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Abstract. Shape-from-Shading (SfS) is a fundamental problem in Computer Vision. Its goal
is to solve the image irradiance equation. One prominent solution is the Fast Marching Method
of Kimmel & Sethian. When the light source is oblique, Kimmel& Sethian proposed to rotate
the image to the light source coordinate system and then solve an ‘almost’ Eikonal equation.
This paper presents a new, iterative variant of the Fast Marching Method which copes better
with images taken under oblique light sources. By avoiding the change of coordinate system,
the new method maintains the invariance of the orthographicimage irradiance equation to
depth translation.

In a comparison on synthetic and real-life images, the suggested method obtained a pro-
nounced improvement which (on the synthetic images) is quantified as lower error rates than
the original algorithm.

1. Introduction

Shape-from-Shading (SfS) is one of the fundamental problems in Computer
Vision. First introduced by Horn in the 1970s (Horn, 1977), its goal is to
solve the image irradiance equation, which relates the reflectance map to
image intensity. An efficient way to solve the equation numerically is the Fast
Marching Method of Sethian (Kimmel and Sethian, 2001), (Sethian, 1999).

Various methodologies have been proposed since the introduction of the
field of Shape-from-Shading by Horn (Horn, 1975), (Horn, 1977), (Horn,
1986) in the 1970s. Horn’s book (Horn and Brooks, 1989) reviews the early
approaches which include characteristic strips and Calculus of Variations.
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Zhang et al. (Zhang et al., 1999) categorizes Shape-from-Shading techniques
by their modus operandi. Namely, minimization approaches:(Zheng and Chel-
lappa, 1991), (Lee and Kuo, 1993); propagation approach: (Bichsel and Pent-
land, 1992); local approach: (Lee and Rosenfeld, 1985); linear approaches: (Pent-
land, 1984), (Tsai and Shah, 1994). A newer minimization approach is that of
Robles-Kelly & Hancock (Robles-Kelly and Hancock, 2002), which use the
Mumford-Shah functional to derive diffusion kernels. Other researchers put
topological properties of the surface to use (e.g., Kimmel &Bruckstein (Kim-
mel and Bruckstein, 1995)) or employ deformable models (e.g., Samaras &
Metexas (Samaras and Metaxas, 1999)). These are only examples, as the
amount of work in the field of Shape-from-Shading is too largeto describe
herein.

Of particular relevance to this paper are works which utilize Level-Set and
Fast Marching methodologies (see (Sethian, 1999) for a deepinsight). These
approaches refer to the image irradiance equation as describing the motion of
a front ((Osher and Sethian, 1988)). The Fast Marching Method re-orders the
computation, to make it a one-pass solution of the Eikonal equation, based on
the observation that the upwind difference structure of thenumerical approx-
imation allows us to propagate information “one way”, that is from smaller
values to larger values ((Sethian, 1996a), (Sethian, 1996b)). Sethian (Sethian,
1996a) proves the Fast Marching Method converges to the viscosity solu-
tion (see: (Crandall and Lions, 1983), (Lions, 1982) for thedefinition and
properties of viscosity solutions).

Kimmel & Sethian (Kimmel and Sethian, 2001) implemented theFast
Marching Method as an optimal algorithm for surface reconstruction. They
referred to the image irradiance equation as an Eikonal equation for vertical
light sources. Solution of the equation for oblique light sources is obtained by
rotation of the image coordinate system to that of the light source (as inspired
by (Lee and Rosenfeld, 1985)).

While the Fast Marching Method is a highly efficient numerical solution
to the image irradiance equation for vertical light sources, it is suboptimal for
oblique light sources. For non-vertical light sources, therotation of coordi-
nate system results in an “‘almost’ Eikonal equation” (terminology borrowed
from (Kimmel and Sethian, 2001)). This equation, unlike theorthographic
image irradiance equation, is non-invariant to depth translation, so its solution
is less robust. This paper presents a new way to employ the Fast Marching
Method for oblique light sources as well. The suggested algorithm iteratively
applies the Fast Marching Method in the case of an oblique light source.
Comparison with the original algorithm (Kimmel and Sethian, 2001) would
demonstrate that the new algorithm overcomes the flaws of theoriginal.

The paper is organized as follows. First, we present the notation and basic
assumptions (Sect. 2), and review the Fast Marching Method (Sect. 3). We
then propose the Iterative Fast Marching Method for improved accuracy in
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cases where the light source is oblique (Sect. 4). Section 5 compares the
original and Iterative Fast Marching Methods on both synthetic and real-life
images. Finally, Sect. 6 draws the conclusions.

2. Notation and Assumptions

Let us first describe the notation and assumptions that hold throughout this
paper. Photographed surfaces are assumed representable byfunctions of real-
world coordinates.z(x, y) denotes the depth function in a real-world Carte-
sian coordinate system whose origin is at camera plane. A real-world coor-
dinate(x, y, z(x, y)) is projected orthographically onto image point(x, y).
The intensity and surface normal at this image point are denoted:I(x, y) and
~N(x, y), respectively. The scene object is Lambertian, and is illuminated by
a point light source at infinity whose direction is:~L = (ps, qs,−1).

3. The Fast Marching Method

This section reviews the Fast Marching method of Kimmel and Sethian (Kim-
mel and Sethian, 2001) for vertical and oblique light sources.

3.1. FAST MARCHING FOR VERTICAL L IGHT SOURCES

The algorithm of Kimmel and Sethian (Kimmel and Sethian, 2001) stems
from the orthographic image irradiance equation:

I(x, y) = ~L · ~N(x, y) =
pszx + qszy + 1

‖~L‖
√

z2
x + z2

y + 1
(1)

For a vertical light source, that is~L = (0, 0,−1), the equation becomes an
Eikonal equation which can be written as:

p2 + q2 = F̃ 2 (2)

wherep
def
= zx, q

def
= zy andF̃ =

√

(I(x, y))−2 − 1.
Following (Kimmel and Sethian, 2001), we use the numerical approxima-

tion (originally introduced in (Rouy and Tourin, 1992) as a modification of
the scheme of (Osher and Sethian, 1988)):

pij ≈ max{D−x
ij z,−D+x

ij z, 0}

qij ≈ max{D−y
ij z,−D

+y
ij z, 0}
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whereD−x
ij z

def
=

zij−zi−1,j

∆x
is the standard backward derivative andD+x

ij z
def
=

zi+1,j−zij

∆x
, the standard forward derivative in thex-direction (zij

def
= z(i ·

∆x, j · ∆y)). D
−y
ij z andD

+y
ij z are defined in a similar manner for they-

direction.
The motivation for employing this numerical scheme is its consistency and

monotonicity. For the Eikonal equation, Rouy & Tourin (Rouyand Tourin,
1992) showed that an iterative algorithm based on this scheme with Dirich-
let boundary conditions on image boundaries and at all critical points con-
verges towards the viscosity solution with the same boundary conditions.
Existence of the viscosity solution was proven in (Lions, 1982) and unique-
ness, in (Rouy and Tourin, 1992) and (Ishii, 1987). Sethian (Sethian, 1996a)
proved that everywhere, the Fast Marching Method produces asolution that
satisfies the discrete version of the Eikonal equation.

Substituting the numerical approximation into Eq. 2, we getthe discrete
equation:

(

max{D−x
ij z,−D+x

ij z, 0}
)2

+
(

max{D−y
ij z,−D

+y
ij z, 0}

)2
= F̃ 2

ij

whereF̃ij
def
= F̃ (i · ∆x, j · ∆y). The solution of this equation at every point

(i, j) is:

zij =

{

min{z1, z2} + F̃ij , if | z2 − z1 |≥ F̃ij

1
2

(

z1 + z2 ±
√

2F̃ 2
ij − (z1 − z2)2

)

, if | z2 − z1 |< F̃ij
(3)

wherez1
def
= min{zi−1,j , zi+1,j} andz2

def
= min{zi,j−1, zi,j+1}.

3.2. FAST MARCHING IN L IGHT SOURCE COORDINATES

The solution suggested by Kimmel & Sethian (Kimmel and Sethian, 2001)
for the case of an oblique light source (i.e.,~L 6= (0, 0,−1)) is to rotate
the brightness image to the light source coordinates. This yields an ‘almost’
Eikonal equation (as (Kimmel and Sethian, 2001) called it),which is solved
in a manner similar to the vertical case, but in the new coordinate system.

However, despite the similarity to the vertical case, the rotation of co-
ordinate system breaches an important property of the Eikonal equation: its
invariance to translation of the depth function (z(x, y)). Thus, following the
rotation,z(x, y) andz(x, y) + c (wherec is constant) no longer generate an
identical image, which contradicts the orthographic model. In practice, the in-
fringement of the invariance contributes to reduced stability of the algorithm
for oblique light sources, because two surfaces which create an identical im-
age under the orthographic model may be reconstructed differently by the al-
gorithm of (Kimmel and Sethian, 2001) (for works on the perspective model,
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see: (Tankus et al., 2003), (Tankus et al., 2004a), (Tankus et al., 2004b)).
This would be further demonstrated by experimental results(Sect. 5.2).

4. The Iterative Solution

To overcome the aforementioned flaw of the Fast Marching Method, we base
our algorithm on solving Eikonal equations which are approximations to the
image irradiance equation. We then successively refine the approximation.

To formulate the approximate equations, we transform the image irradi-
ance equation (Eq. 1) for an oblique light source into the form:

p2 + q2 = F 2(p, q) (4)

whereF (p, q)
def
=

√

1 −

(

psp+qsq+1

‖~L‖I(x,y)

)2

. A significant difference between the

vertical and oblique cases is the dependence ofF onp andq.
An important observation described in (Kimmel and Sethian,2001) is

that information always flows from small to large values at points of local
minimum of the depth function. Based on this, the Fast Marching Method re-
constructs depth by first setting allz values to the correct height values at local
minima and to infinity elsewhere. Then, every step extends reconstruction to
higher depths. Reconstruction is thus achieved by a single pass.

Nevertheless, a single pass may not be enough to solve the aforementioned
formulation of the oblique problem (Eq. 4), because the approximate solution
(the right-hand side of Eq. 3) depends onF , which depends on bothp andq.
Hence, we suggest an iterative method. For each iteration,F is calculated
using the depth recovered at the preceding iteration:

p2
n+1 + q2

n+1 = F 2(pn, qn)

wherepn and qn are the values ofp and q at thenth iteration. Based on
the approximationF (pn, qn), a solution for the new iteration(pn+1, qn+1) is
calculated using Eq. 3. We initialize the iterative processby:

F0 =
√

(I(x, y))−2 − 1

as done in the vertical light source case. Following each iteration we normal-
ize the depth functionz(x, y) (divide by the meanz value) to compensate for
the lack of knowledge of grid size(∆x,∆y).

The iterative process described above results in a series ofEikonal equa-
tions, each solved by the Fast Marching Method. Sethian (Sethian, 1996a)
showed that the Fast Marching Method produces a solution that everywhere
satisfies the discrete version of the Eikonal equation. Therefore, the Fast
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Marching solution of each of the equations in the series satisfies the dis-
crete version of that equation. As a result, when the series of solutions to
the Eikonal equations converges, convergence is to the correct solution of the
discrete version of the original equation (i.e., to the solution of the image
irradiance equation with an oblique light source).

One of the properties which results from this convergence (when exists)
is invariance to depth translations. This is demonstrated in Sect. 5.2. Empiri-
cally, in almost all experiments the series of solutions converged. In fact, very
few iterations were necessary to obtain this convergence (i.e., to get close
enough to the limit).

5. Experimental Results

5.1. THE EXPERIMENTS

To evaluate the contribution of the proposed algorithm, we compared it with
the original formulation of the Fast Marching (FM) Method (Kimmel and
Sethian, 2001). The evaluation involved both synthetic images and real-life
images. The synthetic images were produced from a given depth map using
the image irradiance equation (Eq. 1). The derivatives in the equation were
calculated numerically.

The initialization of the algorithms is based on points of local minima. For
synthetic images, these were extracted automatically fromthe true depth map.
For real images, they were located visually in each photograph by a human
viewer, and their depths were arbitrarily set to the same constant. To demon-
strate the lack of invariance to depth translation by (Kimmel and Sethian,
2001), we ran the algorithms twice for each surface. In the second run, the
depth of the original initialization (described above) wastranslated by a con-
stant. Theoretically, this should merely translate the whole reconstruction
along thez-axis by the same constant.

In our comparison we checked five iterations of the IterativeFast March-
ing Method for each example. We found out that all iterations(maybe except
for the first one) yielded visually-identical images, whichimplies the sug-
gested algorithm converges very fast. We therefore exploitthese iterations to
introduce more viewing angles of the reconstructed surface.

To quantitatively evaluate the performance of the algorithms on synthetic
data, we adopted three criteria from Zhang et al. (Zhang et al., 1999). These
are: mean depth error, standard deviation of depth error, and mean gradient
error. For completeness, we also supply the standard deviation of the gradient
error, even though it is considered nonphysical.
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A. Depth map (z(x, y)). B. Lambertian image.
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C. Fast Marching. D. Iterative FM (Iter. #1). E. Iterative FM(Iter. #2).
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F. Iterative FM (Iter. #3). G. Iterative FM (Iter. #4). H. Iterative FM (Iter. #5).

Figure 1. The Fast Marching Method in two variants: rotation to light source coordinates vs.

iterative reconstruction. The original image is of:z(x, y) = 100 + cos
(

√

x2 + (y − 2)2
)

.

A. Original Depth map.B. Lambertian image of (A).C. Reconstruction by the Fast Marching
Method. D.–H. Reconstruction by the Iterative Fast Marching Method. Eachimage corre-
sponds to a different iteration (and is also from a differentpoint of view). Images (C) and (D)
are from the same viewpoint. Lighting is identical for all reconstructions.

5.2. COMPARATIVE EVALUATION

Fig. 5.2 compares the original Fast Marching Method with theiterative one
on the following depth map:

z(x, y)
def
= 100 + cos

(

√

x2 + (y − 2)2
)
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Table I. Error rates for the algorithms onz(x, y) = 100 + cos
(

√

x2 + (y − 2)2
)

.

Algorithm: No. of Mean Depth Std. Dev. of Mean Grad. Std. Dev.of

Iters.: Error: Depth Error: Error: Grad. Error:

FM: 1 0.51697 0.29234 2.24199 1.01400

Iterative FM: 1 0.41667 0.30014 1.30355 1.01143

Iterative FM: 2 0.41615 0.31094 1.37016 0.92723

Iterative FM: 3 0.41558 0.31057 1.36792 0.92512

Iterative FM: 4 0.41540 0.31064 1.36685 0.92459

Iterative FM: 5 0.41492 0.31069 1.36032 0.92422

where:x, y ∈ [−3.0788, 3.0788] (image size:50 × 50 pixels). The original
Fast Marching Method reconstructed a surface which is closeto planar. The
iterative method recovered a surface which is notably more similar to the
original one than does the method of Kimmel & Sethian. Table 5.2 presents
the error rates according to the aforementioned criteria. The iterative algo-
rithm obtained considerably lower error rates according tomean depth error,
and mean and standard deviation of gradient error. The standard deviation of
depth error is slightly lower for the original Kimmel & Sethian algorithm, but
the difference between the two is small (0.0184).

Figure 5.2 shows the famous example of the Vase (x, y ∈ [−63.5, 63.5];
image size:128 × 128; background depth: 100). The Fast Marching with
rotated coordinate system yielded a step along the side of the vase. In ad-
dition, there were two sharp edges from the center of the vase(downward
and to the right). That is, the derivatives of the recovered depth (z(x, y)) are
discontinuous there. The iterative method, on the other hand, reconstructed
a smoother object which better fits the original surface. Table 5.2 provides
the error rates for the Vase example. Reconstruction by the Iterative Fast
Marching Method obtained significantly lower error rates according to all
measures.

Figure 5.2 introduces a real-world example, taken by endoscopy from
the gastric angulus1 (cropped image size:64 × 64). The reconstruction by
Kimmel & Sethian’s algorithm has a “line of breakage” in the center, which
does not exist in the original image. In contrast, the iterative method clearly
reconstructs all three gastric folds.

We next demonstrate the lack of invariance to depth translation when rotat-
ing the image to the light source coordinate system (Fig. 5.2). We juxtaposed

1 Original is from www.gastrolab.net, courtesy of The Wasa Workgroup on Intestinal
Disorders, GASTROLAB, Vasa, Finland.
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A. Depth map (z(x, y)). B. Lambertian image.

C. Fast Marching. D. Iterative FM (Iter. #1). E. Iterative FM(Iter. #2).

F. Iterative FM (Iter. #3). G. Iterative FM (Iter. #4). H. Iterative FM (Iter. #5).

Figure 2. The Fast Marching Method in two variants: rotation to light source coordinates
vs. iterative reconstruction. The original image is of the famous Vase.A. Original Depth
map.B. Lambertian image of (A).C. Reconstruction by the Fast Marching Method.D.–H.
Reconstruction by the Iterative Fast Marching Method. Eachimage corresponds to a different
iteration (and is also from a different point of view). Images (C) and (D) are from similar
viewpoints. Lighting is identical for all reconstructions.

the reconstructions by the two methods on the Cosine, Vase and Gastric An-
gulus examples, when depth initializations were translated. One can see that
reconstruction by the original Fast Marching Method is subjected to a notable
change due to depth translation (cf. Figs. 5.2C, 5.2C, 5.2C), in contrast with
the theoretic invariance of the underlying equation. Notwithstanding, the vari-
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Table II. Error rates for the algorithms on the Vase example.

Algorithm: No. of Mean Depth Std. Dev. of Mean Grad. Std. Dev.of

Iters.: Error: Depth Error: Error: Grad. Error:

FM: 1 5.64573 4.17373 11.78896 19.72866

Iterative FM: 1 1.78303 2.70073 5.60814 16.64485

Iterative FM: 2 1.88749 2.66494 5.25000 14.13286

Iterative FM: 3 1.88272 2.66171 5.25550 14.16898

Iterative FM: 4 1.88764 2.66592 5.26070 14.18274

Iterative FM: 5 1.88641 2.66449 5.25500 14.15838

Table III. Comparison of algorithms onz(x, y) = 100 + cos
(

√

x2 + (y − 2)2
)

, with

initialization translated by−90. Note the significant change in mean gradient error of the
original Fast Marching Method with respect to Table 5.2.

Algorithm: No. of Mean Depth Std. Dev. of Mean Grad. Std. Dev.of

Iters.: Error: Depth Error: Error: Grad. Error:

FM: 1 0.50952 0.29694 2.03553 1.01126

Iterative FM: 1 0.41666 0.30021 1.30410 1.01180

Iterative FM: 2 0.41546 0.31031 1.36808 0.92218

Iterative FM: 3 0.41044 0.30757 1.32781 0.92801

Iterative FM: 4 0.40885 0.30672 1.31591 0.92827

Iterative FM: 5 0.40834 0.30627 1.31177 0.92782

ation in reconstruction by the Iterative Fast Marching Method2 is very small
(cf. Figs. 5.2G, 5.2D, 5.2E). Quantification of the results in the form of depth
and gradient errors appears in Tables 5.2 and 5.2 (for the synthetic examples
only). The original Fast Marching Method changed considerably with
respect to Tables 5.2 and 5.2, while variations in the Iterative Fast Marching
are only minor.

We see, that in all examples, the Iterative Fast Marching Method appears
to outrank the original method which rotates the image to thelight source
coordinate system.

2 For the Cosine and Vase examples, the images are after 1 iteration. For the Gastric
Angulus, after 2 iterations.
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A. Original image. B. Cropped image.
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C. Fast Marching. D. Iterative FM (Iter. #1). E. Iterative FM(Iter. #2).
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F. Iterative FM (Iter. #3). G. Iterative FM (Iter. #4). H. Iterative FM (Iter. #5).

Figure 3. Comparison of the original and Iterative Fast Marching Methods on an endoscopic
image from the gastric angulus.A. Original image.B. Cropped image of (A) Only (B) was
used for the reconstruction.C. Reconstruction by the Fast Marching Method.D.–H. Re-
construction by the Iterative Fast Marching Method. Each image corresponds to a different
iteration (and is also from a different point of view). Images (C) and (D) are from the same
viewpoint. Lighting is identical for all reconstructions.

When comparing the complexity of the two algorithms, no doubt the orig-
inal one is faster, by containment. However, as the examplesshow, the speed
in this case is at the expense of accuracy. As the suggested method con-
verges very fast and no more than 2 iterations were ever required, the speed
difference turns out to be of secondary importance.
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Real Surface: Kimmel & Sethian: Iterative FM:
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Figure 4. Comparison of the original and Iterative Fast Marching Methods with a translated
depth initialization.Top Row: The Cosine example (Fig. 5.2). The depth is initialized to the
true depth−90. Middle Row: The Vase example (Fig. 5.2). The depth is initialized to the true
depth+1000. Bottom Row: The Gastric Angulus example (Fig. 5.2). The depth is initialized
to the true depth+90.

6. Conclusions

This research proposes an efficient and robust solution to the problem of
Shape-from-Shading which handles both vertical and oblique light sources
under the orthographic projection model. The suggested solution is a variant
of the Fast Marching Method of Kimmel and Sethian (Kimmel andSethian,
2001). It employs the Fast Marching Method iteratively for oblique light
sources. Each iteration solves an approximation to the image irradiance equa-
tion. The resultant solution serves for successive refinement of the approxi-
mate equation. When this refinement process converges, convergence is to the
correct solution of the original equation.
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Table IV. Comparison of algorithms on the Vase example with translated initialization
(+1000). Pay attention to the sharp change in all measures of the original Fast Marching
Method with respect to Table 5.2.

Algorithm: No. of Mean Depth Std. Dev. of Mean Grad. Std. Dev.of

Iters.: Error: Depth Error: Error: Grad. Error:

FM: 1 5.23793 4.84300 17.40992 32.88627

Iterative FM: 1 1.78336 2.70162 5.60964 16.64280

Iterative FM: 2 1.88275 2.67130 5.25176 14.14409

Iterative FM: 3 1.87339 2.66216 5.25342 14.16180

Iterative FM: 4 1.86905 2.65839 5.25188 14.15634

Iterative FM: 5 1.87500 2.66242 5.25437 14.16484

We compared reconstruction by the original Fast Marching Method and its
iterative variant on both synthetic and real-life examples(from endoscopy).
We also demonstrated why rotation of the image to light source coordinates,
as done in (Kimmel and Sethian, 2001), violates the propertyof the ortho-
graphic image irradiance equation of invariance to depth translation. The
Iterative Fast Marching Method outperformed the original Fast Marching
Method, and remained invariant to depth translations (due to convergence
to the correct solution).

In terms of runtime, indeed the original Fast Marching Method is faster
than the suggested one. However, convergence of the suggested variant is
very fast; in all examples no more than 2 iterations were evernecessary.
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