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Abstract

Shape-from-Shading (SfS) is a fundamental problem in
Computer Vision. At its basis lies the image irradiance
equation. Recently, the authors proposed to base the im-
age irradiance equation on the assumption of perspective
projection rather than the common orthographic one. The
current paper presents a greatly-improved reconstruction
method based on the perspective formulation. The proposed
model is solved efficiently via a modification of the Fast
Marching method of Kimmel and Sethian. We compare the
two versions of the Fast Marching method (orthographic
vs. perspective) on medical images. The perspective algo-
rithm outperformed the orthographic one. This shows that
the more realistic hypothesis of perspective projection im-
proves reconstruction significantly. The comparison also
demonstrates the usability of perspective SfS for real-life
applications such as medical endoscopy.

1.. Introduction

Recovery of Shape-from-Shading (SfS) is a fundamen-
tal problem in Computer Vision. Its goal is to solve the im-
age irradiance equation, which relates the reflectance map to
image intensity, in a robust way. As this task is nontrivial,
most of the works in the field employ simplifying assump-
tions. It is particularly common to presuppose that projec-
tion of scene points during a photographic process is ortho-
graphic. This resulted in low stability of reconstruction al-
gorithms.

Many works in the field of Shape-from-Shading have fol-
lowed the seminal works of Horn [4], [5], who initiated the
subject in the 1970s, and assumed orthographic projection
([2], [6], [7], [3], [26], [16], [15], [25], [8], [1], [13], [21]
and many more; see [24] for a survey).

The majority of the few works that did employ the per-
spective projection have been too restrictive and have not
addressed the general problem. [22] and [19] assumed that

distance variations between camera and surface could be ig-
nored. [18] employed a deformable model for the SfS prob-
lem, so reconstruction took place in 3D space. Thus, during
the deformation process, the image point onto which a 3D
point was projected changed, and its new location should
have been interpolated, resulting in a nonuniform sampling
of the image.

Another approach to perspective SfS is piecewise planar
modelling of the depth function ([10], [12]). However, or-
thographic and perspective reflectance maps of a plane are
identical (see [20]). Therefore, the two types of projection
of a piecewise planar surface differ only at the edges, while
fully agree at the interior of faces.

Okatani and Deguchi [11] proposed perspective SfS for
reconstruction of endoscopic images. Their lighting model
assumes the location of a point light source is identical to
that of the camera, so the directions of lighting and projec-
tion unite at all points. This model was solved using level
sets.

Lately, [23] suggested the use of perspective SfS with the
Fast Marching method of [7]. This work approximated sur-
face normals in 3D space using the neighboring pixels of
the point under examination. Into these approximations the
equations of perspective projection were substituted. This
approach suffers two drawbacks. First, is describes a spe-
cific numerical approximation without reference to the the-
oretic problem (i.e., the image irradiance equation itself).
Second and most importantly, neighboring pixels lie on a
uniform grid (image space), while their 3D correspondents
need not be so (in 3D space). The result was that depth
derivatives were approximated in 3D space on a nonuni-
form grid, while the underlying assumption was a uniform
one (image space uniformity).

Recently, [20] and [14] suggested the use of a perspec-
tive projection model. Both papers introduced the perspec-
tive image irradiance equation simultaneously. In [20], the
suggested computational algorithm is a very preliminary
one, while both algorithms ([20], [14]) are slow and were
demonstrated on synthetic images only.



Although the great majority of researches in the field of
SfS rely on the orthographic projection, and the minority
which applies to perspective SfS is either limited in scope
or was used on synthetic examples only, no work employed
the image irradiance equation under the perspective projec-
tion model for real-life tasks. The goal of this paper is to de-
velop an efficient and robust algorithm for solving the im-
age irradiance equation under the perspective assumption,
in a manner that would be adequate for real-life tasks. The
proposed solution is a variant of the Fast Marching method
of Kimmel and Sethian [7] based on the perspective formu-
lation of the image irradiance equation.

The contribution of this paper will be evaluated by a re-
construction comparison of the proposed algorithm and the
original Fast Marching method on medical images from dif-
ferent parts of the gastrointestinal tract (endoscopy). The
comparison will show that perspective SfS, in contrast with
orthographic SfS (see [24]), should be adequate for real-life
applications such as medical endoscopy. We would also see
that its runtime is much shorter than required by existing
perspective algorithms.

This paper is organized as follows. Following the pre-
sentation of notation and basic assumptions (Sect. 2), we
review the image irradiance equation under the perspective
projection model, and its dependence on the natural log-
arithm of the depth function (Sect. 3). Section 4 suggests
a perspective SfS algorithm based on the Fast Marching
method of [7]. Section 5 compares the perspective and or-
thographic algorithms on medical images. Finally, Sect. 6
draws the conclusions. The Appendix details the generaliza-
tion of the Fast Marching method to the perspective case.

2.. Notation and Assumptions

The following notation and assumptions hold through-
out this paper. Photographed surfaces are assumed repre-
sentable by functions of real-world coordinates as well as
of image coordinates.̂z(x, y) denotes the depth function in
a real-world Cartesian coordinate system whose origin is
at camera plane. If the real-world coordinate(x, y, ẑ(x, y))
is projected onto image point(u, v), then its depth is de-
notedz(u, v). By definition,z(u, v) = ẑ(x, y). Pay atten-
tion, thatz(u, v) is not measured along the perspective pro-
jection rays, but rather, it relates Cartesian depth (ẑ(x, y))
to image point(u, v).

f denotes the focal length, and is assumed known. The
scene object is Lambertian, and illuminated from a known
direction~L = (ps, qs,−1) by a point light source at infin-
ity. ~N(x, y) is the surface normal.

3.. The Perspective Image Irradiance Equation

As a first step in solving the image irradiance equa-
tion under the perspective projection model, we convert the
equation into more convenient forms.

3.1.. Equation in Image Coordinates

The perspective image irradiance equation is given by:

I(u, v) = ~L · ~N(x, y) (1)

where:

x = −u · ẑ(x, y)
f

, y = −v · ẑ(x, y)
f

(2)

Substituting Eqs. 2 and~L = (ps, qs,−1) (see Sect. 2) into
Eq. 1 yields:

I(u, v) =
1 + psẑx + qsẑy

||L||
√

1 + ẑ2
x + ẑ2

y

(3)

We then expresŝzx and ẑy in terms ofu, v, z, zu, andzv,
and substitute the resultant expressions along with Eqs. 2
into Eq. 3. This yields:

I(u, v) =
(u− fps)zu + (v − fqs)zv + z

||L||
√

(uzu + vzv + z)2 + f2(z2
u + z2

v)
(4)

wherez(u, v)
def
= ẑ(x, y) for (u, v) which is the perspective

projection of(x, y, ẑ(x, y)). Equation 4 is theperspective
image irradiance equation.

3.2.. Dependence onln(z(u, v))

Equation 4 shows direct dependence on bothz(u, v) and
its first order derivatives. If one employsln(z(u, v)) instead
of z(u, v) itself (by definitionz(u, v) > 0), one obtains the
following equation:

I(u, v) =
(u− fps)p + (v − fqs)q + 1

||L||
√

(up + vq + 1)2 + f2(p2 + q2)
(5)

wherep
def
= zu

z = ∂ ln z
∂u andq

def
= zv

z = ∂ ln z
∂v . Eq. 5 de-

pends on the derivatives ofln(z(u, v)), but not on
ln(z(u, v)) itself. Consequently, the problem of recover-
ing z(u, v) from the image irradiance equation reduces
to the problem of recovering the surfaceln(z(u, v)) from
Eq. 5. Because the natural logarithm is a bijective map-
ping andz(u, v) > 0, recoveringln(z(u, v)) is equivalent
to recoveringz(u, v) = eln(z(u,v)).

The image irradiance equation under orthographic pro-
jection is invariant to translation of̂z(x, y), which means
ẑ(x, y)+c (for constantc) produces the same intensity func-
tion asẑ(x, y). In contrast, the perspective image irradiance
equation (Eq. 4) is invariant to scale changes ofz(u, v).
That is, the intensity functions ofc · z(u, v) and z(u, v)
are identical. This follows from the properties of the natural
logarithm, and can also be verified by Eqs. 4, 5. Invariance
to scaling seems to be a more plausible assumption than in-
variance to translation when employing real cameras.



4.. Perspective Fast Marching

This section suggests a perspective SfS algorithm based
on the Fast Marching method of Kimmel and Sethian [7].

4.1.. Solving the Approximate Problem

The algorithm of Kimmel and Sethian [7] solves the or-
thographic image irradiance equationI(x, y) = ~L· ~N(x, y).
This equation is an Eikonal equation and can be written as:

p2 + q2 = F̃ 2(x, y)

where p
def= zu = zx, q

def= zv = zy and
F̃ =

√
(I(x, y))−2 − 1. Note, that F̃ (x, y) is inde-

pendent ofp andq. Similarly, the perspective image irradi-
ance equation (Eq. 5), can be transformed into:

p2A1 + q2B1 = F (6)

whereA1 andB1 are non-negative and independent ofp as
well as ofq. F , on the other hand, depends on bothp andq.
The expressions forA1, B1 andF appear in Appendix A.

In order to solve an Eikonal equation, we as-
sume that we have estimatedp(u, v) and q(u, v)
by some process. We use these estimations to derive
F (u, v) = F (p(u, v), q(u, v), u, v) and substitute it into
the right-hand side of Eq. 6. This results in an Eikonal equa-
tion, which we solve forp andq of the left-hand side. We
may then use the solution to improve our initial estima-
tion of p andq.

Following [7], we use the numerical approximation:

pij ≈ max{D−u
ij z,−D+u

ij z, 0}
qij ≈ max{D−v

ij z,−D+v
ij z, 0}

whereD−u
ij z = zij−zi−1,j

∆u is the standard backward deriva-

tive andD+u
ij z = zi+1,j−zij

∆u , the standard forward deriva-
tive in the u-direction (zij = z(i∆u, j∆v)). D−v

ij z and
D+v

ij z are defined in a similar manner for thev-direction.
Rouy and Tourin [17] showed that this numerical approxi-
mation selects the correct viscosity solution for the ortho-
graphic SfS problem. Substituting into Eq. 6, we get the nu-
merical approximation equation:

(
max{D−u

ij z,−D+u
ij z, 0})2

A1+(
max{D−v

ij z,−D+v
ij z, 0})2

B1 = Fij (7)

whereFij
def= F (i∆u, j∆v). As Appendix A details, the so-

lution of this equation at every point(i, j) is:

z =





z1 +
√

F
A1

, if z2 − z1 >
√

F
A1

z2 +
√

F
B1

, if z1 − z2 >
√

F
B1

A1z1+B1z2±
√

(A1+B1)F−A1B1(z1−z2)2

A1+B1
, otherwise

(8)

where:

z1
def= min{zi−1,j , zi+1,j}, z2

def= min{zi,j−1, zi,j+1}.

4.2.. The Iterative Solution

An important observation described in [7] is that infor-
mation always flows from small to large values at local min-
imum points. Based on this, the orthographic Fast March-
ing method reconstructs depth by first setting allz values
to the correct height values at local minima and to infin-
ity elsewhere. Then, every step extends reconstruction to
higher depths. Reconstruction is thus achieved by a single
pass.

Nevertheless, a single pass may not be enough to solve
the aforementioned formulation of the perspective problem
(Eq. 7), because the approximate solution (the right-hand
side of Eq. 8) depends onF , which depends on bothp andq.
Hence, we suggest an iterative method. For each iteration,
F is calculated using the depth recovered at the preceding
iteration:

p2
n+1A1 + q2

n+1B1 = F (pn, qn)

wherepn andqn are the values ofp andq at thenth itera-
tion. Based on this approximation ofF and on Eq. 8, a so-
lution is calculated for the new iteration. We initialize this
process by the orthographic Fast Marching method of [7].

After each iteration, the resulting depth map was nor-
malized (i.e., divided by the norm of a vector containing all
depth values). The reconstruction remains valid after nor-
malization, because perspective SfS is invariant to multipli-
cation by a constant (see Sect. 3.2).

5.. Experimental Results

5.1.. The Experiments

To evaluate the contribution of perspective SfS, we jux-
taposed it with the Fast Marching method [7]. This algo-
rithm was chosen for the comparison for three reasons.
First, we consider it a state-of-the-art technique. Second,
in [20] we compared three orthographic methods ([9], [26]
and [7]) with a basic perspective method that was sug-
gested there. Among the orthographic methods, Fast March-
ing performed best. Third, because the suggested perspec-
tive method is based on Fast Marching, the effect of numer-
ical scheme on results is neutralized. Thus, any improve-
ment would be a consequence of the transition to the per-
spective equation, andnotdue to different ways of solution.

In contrast with [20], where only synthetic images were
compared, this paper experiments with real images solely.
We studied endoscopic images of different parts of the gas-
trointestinal channel.



While endoscopy is a practical field of life on one hand,
it has the advantage of a controlled light source environ-
ment, on the other hand. The light source can be consid-
ered a point light source, but not an infinitely distant one.
To overcome this limitation, we worked on a small portion
of the original image at a time. This had a double effect.
First, it narrowed the range of directions of the light source
and second, it limited the range of distances between light
source and object. This made the assumption of a constant
light source direction plausible, and also diminished the de-
cay of illumination strength with distance.

As postulated in Sect. 2, our theoretic model assumes
the light source direction is known. In practice, this kind
of information was unavailable, so a human viewer had to
produce [very rough] estimations of light source directions
from the images themselves (determine azimuth and eleva-
tion in multiples ofπ

8 or π
6 radians). The same light source

direction was supplied to both orthographic and perspective
methods.

In addition, perspective SfS requires the knowledge of
the focal lengthf . Our implementation arbitrarily set an
identical value for all examples.

The initialization of the orthographic, and therefore also
the perspective, algorithms is based on points of local min-
ima. These were located visually in the photographs by a
human viewer. Their depth value was arbitrarily set to the
same constant in all images.

For the algorithm of Kimmel and Sethian [7], we ex-
tended the implementation of the Fast Marching method
by the Technical University of Munich1 to accommodate
the oblique light source case as well. This code served as
a basis for implementation of the perspective Fast March-
ing method too. As a post-processing step, all reconstruc-
tions underwent a translation and a rotation to convert cam-
era coordinates to object coordinates, for better visualiza-
tion.

In our comparison we checked 5 iterations of the per-
spective Fast Marching for each example (in addition to the
orthographic initialization). We found out that all perspec-
tive iterations yielded visually-identical images, which im-
plies the suggested algorithm converges very fast. We there-
fore introduce only the first iteration in this paper.

5.2.. Comparative Evaluation

We present in Fig. 1 the comparison between the per-
spective and orthographic Fast Marching methods. The left-
most column shows the original image, which was cropped
to produce the second column. Only the cropped image

1 Folkmar Bornemann, Technical University of Munich,
WiSe 00/01, 11.12.2000, http://www-m8.mathematik.tu-
muenchen.de/m3/teaching/
PDE/begleit.html

was used for reconstruction. The third column presents or-
thographic reconstruction by the Fast Marching method of
Kimmel and Sethian [7], while the last column shows re-
construction by the proposed perspective variant after 1 it-
eration. Each row presents an example from a different part
of the gastrointestinal channel.

The top row of Fig. 1 presents a normal empty stom-
ach2. Note the folds called rugae. The cropped image con-
tains only a part of a single ruga. Orthographic SfS recon-
structed two peaks, which were incompatible with the orig-
inal image (on the right and lower sides of the orthographic
reconstruction). Perspective SfS reconstructed the ruga in-
cluding its curved part.

The next row of Fig. 1 shows the gastric fundus3. The
cropped version of this image focuses on a cavity with
folded walls. The orthographic Fast Marching method failed
to recover the cavity. Only a small part of its reconstruc-
tion could be attributed to this cavity (top–right of the or-
thographic reconstruction). The orthographically recovered
folds showed little match to the true ones. The perspective
method presented high correspondence of both the cavity
and its folds to the contents of the original image.

In the third row of Fig. 1 we reconstructed part of the
gastric angulus3. The cropped image shows three folds, all
of which were clearly recovered by the perspective Fast
Marching method. The orthographic method produced a
pyramid-like peak with no folds.

The fourth row exhibits the descending duodenum3. The
cropped version contains three plicae circulares (folds typi-
cal of the small intestine). The orthographic method yielded
two surfaces with a sharp edge between them, which did not
appear in the original data. The perspective method, on the
other hand, recovered the folds.

The image at the bottom row (Fig. 1) was taken in the
colon ascendens3. We concentrated on three plicae semicir-
cularis (typical folds of the large intestine; see the cropped
image). Even though this image visually resembles that of
the gastric angulus, bear in mind that each shows a different
organ; the difference is significant from the medical point
of view. The orthographic reconstruction produced horizon-
tal and vertical folds which did not exist in the original im-
age. Two of the main folds could difficultly be noticed in
the reconstruction (center and top–right of the figure). Both
of these folds suffered strong noise in the form of short ver-
tical folds. In the perspective reconstruction, all three folds
were prominent.

Even though both algorithms use the same numerical
methodology, the perspective Fast Marching method ap-
pears to outrank the orthographic one. This suggests that the

2 Image from www.gihealth.com, courtesy of the Three Rivers En-
doscopy Center, Moon Township, PA.

3 Image from www.gastrolab.net, courtesy of The Wasa Workgroup on
Intestinal Disorders, GASTROLAB, Vasa, Finland.



Original Image: Cropped Image: Orthographic Reconstruction: Perspective Reconstruction:

G
as

tr
ic

R
ug

ae

−20−1001020

25
30

35
40

45

−50

−40

−30

−20

−10

0

10

yx

z

−0.2
−0.15

−0.1
−0.05

0
0.05

0.1
0.15

0.2

8.6

8.8

9

9.2

9.4

9.6

−5.35

−5.3

−5.25

−5.2

y

z

G
as

tr
ic

F
un

du
s

−30 −20 −10 0 10 20 30

50
100

150
200

250

−30

−20

−10

0

10

20

30

xy

z

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
10

12

14

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x
y

z

G
as

tr
ic

A
ng

ul
us

−30

−20

−10

0

10

20

30

50

100

150

−30

−20

−10

0

10

20

30

y
x

z

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
10

11

12

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

z

D
es

ce
nd

in
g

D
uo

de
nu

m

−15
−10

−5
0

5
10

15

10
15

20
25

30
35

40
45

−50

−40

−30

−20

−10

0

10

yx

z

−0.2−0.15−0.1−0.0500.050.10.150.2−0.500.5

−0.15

−0.1

−0.05

0

0.05

xy

z

A
sc

en
di

ng
C

ol
on

−20−15−10−505101520

20
40

60
80

100
120

−20

−15

−10

−5

0

5

10

15

20

xy

z

−0.2−0.100.10.2
−1.5

−1

−0.5

0

0.5

1

1.5

−0.2

−0.1

0

0.1

0.2

y

x

z

Figure 1. Perspective vs. orthographic reconstruction of endoscopic images by the Fast Marching
method. Images are of multiple parts of the gastrointestinal channel (as indicated to the left of each
row).



assumption of a perspective rather than an orthographic im-
age irradiance equation yields an important improvement in
reconstruction.

While many orthographic algorithms rival the best nu-
merical way to solve the classic equation, the suggested one
adopts its numerical scheme from Kimmel and Sethian [7]
and thus avoids competition in the numerical arena. Instead,
it demonstrates that the perspective equation may be better
suited for the task of SfS.

When comparing the perspective Fast Marching method
with the perspective algorithm of [14], perspective Fast
Marching has a prominent advantage of runtime. In [14],
the famous synthetic Vase image without noise required
about 1000 iterations to recover and about 2000 iterations
when synthetic noise was added; a synthetic Mozart face
image required about 4000 iterations (without noise). The
suggested algorithm, on the other hand, needed only 2 iter-
ations (1 orthographic initialization and 1 perspective iter-
ation) to reconstruct real-life medical images. The compu-
tational complexity of an iteration of both algorithms ([14]
and the suggested one) isO(n) (wheren is the number of
image pixels), so a reduction of the number of iterations by
three orders of magnitude is a significant improvement.

6.. Conclusions

This research proposes an efficient and robust solution to
the problem of Shape-from-Shading under the perspective
projection model. The suggested solution employs a variant
of the Fast Marching method of Kimmel and Sethian [7] to
solve the perspective image irradiance equation of [20] and
[14]. We compared reconstruction by the orthographic and
perspective variants on medical images from various parts
of the gastrointestinal tract (endoscopy). The perspective
SfS algorithm outperforms the orthographic Fast Marching
method. As we solved two models with a similar numeri-
cal scheme, the results must be related to the underlying as-
sumptions, rather than to the numerical methodology. Con-
sequently, we infer that the perspective assumption yields a
significant improvement in reconstruction.

From the practical point of view, the comparison demon-
strated that perspective SfS could be used for real-life im-
ages. The application to endoscopy suggests that, unlike or-
thographic SfS, perspective SfS is robust enough for real-
life tasks.

The perspective Fast Marching method has a significant
advantage over existing perspective methods ([20] and [14])
in terms of runtime. Only a single perspective iteration was
required (in addition to the orthographic initialization) for
reconstruction of all medical images tested.

Acknowledgements

We would like to thank Dr. Daniel Reisfeld for his in-
spiring discussions.

This research has been supported in part by Tel-Aviv
University fund, the Adams Super-Center for Brain Stud-
ies, the Israeli Ministry of Science, the ISF Center for Ex-
cellence in Applied Geometry, the Minerva Center for ge-
ometry, and the A.M.N. fund.

A.. Numerical Approximation and Its Solutions

A.1.. The Equation

We bring the image irradiance equation to the form:

p2A + q2B + 2pqC + 2pD + 2qE + F1 = 0

where:

A
def= I2‖L‖2(u2 + f2)− (u− fps)2

B
def= I2‖L‖2(v2 + f2)− (v − fqs)2

C
def= I2‖L‖2uv − (u− fps)(v − fqs)

D
def= I2‖L‖2u− (u− fps)

E
def= I2‖L‖2v − (v − fqs)

F1
def= I2‖L‖2 − 1

We would like the left-hand side of this equation to be
positive semidefinite. We therefore transfer non positive
semidefinite terms to the right-hand side:

p2A1 + q2B1 = p2A2 + q2B2− 2pqC − 2pD− 2qE −F1

where:

A1
def= I2‖L‖2(u2 + f2) , A2

def= (u− fps)2

B1
def= I2‖L‖2(v2 + f2) , B2

def= (v − fqs)2

Let us also define:

F
def= p2A2 + q2B2 − 2pqC − 2pD − 2qE − F1

so the equation becomes:

p2A1 + q2B1 = F (9)

whereA1andB1 are positive semidefinite, by definition. It
therefore also implies:F ≥ 0.

A.2.. Solution of the Main Case

Similarly to [7], we assume W.L.O.G:∆u = ∆v = 1,
and estimate the directional derivatives by:

pij ≈ zij − z1 , qij ≈ zij − z2

where the notation is as described in Sect. 4.1. Substituting
into Eq. 9, we get:A1(zij − z1)2 + B1(zij − z2)2 = Fij ,

whereFij
def= F (i∆u, j∆v). Solving this equation forzij

yields:

zij =
A1z1 + B1z2 ±

√
(A1 + B1)Fij −A1B1(z1 − z2)2

A1 + B1
(10)



A.3.. Solution of the Degenerate Cases

The solution (Eq. 10) is degenerate when∆ def= (A1 +
B1)Fij −A1B1(z1 − z2)2 < 0. Expressed differently,

|z1 − z2| >
√

Fij

A1
+

Fij

B1
(11)

The next three lemmas solve Eq. 9 in the degenerate case.
Their proofs are omitted for brevity.

Lemma 1 If z2 − z1 >
√

Fij

A1
, thenzij

def= z1 +
√

Fij

A1
is a

solution of the equation:

(
max{D−u

ij z,−D+u
ij z, 0})2

A1+(
max{D−v

ij z,−D+v
ij z, 0})2

B1 = Fij (12)

Lemma 2 If z1 − z2 >
√

Fij

B1
, thenzij

def= z2 +
√

Fij

B1
is a

solution of Eq. 12.

Lemma 3 If ∆ < 0 then necessarily eitherz2−z1 >
√

Fij

A1

or z1 − z2 >
√

Fij

B1
holds. In other words, any degenerate

case is contained in one of the cases of Lemmas 1 or 2.

Lemmas 1 and 2 found solutions for the casesz2− z1 >√
Fij

A1
andz1− z2 >

√
Fij

B1
, respectively. Lemma 3 showed

that these cases contain the degenerate case (∆ < 0). There-
fore, the solutions introduced by Lemmas 1 and 2 cover the
degenerate case∆ < 0.
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