sian function applied in scale space. [8] uses direct gray
processing stage for many algorithms in Computer Vision. values processing for anchor points in object recognition;
We address the problem of detection of feature points insee a survey of interest point detectors there.
video sequences of 3D scenes, which could be mainly used
for qbtaining scene c_orrespond_ence.. The m_ain feature Weconsistent feature points in video sequense “Robust”
use IS the.zero crossing of the intensity gradient argument. ., o ans consistent detection of points in noisy images, while
We gqalytlcally §how that this local feature corresponds to “scene-consistent” means that the algorithm should consis-
specific co_nstramts on the local 3[_) geometry of the Scene'tently detect the same 3D scene point over multiple video
thus ensuring that the detected pom_ts are based on real 3Dframes, regardless of illumination changes, pose variations
features, _We present a robust algorithm that tracks the de',or parallax. This implies that detection which depends
tec_ted points ‘?'0”_9 avideo Sequence, and suggest some Crlr'nerely on the local geometry of scene objects would be
teria for quantitative evaluation of such algorithms. These appropriate. The intrinsic property that we USEdsvex-

Cr_'tﬁ”a Ser\r:e '? a compaison (_)rfhthe sugges(tjed _op(_arator ity ; we use an operator for detection of convex or concave
with two other feature trackers. The suggested criteria are patches in the image.

generic and could serve other researchers as well for per- ] ) )
formance evaluation of stable point detectors. This paper is structured as follows: Section 2 sketches

the operator for detection of scene-consistent points in static
: images, that was suggested in [10]. Section 3 then shows
1. Introduction analytically that this method detects specific features of

Context-free detection of specific image points (“features”) the image intensity function 4(y), and proves that these
is being addressed in Computer Vision for a long time, as it Mage-space features correspond to the local 3D geometry

is the basis of many higher level algorithms of visual infor- Of Objects in the scene. These theorems are novel. They
mation processing. completely characterize the domains of strong (i.e., infinite)

Despite the large amount of work invested in detection féSponse of the operator, thgs fprming the theoretical basis
of feature points, there is no clear definition of its goal. The €xplaining why the operator is highly robust.
“Attentional” attitude to this task (sometimes called: “In- Section 4 presents a simple algorithm, based on Kalman
terest Points” or “Regions of Interest” detection) states that filter, that robustly tracks these features in video sequences.
detected points should attract computational resources, as i¥he usage of video sequences confronts the operator with
apparently the case in biological systems [3]. new effects which could not be dealt with by static images

A different view of the task defines it as a consistent alone: parallax, camera motion and 3D object transforma-
selection of a subset of image pixels, regardless of theirtions. The operator copes well with these effects, because
“attentional” value. Different names for this approach are: it responds to intrinsic properties of 3D objects (as Sect. 3
“Anchor Points” or “Stable Point” detection. These meth- proves). In Sect. 5, we rigorously define two measures for
ods do not attempt to generally focus attention, but rather,evaluating tracking algorithms: completeness (w.r.t correct
to consistently locate image points relating to the same 3Dtracking of 3D points) and stability. These measures are
scene points. Such points could either be used for objectgeneric and could be of use for other researchers as well.
recognition, or as correspondence points for recovering 3DThe measures serve in a comparison between the suggested
characteristics of the scene. Corners ([1], [7], [2]) and tracker and two other trackers (Sect. 6). Section 7 concludes
junctions ([4]) are considered Anchor Points. Other non- the discussion.

The main goal of this paperisbust detection of scene-



2. Operator for Feature Detection

In order to accomplish scene-consistent detection of fea-
ture points in video sequences, we first present an operator
that has been suggested [10] for detecting points in static
images. It detects convex or concave image patches. In-
tuitively, it looks for local “circles” where the gradient of
the intensity function points outward along the whole cir-

cle. Such “circles” yield either convex or concave intensity Figure 1:Left: The 2D arctanRight: An image with the

functions. However, the operator daestlook for these cir-
clesexplicitly, but rather, it takes advantage of the disconti-

areas of maximab?

response marked.

arg

nuity of the 2Darctan function for fast and robust detection 3.1. Response to the Intensity Surface

of such domains. This section defines the operator.

The gradient map of an image in Cartesian coordinates
is: VI(z,y) = (g51(z,y), &1(x,y)). In polar coordi-
nates, the gradient argument gz, y) = arg(VI(z,y)) =
arctan(a%l(x,y), 21(z,y)), where the 2Darctan func-
tion is defined by:

arctan(¥), ife >0, 22 +y2#0
arctan(y, z) = arctan() +m, ifx <0,y>0
’ arctan() —m, ifx <0,y <0
0, ifx=0,y=0

Notice (Fig. 1 (Left)) the well known discontinuity at the
negative part of thec-axis, which is the basis for our
method. We define the operator as:

def O

5 M

(z,y) = [Go(2) Do (y)]  0(x, y)

Yarg

whereG,, (t) is the 1D Gaussian with mean 0, and standard
deviations, andD,(t) = 4G, (t).

SinceY,,,, is orientation dependent, we use the isotropic
versionDy,.4, which sumsy,,, over all orientations. The
intuition behind the operator is that only specific intensity
structures give rise to a zero crossing of the intensity gra-
dient argument. In this case, thederivative approaches
infinity due to the discontinuity ray of the 2D arctan. In
practice, this appears as a strong responsg,Qf. An ex-
ample of the domains where the strohg, , response oc-
curs appears in Fig. 1 (Right). In Sect. 3.1, we characterize
the specific features of the intensity surface which cause an
infinite response of,,,, and in Sect. 3.2, we show that
these intensity surface features relate to specific details of
the local 3D geometry of the scene.

We qualitatively characterize the behaviogf., in contin-
uous (“well-behaving”) image domains, namely when the
original graylevel functionf(z,y) is twice continuously
differentiable. Our basic observation is trb%ta(x,y) ap-
proaches infinity atx, yo) due to a jump-discontinuity at

(o, yo):

1. Becausdf(z,y), 2/¥) and afgf/’y) are continuously
differentiable, and for all pointézy, yo) the left- and
right-hand side limitslim,,_., + arctan(y, o) exist,
it follows thatd(x, y) has left- and right-hand limits in
they-direction, anywhere.

2. If at point(zg, yo) the left- and right-hand side limits
are equalf(z,y) is continuous or has a removable
singularity.

(@) If 6(z,y) is continuous: 24 and afg;}y)
are differentiable anywhere, so dtro, o),
arctan(y,xg) IS continuous. Because
arctan(y,xo) is differentiable at all its con-
tinuity points,f(z, y) is also differentiable.

(b) If 6(z,y) has a removable singularity: The esti-
mation ofY,,, is achieved using a convolution
(Eg. 1), which is an integral. The integral of a
function with a removable singularity is identical
to that of the fixed function (i.e., when the value
at the singular point is set to create a continuous
function). The result of the convolution doest
approach infinity.

3. If the left- and right-hand limits are different, the
derivative would approach infinity. This is the jump-
discontinuity case.

Since we are looking for a qualitative shape description, \ye are interested in domains wheérg,, approaches infin-
the Y,,, operator is very robust, in contrast with classic ity; they are the stable feature points. Formally,

methods of shape-from-shading.

Theoremlletf : Rx R — R € C? (i.e., f(z,v)

3. Response ofY,,, to the Intensity
Surface and Scene Geometry

is twice continuously differentiable w.r.t bothand y) be
the graylevel function.
limy .y, 2-0(2,y)[s=s, = 00, then there exists > 0

Letxo,yo) be a point where:

This section presents the mathematical basis of our claimso that for ally, for which| y — yo |< ¢, one of the follow-

that the response dof,, is stable.

ing cases holds:



1. Yy, 6f(”””’)|z —zy = 0 and Yy < yo,
Bféi Y) |x:x0 > 0, and Vy > Yo, 6f8$’y) |z:a30 < 0.*
8f(w»y)

dy
6f(1 )

|¢=z, > 0 and
|g=z, =0, and *

. vy < Yo,
vy > Yo,

@) Vy > yo, 20| _ =0, or:
(b) v'y<yo,m|m:o or:

(©) Yy < yo, &8, >0, and
Yy > yo, 8fé’;y) lomag < 0. *

Of(z,y)

11y y < yo, 2 <

Yy < yo: O(z,y) = arctan(af/ﬂ) —r< I

Becauséry : y > yo, f(“" NN
(i.e., quadrants 1, ), necessanly
Fory < yo: 6(z,y) > 0. = Jump discontinuity.

VY sy >y, %SO:

Yy > yo: 0(x,y) = arctan(afgzy)/aféx’y))—Hr >z
Becausery : y < yo, 9w |
(i.e., quadrants lll, IV), necessarily:

Fory < yo: 6(z,y) < 0. = Jump discontinuity.

VY <o, 5% le=ao <0 and

P
Yy > yo, f(xy|m 2o =0,%
exceptwhenv,y.y;«éy,af(my lo=zo > 0.

Yy Y #£ yo, 6féiy) > 0
Quadrants |, IV=- continuousf(x,y) or removable
singularity. [This is the “except” part of case (4) of
Theorem 1.] Pay attention, that whéty : y #
Yo, % > 0, the 2D functionf(z, y) hasno ex-
tremum (only the 1D functionf(zo, y) has). In other
words, when the 2D functiofi(x, y) has an extremum,
necessarily%@(x,y) — +oo (only the non-“expect”
cases hold).

4. (xo,yo) is alocal extremum of (xo, y), except when:
Vy iy # yo, L8V > 0.

* The case where the conditions fgr< y, are swapped
with those fory > yq is also valid; it is an equivalent case
and was therefore omitted.
This proves the part of case (4) in theorem 1 referring to
Due to lack of room, we will only survey the main ideas minimum. The complete proof analyzes the rest of the cases
of the proof of theorem 1 (see [11] for the complete proof). as well. The important point to note, is that the domains are
As f(z,y) is twice continuously differentiablel/(-4) characterized according to the signs’f>%) and 2/(-»).
and 22 gre continuously differentiable. Because the 2D these changes of signs of derivatives occur in specﬁﬂc differ-
arctan fyunctlon is differentiable in the whole plane except ential geometry structures of the intensity function (e.g., at
for the negativer-axis and the origin (that is, differentiable extremum points). The next section would show that these
at domain{(z,y) € R*|x > 0 or y # 0}), the com-  specific intensity structures relate to specific 3D scene struc-
position of the functions (i.e§(z,y)) is differentiable at  tures. Doing so would mean that certain 3D scene structures
{(z,y) € R?| % > 0 or %»;y) £ 0}. It follows Iead to certain.int(_an_f,ity structures, which, in turn, lead to
that a@ye(%y) . +o0 may hold merely in the domain a,,g approaching infinity. In other words, what we detect
def o fin 5ria usingY,,, is certain 3D scene structures. This would ex-
D = {(z,y) € R?| f( %) < 0 and f(yy) 0}. How- plain the stability ofY,,,.,: it responds to intrinsic properties
ever, as clalmed above only jump discontinuities would of the scene object.
lead to 2 5y O(xz,y) — =oo. In order to get a complete
and preC|se characterization of configurations that lead to3 2. Response to Local 3D Scene Structure
a jump discontinuity, we assume po{af, yo) is in domain
D, and examineafg;’y) and 6féw,y> in a y-neighborhood SO far, the analysis' referr.ed mergly to the conngction be-
of (z0,40) (We use ay-neighborhood, because we derive tweenY,,, and th_e intensity funct|_on. The foIIo_wmg the-
9(z,y) in the y-direction). Namely, we examine the signs orem and corollarle_s would establish a conne_ch_on between
of af(q« v) lo—sr and f (z,y) Ty lo—s, at the left- and right- some of the domains whené,,, approaches infinity and

ox ’L/ 1 1 1
hand sides ofy,, to see whether substituting them into the three dimensional scene object.

arctan(y, z) would causél(z,y) to cross the discontinu-
ity ray E)f ar)ctan(y,:c). If at;ceﬁtain neighborhoot{, y) Theorem 2 Let R(p, ) be the reglze(ita)nce map of a 3D
indeed crosses the discontinuity ray (= domﬁi)] ajump  Surfacez(z,y), wherep(z,y) = © and g(z,y) =
discontinuity occurs there. In this caged(x,y) — +oo azéz’y) Let us assumeRi(p,q) IS differentiable at
holds. Let us examine one such a case (the same modusp(x,y), ¢(x,y)) andp(z,y) andq(z, y) are differentiable
operandi serves at the analysis of the rest of the cases):  w.r.t bothz and y. Let us also assume thatz, y), ¢(z,y),
Let us assumézg, yo) is a local minimum off (z, y): a%q(z,y) and %p(Ly) are continuous, and these deriva-

Yy y < Yo, %f/y) < 0andvy : y > yo, %ﬁgy) > 0: tives are defined in an open domain containing péinty).



If at point (z,y): %R(p, g) = 0and ZR(p,q) <
0 [i.e., domain whered(x,y) is discontinuoul then if

8%z(x, 82%z(x, .
78,;6;/) #0or 7@22 v £ 0

A(z,y) >0 or A(z,y) <0
and if LZE;JJJ) =0 and 782222’3’) =0:

2 2
Paey) o Py

Ox2 0x2

2 2 N 22 xr 2 H
where: A(z,y) = 2520 2 ngz"’) - (689565’)) is the
discriminant of the surfacez(z,y). [i.e., the 3D point is

elliptic, hyperbolic or parabolic, according to the cdse

Again, the complete proof of theorem 2 can be found
in [11], and next is a brief survey of the main ideas.

From the differentiability demands of the theorem and
the constraints. R(p, q) = 0 and £ R(p, q) < 0:

OR(p,q)  OR(p,q) Op(z,y)  OR(p,q) Iq(z,y)

oy  Op gy g Ay :(0)

2

OR(p.q) _ 0R(p.q) Op(z,y) | OR(p.q) a(x.y) _
Ox dp or dq ox

3)

gssuming%p(z,y) = % # 0, dividing (2) by
a%p(x, y), and substituting into (3) yields:

OR(p,q) _  OR(p, q)A(x y)/aq(%y)

or dq or

<0

whereA(z, y) is defined above. This implieg\(z,y) > 0
or A(z,y) < 0. The other part of the proof is similar in
nature.

Corollary 1 [Qualitative Classification of Response

Points] Under the conditions of theorem 2, if at poiat y):

AR(p,q) __ OR(p, e 0%2(x,

7251; 9 — 0and 7@% 9 < 0, then if 78;(%") # 0 or

% # 0, then at this point the 3D surfacgz, y) has

either anelliptic point (A(z,y) > 0) or a hyperbolicpoint
2 (.. 2 -

(A(z,y) < 0), and if 250 = 0 and 2552 = 0, then

at this point the 3D surface hasparabolicpoint .

Recalling that the reflectance map of a Lambertian sur-

face illuminated by a point light source at infinity is:

R = 14ps04d:0___  where(—ps, —¢s, 1) iS
(,9) e Y e (=ps, —s, 1)

the light source direction, another corollary follows di-

rectly:

Corollary 2 [Qualitative Classification of Y,,, Response
to Lambertian Surfaces] Let z(z,y) be a Lamber-
tian surface, illuminated by a point light source at in-
finity. If at point (z,y), Y., approachestoco and

| mage 2 Threshol d and Bl ob
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Figure 2: Scene-consistent points detection and tracking
algorithm. Upper row blocks: The stable-points locator.
Lower row blocks: The tracking facility. Tracking is inde-
pendent of feature detection.

2 R(p(z,y),q(z,y)) < 0there (e.9.(z, y) is an extremum
of f(x,y) as a function ofy), than point(x, y) is an elliptic,
hyperbolic or parabolic point of surface(z, y).

The last corollary shows, thét,,., would respond to cer-
tain elliptic, hyperbolic or parabolic points on a Lambertian
surface illuminated by a point light source at infinity. This
establishes the connection betwe€n, response and the
geometricfeatures of the 3D scene object, leading to sta-
bility of the detected points. The discussion is incomplete
without referring to specular reflection: Specular reflection
indeed distract,,4, being [to a certain extent] a virtual im-
age of the light source.

4. The Algorithm

The algorithm can be divided up into two independent parts:
stable point location, and point tracking.

Thestable-point locatoris based on thé,,., operator:
Locations whereD?,, — oo are stable, or in other words:
consistently follow a 3D object. As the input is discrete and
bounded, the algorithm actually looks for the maximum of
D?Wg (by thresholding). The stable points are the centers
of gravity of the blobs of thresholde®?, . These sta-
ble points are the only input to the point tracker: it has no
knowledge about the mechanism producing its input points,
or any additional knowledge of the image.

The point tracker is a classic multi-target 2D Kalman-
filter tracker, assuming constant velocity. We compensate
for the lack of a-priori knowledge of the real motion model
by setting the position components of the state vector to the
measurements themselves each time a point is associated
with a track. The velocity components remain unchanged.
This reinforces the claim that stability is due to the stable-
point locator, rather than the filtering process.

4.1. Demonstration by Video Sequences

Let us present three of the video sequences we used to test
the algorithm. Tracking one of these sequences (“parking-
lot”) and the well-known “Flower Garden” sequence using
the suggested algorithm is presented in the attached MPEG
movie. Only the interior of the marked black frame partici-
pates in the tracking (to avoid boundary conditions). Track



Frame #8 Frame #28 Frame #50 Frame #200

Figure 3: Toys: Video sequence of objects in the laboratory. Figure 4: Parking-lot: An outdoors video sequendeeft:
Note, for example, track 3 which follows the same object Tracks 1 and 7 correctly tracks the tree and car despite sig-
as long as it is in the frame, or track 8 which consistently nificant scale differences and parallaRight: Tracks 10
detects the tennis ball. Some erroneous effects occur, but irand 11 demonstrate hal,,, copes well with parallax.
general, tracking is consistent with the 3D scene.

then of the previous two examples, yet still, most of the
numbers are marked on the images. The exact feature pointracks are correct most of the time, even for this challenging
is the center of each label. video, and can thus serve as an input to algorithms requiring
Figure 3 (“toys”) contains frames from a video sequence correspondence of points between successive frames.
taken in the laboratory. The sequence demonstrates a no-
table change in viewing angle. Most of the detected points .
are stable,g despite camera motion. Track 5 (for exam-5- Evaluatmg the Performance of the
ple) has a short erroneous detection at its beginning (for 4 Algorithm
frames), but for most of the sequence (37 frames out of 46)
it tracks the 3D object correctly. An important issue in scene-consistent point tracking is
Figure 4 (“parking-lot”) shows frames of a video se- how to evaluate algorithms. The following sections de-
guence of a parking lot, taken by a hand held camera. Thefine two measures: one is more relevant when the goal is
left column exhibits consistent tracking in spite of a con- maximal-time point tracking; the other, when correspon-
siderable zoom. In the right column, track 10 correctly(!) dence of points in successive frames is sought. The goal of
follows the background building; track 11, the car. The par- these measures is to quantify the consistency of the tracks
allax depicted in the relative motion of these tracks could be with the 3D scene.
used for 3D scene correspondence. Scene-consistency might not be enough for certain tasks
Figure 5 (“traffic”) samples a video of a highway. The (e.g., collinear points do not fit a 3D scene reconstruction
scene is very dynamic and combines several effects: fastask, although they might be tracked well). To overcome
camera motion, scene objects motion (cars) and zoomingthis, one may apply a-priori weights to pixels in the video
This yields frequent dynamic changes: scene points disap-sequence according to the higher level task, and calculate
pear more often, so the length of tracks is objectively lim- weighted versions of the completeness and stability mea-
ited. As expected, the results of this sequence are worsesures we are about to present.



Frame #55

Frame #5

Figure 5: Traffic: A sight of a highway.Left. Camera ro-

tates clockwise; tracks 11 and 12 consistently follow scene
points.Right: Tracks 1, 3, 5, 7 remain in place, as the back-
ground is static, while tracks 2, 4, 8 follow cars in motion.

Track 6 is erroneous in this part of the sequence.

5.1. Completeness of Tracking

T is the maximal set of pointB? = {py, ..., ps} C Q2 such
thatvp; = (u1,v1, f) 3g; = (u2,v2, f) € Q : || pi—g; [I<
e(i=1,....8j=1,.,a). Thatis, PT is the set of all
image points whose distance from the point with trackl1D
in their frame is less than or equald4o

5.1.2 Selecting The Correct Scene Point of a Track

LetT : PT +—— R? be a mapping which, given a point
pi = (u1,ua, f) € PT (1 < i < p), returns the 3D scene
pointT'(p;) whose projection on the image plane of frame
fis p;. We say that poinf, (I'; € R?)is thecorrect scene
point of trackT, if the cardinality of the set of pixels whose
3D scene point i§';: {p; € PX|T(p;) = I'1} is maximal
among all scene points whose projection is at distance
from trackT (T'(PL) = {T(p;) | p: € PT}):

I {p: € P/ |T(pi) =T} I>] {p; € PX[T(p;) = T2} |

for all Ty € R3. If more than one 3D scene point attains
maximal cardinality, thel’; is the correct scene point of

track T, if its tracking in trackT" began earlier (i.e, at an

earlier frame) than trackins in trackT". Formally: Let

I {pi € PX|T(pi) =T1} =] {p; € BX | T(p;) =Ts} |
forallT5 € R3, and letl’, € R® be such that:

I {p: € P |T(pi) =T} 1=l {p; € PX | T(p;) = T2} |

Let us take a look only at frames where the projectiors,;of
andI'y (i.e., pointsp;, p;) are different (=their distance

2¢). Formally, we assume thaf;, f; : 3p; = (uq,v1, fi) €

PET, F(pl) =TIy, Hpj = (U27'U2,fj) € PET, F(pj) =TI, so
that|| p; —projit,(D(p;)) ||> 2, whereprojs : R? — R?

is the projection transformation of a 3D scene point onto the

One way to evaluate the performance of the algorithm is to plane of framef. Under this assumption, we say thatis

evaluate its completeness. Intuitively, a traclcismplete

if the same 3D scene point is being tracked, up to a certain

level of noise, in every frame where it appears.

5.1.1 Definition of a Track

Let us define the video sequergigel spaces: 2 = N,, x
N,, x Ny where each frame is of x m pixels, and there
arek frames in the sequence. Let thet of detected points
D c Q = N, x N,,, x Nj be the set of all pixels which
the tracker selected. Theack ID function ¢t : D +——

the correct point iff:
min{f; |p; = (s, vi, f;) € PF and T(p;) =T} <
min{f; |p; = (u;,v;, f;) € PX and T'(p;) = T2}

This definite minimum is assured to exist because in every
frame, trackl” has at most one detected point.

Intuitively, if two scene points were allocated the same
track ID T for the same (maximal) time, we choose the
scene point whose tracking began earlier in the video se-
guence to be the correct scene point.

As a minor case, if for allf;, f; so that3p;

N defines the track ID, as determined by the tracker. Let (uy, v, f;) € PX, T'(p;) = I'1 and3p; = (ua,v2, fj) €

(a,b,c) € D.V(a', b, ") € D\{(a,b,c)},if t(a’,V, ) =

t(a, b, c), thend # c. This formally states that in a certain

PT,T'(p;) = I'y, the points are close enough:
| pi —projs,(T(p;)) |I< 2e, then one may arbitrarily (but

frame, only one pixel can get a certain track ID. We say that consistently) select whethéh, or I'; is the correct point

image point setQ = {q1,...,49o} € D has track IDT iff
t(q1) = ... = t(go) = T . Let Q denote the maximal point
set which has track I0"; i.e.,Vp € D\ Q, t(p) # T.

The set of all pixels at a distance afpixels from track

(as their projections are close enough). For example, one
may always choose the scene point whose projection on the
earliest frame where the point is being tracked has lowest
y-rate, and if they-rates are equal, lowestrates.



5.1.3 Defining Completeness is automatically selected by normalizing the derivatives. We
track the junctions of [4] using a Kalman-filter tracker.

The KLT (Kanade-Lucas-Tomasi) tracking algorithm
[9] is based on a model of affine image change. Features are
selected to maximize tracking quality. Monitoring tracking
quality is based on a measure of dissimilarity.

The completeness measupf track T' is the percent of
frames where the correct point has been tracked with track
ID T from the set of all frames where that correct point ap-
pears (i.e., the potential maximal track time):

def Actual Correct Track Time In all trackers, tracks shorter then a certain percentage
completeness, = 100x Potential Track Time of video sequence length are ignored: 25% for the toys and
parking-lot sequences, and 10% for the traffic sequence (the
| {fi | 3pi = (us,vs, fi), pi € PT and T'(p;) =T} || traffic video sequence has a higher variability). Identical
| {p€Q|T(p)=T1} | thresholds were set for all trackers.

= 100x

Thecompleteness measure of a tracker for a video sequence )
is the average completeness measure over all the tracks i6.1. Completeness Comparison

detected for the specific video sequence. Figure 6 (Left) shows graphs of the completeness measure

. ) for the toys, parking-lot and traffic sequences, for each of
5.2. Stability of Tracking the three algorithms.
For many practical purposes (e.g., the correspondence prob- In order to follow the development in time of the com-
lem), a full tracking of 3D points is not a must. In such pleteness measure, a sliding window over frames in the
applications, we look for a reliable association of several video sequence is employed. The window length is: 30
feature points in one frame with the points in the successiveframes; it shifts by 5 frames each time. The allowed noise
frame, which are the projection of the same scene point.level in all sequences is: = 3 pixels.
When associating points in the successive frame with points  The graphs show that the completenesBgf, is at least
in the frame following it, the set of scene points the associ- comparable to that of the other two trackers. For the toys se-
ation refers to, might change. This leads to the stability quence, in part of the sequengk,,., performs better than
criterion. the other two trackers. For the parking-lot sequedeg,,

Let us examine a pair of successive fram¢gs: f;11. performs significantly better than the other two trackers, es-
W.L.O.G, letl,...,r denote all track IDs which are com- pecially at the last part of the sequence, where its ability to
mon to both frames. Let, ..., p% andp’™, ..., pit! be the cope with parallax is displayed. For the traffic sequence, the
detected points for the corresponding tracks and frames. Lethree trackers attain similar results.
projs : R® — R? be the projection transformation of a
3D scene point onto the plane of frarfieThestability mea-

6.2. Stability Comparison
sure of frameg; and f;; with allowed noise of pixelsis: y P

Figure 6 (Right) introduces the stability criterion for the

stability. (i, i + 1) def three trackers on the three video sequences. The graphs

’ show the sliding average stability over windows of 30
B [ € {17} : || projiys (T(pi)) — it |< e} | frames, shifted by 5 frames each time. The allowed noise
= 100x level in all sequences is: = 3 pixels. As the graphs show,

" the stability of D, is higher than that of either Junction

(This measure resembles the "repeatability” measure ofpetection or KLT for the toys and parking-lot sequences. In
_[8], t_h_ere, howe\_/er, only the detectlpn_part is handled, thus parts of the parking-lot sequence, KLT equates wit}).,.
implicitly assuming a correct association of corresponding gqy the traffic sequence, KLT performs better thag,

) g

points (i.e., tracking)). andD,,, performs better than Junction Detection. In parts
. of this sequencé,,., equates with KLT.
6. Experimental Results We see thatD,,, is more stable than Junction Detec-

Various feature trackers have been suggested in the Iiter-t'on’ and sometimes (toys seq.) also more than KLT; Some-

ature; examples are: [12], [9], [6]. In order evaluate the times (parking-lot and .trafflc seqParg and KLT equate.
One should also take into account the fact that the perfor-
performance of our tracker, we compare diy,,-based

tracking algorithm with two other algorithms: Junction De- (r;:;rr:cf;?effggi Ir;éermsm (;fir?tt:ibr:gti};slslg\gl Ei)tftzgrﬁxﬁigiz sosf
tection [4] and KLT [9] p ’ arg p

Junctions are detected in [4] according to the curvature of tracking at least comparable to the other trackers (some-

. . ) . times even a better completeness).
of the level curves of the intensity function, multiplied by P )
the gradient magnitude raised to the power of three. Scale !Implementation: Stan Birchfield, Stanford Univ., ver. 1.1.5, 7/10/98.




Sequence: toys = Sequence: toys face, which, in turn, relates to specific local features of the
100 £100 3D scene geometry. Based on this operator, a commonly
o 80 i; o used algorithm for stable point tracking (using a 2D multi-
% 60 —] g 60 target Kalman filter tracker) is described. Several video se-
% s ] o 40 guences demonstrate the high robustness maintained by the
E 20 g 20 algorithm.
° 0 5 1 16 z 9 6 11 16 Two measures, completeness and stability, are intro-
#irame (1st frame in window) #frame (1st frame in window) duced in order to evaluate performance of algorithms for ob-
Sequence: parking-lot _.  Sequence: parking-lot ject tracking as well as correspondence establishing tasks.
100 100 e These measures overcome various flaws in existing evalua-
E 80 2 80 tion measures of feature point trackers. We have used them
2 60 g 60 5 in a comparison of our tracker with two other trackers. The
E 40 ﬁ 40 T ag completenesmeasure is aimed at maximizing the tracking
g 20 g 20 . f(qu}Ct' time of a 3D scene point. The goal of th&bility measure
S 0 ) is to keep consistent tracking of 3D scene points between
1 74 148 221 < 1 74 148 221 . :
#frame (1st frame in window) #frame (1st frame in window) ~ successive frames (but the set of tracked scene points may
Sequence: traffic —_ Sequence: traffic change between frames). .
100 S 100gscrmssmerssssizseisssmrmsonss The suggested measures are generic; they can serve as
& 80 2 80 a basis for comparison of 3D point tracking algorithms for
§ 60 g 60 other researchers as well.
3 407\_\0% ? 40
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