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Abstract. Shape-from-Shading (SfS) is a fundamental problem in Caenptision. Its goal
is to solve the image irradiance equation. One prominentisol is the Fast Marching Method
of Kimmel & Sethian. When the light source is oblique, KimmeBethian proposed to rotate
the image to the light source coordinate system and thele swivalmost’ Eikonal equation.
This paper presents a new, iterative variant of the Fast MiagcdViethod which copes better
with images taken under oblique light sources. By avoidirgdhange of coordinate system,
the new method maintains the invariance of the orthographage irradiance equation to
depth translation.

In a comparison on synthetic and real-life images, the sstggemethod obtained a pro-
nounced improvement which (on the synthetic images) is tifiethas lower error rates than
the original algorithm.

1. Introduction

Shape-from-Shading (SfS) is one of the fundamental prablienComputer
Vision. First introduced by Horn in the 1970s (Horn, 19773, goal is to
solve the image irradiance equation, which relates thectafiee map to
image intensity. An efficient way to solve the equation nupadly is the Fast
Marching Method of Sethian (Kimmel and Sethian, 2001), liiet, 1999).
Various methodologies have been proposed since the irdtioduof the
field of Shape-from-Shading by Horn (Horn, 1975), (Horn, 29{Horn,
1986) in the 1970s. Horn's book (Horn and Brooks, 1989) kesithe early
approaches which include characteristic strips and Qadcaf Variations.
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Zhang et al. (Zhang et al., 1999) categorizes Shape-froaaiS techniques
by their modus operandi. Namely, minimization approacfi@iseng and Chel-
lappa, 1991), (Lee and Kuo, 1993); propagation approadbhé®l and Pent-
land, 1992); local approach: (Lee and Rosenfeld, 198%aliapproaches: (Pent-
land, 1984), (Tsai and Shah, 1994). A newer minimizatiorr@ggh is that of
Robles-Kelly & Hancock (Robles-Kelly and Hancock, 2002jieh use the
Mumford-Shah functional to derive diffusion kernels. Qthesearchers put
topological properties of the surface to use (e.g., Kimma&r&ckstein (Kim-
mel and Bruckstein, 1995)) or employ deformable models (S&gmaras &
Metexas (Samaras and Metaxas, 1999)). These are only exsngd the
amount of work in the field of Shape-from-Shading is too lageescribe
herein.

Of particular relevance to this paper are works which wilizvel-Set and
Fast Marching methodologies (see (Sethian, 1999) for a iséayht). These
approaches refer to the image irradiance equation as diegcthe motion of
a front ((Osher and Sethian, 1988)). The Fast Marching Metheorders the
computation, to make it a one-pass solution of the Eikonahtign, based on
the observation that the upwind difference structure ofilmerical approx-
imation allows us to propagate information “one way”, thefrom smaller
values to larger values ((Sethian, 1996a), (Sethian, 1996bthian (Sethian,
1996a) proves the Fast Marching Method converges to th@sitgcsolu-
tion (see: (Crandall and Lions, 1983), (Lions, 1982) for tledinition and
properties of viscosity solutions).

Kimmel & Sethian (Kimmel and Sethian, 2001) implemented Haest
Marching Method as an optimal algorithm for surface recarsion. They
referred to the image irradiance equation as an Eikonaltiegutor vertical
light sources. Solution of the equation for oblique lightises is obtained by
rotation of the image coordinate system to that of the lighirse (as inspired
by (Lee and Rosenfeld, 1985)).

While the Fast Marching Method is a highly efficient numedrsalution
to the image irradiance equation for vertical light souritds suboptimal for
oblique light sources. For non-vertical light sources, ribation of coordi-
nate system results in an “almost’ Eikonal equation” (terology borrowed
from (Kimmel and Sethian, 2001)). This equation, unlike tmthographic
image irradiance equation, is non-invariant to depth tedios, so its solution
is less robust. This paper presents a new way to employ theMeashing
Method for oblique light sources as well. The suggestedrilgo iteratively
applies the Fast Marching Method in the case of an obliquat kgurce.
Comparison with the original algorithm (Kimmel and Sethiaf01) would
demonstrate that the new algorithm overcomes the flaws aifrigaal.

The paper is organized as follows. First, we present theinatand basic
assumptions (Sect. 2), and review the Fast Marching MetBedt( 3). We
then propose the lterative Fast Marching Method for impdoaecuracy in
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cases where the light source is oblique (Sect. 4). Sectioantpares the
original and Iterative Fast Marching Methods on both sytithend real-life
images. Finally, Sect. 6 draws the conclusions.

2. Notation and Assumptions

Let us first describe the notation and assumptions that hotighout this
paper. Photographed surfaces are assumed representdibfetigns of real-
world coordinatesz(z, y) denotes the depth function in a real-world Carte-
sian coordinate system whose origin is at camera plane. |IAv@dd coor-
dinate (z,y, z(x,y)) is projected orthographically onto image poiat y).
The intensity and surface normal at this image point are @ehnd(z, y) and

N(z,y), respectively. The scene object is Lambertian, and is ithated by
a point light source at infinity whose direction &:= (ps, g5, —1).

3. The Fast Marching Method

This section reviews the Fast Marching method of Kimmel agithian (Kim-
mel and Sethian, 2001) for vertical and oblique light sosirce

3.1. FAST MARCHING FORVERTICAL LIGHT SOURCES

The algorithm of Kimmel and Sethian (Kimmel and Sethian, D0ftems
from the orthographic image irradiance equation:

R 1
I@wFJ%N@w%=%%+%%+
HM\z&+%+1

(1)

For a vertical light source, that B = (0,0,—1), the equation becomes an
Eikonal equation which can be written as:

P’ +q¢* =F? )

wherep ¥ z,, ¢ & zyandE = /(I(z,y)) 2 — 1.

Following (Kimmel and Sethian, 2001), we use the numeripgkaxima-
tion (originally introduced in (Rouy and Tourin, 1992) as adification of
the scheme of (Osher and Sethian, 1988)):

pij ~ max{D;"z, —D;;mz, 0}

~ -y ty
gij ~ max{D,;"z,—D;"z,0}

i nconpl et e2004_kl uwer . tex; 21/06/2004; 12:58; p.3



is the standard backward derivative aﬁg% def

def zij—2i—1,
- Az

Zli2u | the standard forward derivative in thedirection ¢;; def 2(i -
Az,j - Ay)). D’z and Djjyz are defined in a similar manner for the
direction.

The motivation for employing this numerical scheme is itssistency and
monotonicity. For the Eikonal equation, Rouy & Tourin (Roaryd Tourin,
1992) showed that an iterative algorithm based on this seheith Dirich-
let boundary conditions on image boundaries and at allcafifpoints con-
verges towards the viscosity solution with the same boyndanditions.
Existence of the viscosity solution was proven in (Lionsg2Pand unique-
ness, in (Rouy and Tourin, 1992) and (Ishii, 1987). Sethizett{ian, 1996a)
proved that everywhere, the Fast Marching Method producesdidion that
satisfies the discrete version of the Eikonal equation.

Substituting the numerical approximation into Eg. 2, wethetdiscrete
equation:

WhereDi;“*’z

2 2 -
(max{D;sz,—D;;xz,O}) + (maX{D;ij,—D;;yZ,O}) :Ffj

whereF,; & F(i - Az, j - Ay). The solution of this equation at every point

(i,7) is:
min{zy, 29} + E]’, if |2z0—21 (> Fz'j
Zij = = . =
TS (st s 282 = (21— 20)2), i |2 — 21 < By

®3)

def . def .
wherez; = mln{zi,Lj,zHLj} andzg = mln{zi,j,l,szrl}.
3.2. FAST MARCHING IN LIGHT SOURCE COORDINATES

The solution suggested by Kimmel & Sethian (Kimmel and 2eth2001)
for the case of an oblique light source (i.&, # (0,0,—1)) is to rotate
the brightness image to the light source coordinates. Tibldg/an ‘almost’
Eikonal equation (as (Kimmel and Sethian, 2001) calledaitjich is solved
in a manner similar to the vertical case, but in the new coatgi system.
However, despite the similarity to the vertical case, th@ation of co-
ordinate system breaches an important property of the Blkequation: its
invariance to translation of the depth functior{«, y)). Thus, following the
rotation, z(x,y) andz(x, y) + ¢ (wherec is constant) no longer generate an
identical image, which contradicts the orthographic molgbractice, the in-
fringement of the invariance contributes to reduced stglaf the algorithm
for oblique light sources, because two surfaces which eraatidentical im-
age under the orthographic model may be reconstructedadtitiig by the al-
gorithm of (Kimmel and Sethian, 2001) (for works on the pertjwve model,
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see: (Tankus et al., 2003), (Tankus et al., 2004a), (Tankusd.e2004b)).
This would be further demonstrated by experimental re¢Skst. 5.2).

4. The lterative Solution

To overcome the aforementioned flaw of the Fast Marching btgtlve base
our algorithm on solving Eikonal equations which are apprations to the
image irradiance equation. We then successively refinepgpeaimation.

To formulate the approximate equations, we transform treggamirradi-
ance equation (Eq. 1) for an oblique light source into thenfor

P’ +¢* =F*(p,q) 4

2
whereF(p, q) def \/1 - <%> . A significant difference between the

vertical and oblique cases is the dependencE ohp andg.

An important observation described in (Kimmel and Seth2001) is
that information always flows from small to large values aihfsoof local
minimum of the depth function. Based on this, the Fast Maigihilethod re-
constructs depth by first setting allalues to the correct height values at local
minima and to infinity elsewhere. Then, every step extendsmn&ruction to
higher depths. Reconstruction is thus achieved by a sirags.p

Nevertheless, a single pass may not be enough to solve tiegradotioned
formulation of the oblique problem (Eq. 4), because the @xprate solution
(the right-hand side of Eq. 3) depends Bnwhich depends on bothandg.
Hence, we suggest an iterative method. For each iterafiois, calculated
using the depth recovered at the preceding iteration:

p%Jrl + qzerl = FQ(pna Qn)

wherep,, and ¢,, are the values op and ¢ at thent2 iteration. Based on
the approximatior¥'(p,,, ¢,), a solution for the new iteratiofp,,+1, gn+1) IS
calculated using Eq. 3. We initialize the iterative prodegs

Fo=/(I(z,y))> -1

as done in the vertical light source case. Following eachtitsn we normal-
ize the depth functior(zx, y) (divide by the mean value) to compensate for
the lack of knowledge of grid sizeAx, Ay).

The iterative process described above results in a serie#onfhal equa-
tions, each solved by the Fast Marching Method. Sethiarhi{@et 1996a)
showed that the Fast Marching Method produces a solutidretleywhere
satisfies the discrete version of the Eikonal equation. &fbez, the Fast

i nconpl et e2004_kl uwer . tex; 21/06/2004; 12:58; p.5



Marching solution of each of the equations in the seriesfiagi the dis-
crete version of that equation. As a result, when the sefiemlations to
the Eikonal equations converges, convergence is to theat@olution of the
discrete version of the original equation (i.e., to the sofu of the image
irradiance equation with an oblique light source).

One of the properties which results from this convergendeefwexists)
is invariance to depth translations. This is demonstratesiict. 5.2. Empiri-
cally, in almost all experiments the series of solutionsseoged. In fact, very
few iterations were necessary to obtain this convergeneg (o get close
enough to the limit).

5. Experimental Results

5.1. THE EXPERIMENTS

To evaluate the contribution of the proposed algorithm, ampgared it with
the original formulation of the Fast Marching (FM) Methodiifknel and
Sethian, 2001). The evaluation involved both syntheticgesaand real-life
images. The synthetic images were produced from a giverhdepp using
the image irradiance equation (Eq. 1). The derivatives énguation were
calculated numerically.

The initialization of the algorithms is based on points afdbminima. For
synthetic images, these were extracted automatically frentrue depth map.
For real images, they were located visually in each phopigtay a human
viewer, and their depths were arbitrarily set to the sametem. To demon-
strate the lack of invariance to depth translation by (Kirhared Sethian,
2001), we ran the algorithms twice for each surface. In tlerse run, the
depth of the original initialization (described above) wasslated by a con-
stant. Theoretically, this should merely translate the leheconstruction
along thez-axis by the same constant.

In our comparison we checked five iterations of the Iterafigst March-
ing Method for each example. We found out that all iteratigmaybe except
for the first one) yielded visually-identical images, whichplies the sug-
gested algorithm converges very fast. We therefore exjiiege iterations to
introduce more viewing angles of the reconstructed surface

To quantitatively evaluate the performance of the algorglon synthetic
data, we adopted three criteria from Zhang et al. (Zhang .etL999). These
are: mean depth error, standard deviation of depth errdragan gradient
error. For completeness, we also supply the standard devigitthe gradient
error, even though it is considered nonphysical.
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F. lterative FM (Iter. #3).

iterative reconstruction. The original image is efz,y) = 100 + cos
A. Original Depth mapB. Lambertian image of (A)C. Reconstruction by the Fast Marching
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D. Iterative FM (lter. #1).

X
G. lterative FM (lter. #4).

B. Lambertian image.
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H. isgive FM (Iter. #5).

Figure 1. The Fast Marching Method in two variants: rotation to lightisce coordinates vs.

2%+ (y —2)?

Method. D.—H. Reconstruction by the Iterative Fast Marching Method. Eachge corre-
sponds to a different iteration (and is also from a diffeqgoint of view). Images (C) and (D)
are from the same viewpoint. Lighting is identical for altoastructions.

5.2. COMPARATIVE EVALUATION

Fig. 5.2 compares the original Fast Marching Method withitestive one

on the following depth map:

2(z,y) % 100 + cos ( 2+ (y — 2)2)
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Table |. Error rates for the algorithms or{x,y) = 100 + cos (w [z + (y — 2)2).

Algorithm: No.of Mean Depth Std. Dev. of Mean Grad. Std. Dsv.
Iters..  Error: Depth Error:  Error: Grad. Errof:

FM: 1 0.51697 0.29234 2.24199 1.01400
Iterative FM: 1 0.41667 0.30014 1.30355 1.01143
Iterative FM: 2 0.41615 0.31094 1.37016 0.927p3
Iterative FM: 3 0.41558 0.31057 1.36792 0.925[12
Iterative FM: 4 0.41540 0.31064 1.36685 0.92459
Iterative FM: 5 0.41492 0.31069 1.36032 0.924p2

where:z,y € [—3.0788,3.0788] (image size50 x 50 pixels). The original
Fast Marching Method reconstructed a surface which is dlmgdanar. The
iterative method recovered a surface which is notably mordlas to the

original one than does the method of Kimmel & Sethian. Takkegbesents
the error rates according to the aforementioned criteriee iferative algo-
rithm obtained considerably lower error rates accordingnéan depth error,
and mean and standard deviation of gradient error. The atdmtviation of
depth error is slightly lower for the original Kimmel & Seéni algorithm, but
the difference between the two is small (0.0184).

Figure 5.2 shows the famous example of the Vase (€ [—63.5,63.5];
image size:128 x 128; background depth: 100). The Fast Marching with
rotated coordinate system yielded a step along the sideeo¥dke. In ad-
dition, there were two sharp edges from the center of the {@»enward
and to the right). That is, the derivatives of the recoverepithl ¢(z,y)) are
discontinuous there. The iterative method, on the othed hatonstructed
a smoother object which better fits the original surface.l&f&x®2 provides
the error rates for the Vase example. Reconstruction by tdrative Fast
Marching Method obtained significantly lower error ratesading to all
measures.

Figure 5.2 introduces a real-world example, taken by erafpsdrom
the gastric angulds(cropped image sizes4 x 64). The reconstruction by
Kimmel & Sethian’s algorithm has a “line of breakage” in trenter, which
does not exist in the original image. In contrast, the iteeatnethod clearly
reconstructs all three gastric folds.

We next demonstrate the lack of invariance to depth translathen rotat-
ing the image to the light source coordinate system (Fig. BV2 juxtaposed

! Original is from www.gastrolab.net, courtesy of The Wasarkjooup on Intestinal
Disorders, GASTROLAB, Vasa, Finland.
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B. Lambertian image.

120

C. Fast Marching.

F. Iterative FM (Iter. #3).  G. lterative FM (lter. #4).

Figure 2. The Fast Marching Method in two variants: rotation to ligbusce coordinates
vs. iterative reconstruction. The original image is of thenbus VaseA. Original Depth
map.B. Lambertian image of (A)C. Reconstruction by the Fast Marching Methdx—H.
Reconstruction by the Iterative Fast Marching Method. Batdge corresponds to a different
iteration (and is also from a different point of view). ImageC) and (D) are from similar
viewpoints. Lighting is identical for all reconstructians

the reconstructions by the two methods on the Cosine, Vas&astric An-
gulus examples, when depth initializations were trandla@ne can see that
reconstruction by the original Fast Marching Method is satgd to a notable
change due to depth translation (cf. Figs. 5.2C, 5.2C, 5.2Qontrast with
the theoretic invariance of the underlying equation. Nttstanding, the vari-
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Table Il. Error rates for the algorithms on the Vase example.

Algorithm: No.of Mean Depth Std. Dev.of Mean Grad. Std. Dafv.
Iters.:  Error: Depth Error:  Error: Grad. Errof:

FM: 1 5.64573 4.17373 11.78896 19.72866
Iterative FM: 1 1.78303 2.70073 5.60814 16.64485
Iterative FM: 2 1.88749 2.66494 5.25000 14.13286
Iterative FM: 3 1.88272 2.66171 5.25550 14.16898
Iterative FM: 4 1.88764 2.66592 5.26070 14.18274
Iterative FM: 5 1.88641 2.66449 5.25500 14.15838

Table Ill. Comparison of algorithms of(x,y) = 100 + cos ( 2+ (y —2)? ), with

initialization translated by-90. Note the significant change in mean gradient error of the
original Fast Marching Method with respect to Table 5.2.

Algorithm: No.of Mean Depth Std. Dev. of Mean Grad. Std. Dsv.
Iters.:  Error: Depth Error:  Error: Grad. Errof:

FM: 1 0.50952 0.29694 2.03553 1.01126
Iterative FM: 1 0.41666 0.30021 1.30410 1.01180
Iterative FM: 2 0.41546 0.31031 1.36808 0.92218
Iterative FM: 3 0.41044 0.30757 1.32781 0.92801
Iterative FM: 4 0.40885 0.30672 1.31591 0.928p7
Iterative FM: 5 0.40834 0.30627 1.31177 0.92782

ation in reconstruction by the Iterative Fast Marching Mefhis very small
(cf. Figs. 5.2G, 5.2D, 5.2E). Quantification of the resuttghie form of depth
and gradient errors appears in Tables 5.2 and 5.2 (for thbetymexamples
only). The original Fast Marching Method changed consiodlgravith
respect to Tables 5.2 and 5.2, while variations in the liserdtast Marching
are only minor.

We see, that in all examples, the Iterative Fast Marchinghbléappears

to outrank the original method which rotates the image tolititg source
coordinate system.

2 For the Cosine and Vase examples, the images are after figter&or the Gastric
Angulus, after 2 iterations.
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riginal image.  B. Cropped image.

\/

v X A"
C. Fast Marching. D. lterative FM (lIter. #1).

F. lterative FM (Iter. #3).  G. Iterative FM (lter. #4).  H. isgive FM (lter. #5).

Figure 3. Comparison of the original and Iterative Fast Marching Mefhon an endoscopic
image from the gastric angulué. Original image.B. Cropped image of (A) Only (B) was
used for the reconstructiolC. Reconstruction by the Fast Marching Methddl-H. Re-
construction by the Iterative Fast Marching Method. Eachgecorresponds to a different
iteration (and is also from a different point of view). Imag&) and (D) are from the same
viewpoint. Lighting is identical for all reconstructions.

When comparing the complexity of the two algorithms, no dabb orig-
inal one is faster, by containment. However, as the exanghlew, the speed
in this case is at the expense of accuracy. As the suggestttbaneon-
verges very fast and no more than 2 iterations were everrestjuhe speed
difference turns out to be of secondary importance.
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Real Surface: Kimmel & Sethian: Iterative FM:
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Figure 4. Comparison of the original and Iterative Fast Marching Methwith a translated
depth initialization.Top Row: The Cosine example (Fig. 5.2). The depth is initialized ® th
true depth—90. Middle Row: The Vase example (Fig. 5.2). The depth is initialized to the t
depth+1000. Bottom Row: The Gastric Angulus example (Fig. 5.2). The depth is iried

to the true depth-90.

6. Conclusions

This research proposes an efficient and robust solutioneagtbblem of
Shape-from-Shading which handles both vertical and oblikgght sources
under the orthographic projection model. The suggestadisolis a variant
of the Fast Marching Method of Kimmel and Sethian (Kimmel &sdhian,
2001). It employs the Fast Marching Method iteratively fddigue light
sources. Each iteration solves an approximation to theenraadiance equa-
tion. The resultant solution serves for successive refinémiethe approxi-
mate equation. When this refinement process convergessigance is to the
correct solution of the original equation.
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Table IV. Comparison of algorithms on the Vase example with tranglatéialization
(+1000). Pay attention to the sharp change in all measures of thgatiFast Marching
Method with respect to Table 5.2.

Algorithm: No.of Mean Depth Std. Dev.of Mean Grad. Std. Dafv.
Iters.:  Error: Depth Error:  Error: Grad. Errof:

FM: 1 5.23793 4.84300 17.40992 32.886R7
Iterative FM: 1 1.78336 2.70162 5.60964 16.64280
Iterative FM: 2 1.88275 2.67130 5.25176 14.14409
Iterative FM: 3 1.87339 2.66216 5.25342 14.16180
Iterative FM: 4 1.86905 2.65839 5.25188 14.15634
Iterative FM: 5 1.87500 2.66242 5.25437 14.16484

We compared reconstruction by the original Fast Marchinghde and its
iterative variant on both synthetic and real-life examgfesm endoscopy).
We also demonstrated why rotation of the image to light smamordinates,
as done in (Kimmel and Sethian, 2001), violates the propefrtyre ortho-
graphic image irradiance equation of invariance to depdhsiation. The
Iterative Fast Marching Method outperformed the originastFMarching
Method, and remained invariant to depth translations (dueonvergence
to the correct solution).

In terms of runtime, indeed the original Fast Marching Metl® faster
than the suggested one. However, convergence of the sadgestiant is
very fast; in all examples no more than 2 iterations were aeeessary.
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