Detection of Interest Points Using Symmetry

Daniel Reisfeld®

In order to reduce the amount of information involved
in visual processing we seek a low level operator, which
can be used to direct the computational resources toward
“interesting™ points of an image. We are introducing an
operator based on the intuitive notion of symmetry, which
effectively locates interest points in real time, and can be
incorporated also in active visual systems. The results
of its operation agree with some psychophysical evidence
concerning symmetry as well as evidence concerning fix-
ation points. The operator can be applied successfully
without a priori knowledge of the world. Combining the
operator with some preconceptions about the image iz
a powerful tool for feature detection in intricate natural
scenes. We demonstrate the localization of faces and fa-
cial features in real time on detailed and noisy pictures.

1 Introduction

Biological and machine vision tasks involve the process-
ing of an enormous amount of information. In order to
analyze it under plausible time and space constraints,
this amount of information has to be reduced. A solu-
tion suggested by primate vision, is based on foveated
vision: the field of view is selectively processed, and
computational resources are directed toward “interest-
ing” areas or points. These points are natural atienfion
points, and provide a basis for a more thorough investi-
gation by higher processes. When a primate focuses his
attention on a location, events oceurring at that location
are responded to more rapidly, give rise to enhanced elec-
trical activity, and can be reported at a lower threshold
[17]. Interest points can serve as a guide for shifting the
eyes to new firalion poinis — points that are projected
on the fovea. In this paper we suggest an operator based
on the intuitive notion of symmetry, which effectively lo-
cates interest point of a picture in real time, and can
be incorporated in passive, as well as active, visual sys-
tems. The results of its operation are consistent with
psychophysical evidence concerning symmetry as well as
evidence concerning fixation points. The operator can
be applied successfully without a priori knowledge of the
world. Combining the operator with some preconcep-
tions can provide a powerful tool for finding features in
intricate natural scenes. We demonstrate, in this article,
the localization of faces and facial features in real time
on detailed and noisy pictures.
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Natural objects often give rise to the human sensation
of symmetry. Our sense of symmetiry is so strong that
meost man-made objects are symmetric, and the Gestalt
school considered symmetry as a fundamental principle
of perception [24]. This sensation is more general than
the strict mathematical notion. For instance, a picture
of a human face is considered highly symmetric by the
layman, although it is not symmetric in the mathemat-
ical sense. The presented operator is inspired by the
intuitive notion of symmetry, and assigns a “symmetry
value” to every point in a picture at a very low level vi-
sion stage. In this respect, points with high symmetry
value are natural interest points.

Interest points are regarded by many as points of high
curvature (e.g. [2, 11, 26]). Others suggest to measure
busyness — the smoothed absclute value of the Laplacian
of the data [16], or rapid changes in the gray levels [21].
We argue that symmetry is a more general and pow-
erful concept, since it more closely fits psychophysical
evidence, and it is more useful in detecting interesting
features in complex scenes.

Symmetry is being widely used in computer vision
[1, 3, 5, 4, 8, 9, 14, 15, 13, 25, 27] (additional compre-
hensive bibliography can be found in [25, 27]). How-
ever, it is used as a mean of convenient representation,
characierization, shape simplification, or approximation
of objects, whose existence is already assumed. A typ-
ical vision task consists of edge detection, followed by
segmentation, followed by recognition. A symmetry op-
erator is usually applied after the segmentation stage.
Our symmetry operator can be applied immediately af-
ter the stage of edge detection, where there is absolutely
no knowledge regarding the objects in the scene. More-
over, the output of the symmetry operator can be used
effectively to direct higher level processes, such as seg-
mentation and recognition, and can serve as a guide for
locating the interesting objects. We shall demonstrate
these ideas on complex natural scenes.

More detailed description can be found in [18].

2 Defining the Operator

In the usual mathematical notion, an object is regarded
as symmetric if the application of certain transforma-
tions, called symmetry operations, leaves it unchanged
while permuting its parts. In order to use these symme-
try operations it is necessary to know the shape of an
object before we can predicate whether it is symmetric
or not. However, the process of finding interest points
must precede complex processes of detecting the objecis
in the scene. Ewen if the objects’ shapes are known,
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truly symmetric objects are rare in natural scenes, and
therefore any attempt to formulate an interest operator
based on the strict mathematical notion of symmetry is
doomed to fail.

In this section we define a symmetry measure for each
point and direction. Let pp = (z;,y) be any point

(k=1,...,K), and denote by Vi = (-f:m.f;ﬂ) the

gradient of the intensity at point pr. We assume that a
vector vg = (rg, 0 ) is associated with each pg such that

rg = log (1 + ||Vipe||) and 8 = arctan (%p;.fﬁ’:pk) . For
each two points p; and p;, we denote by I the line pass-
ing through them, and by ay; the angle counterclockwise
between | and the horizon.

We define the set T (p,v), a distance weight function
D, (i, j){e), and a phase weight funciion P(i,j) as
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The symmetry measure S, (p,v) of each point p in
direction v is defined as

Sa (p,¥) =

— 2a5)) (1 - cos (8; — 6;))
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The rationale of this formula can be understood by
decomposition and explanation of the operands:

D.(ij) : The symmetry induced by two points decreases
as their distance increases, thus the operator has a
local nature. Different values for & enable different
scales.

rir; : This term is high when there is a good corre-
lation between two large gradients. We use gra-
dients rather than intensities since meaningful in-
formation is usually connecied with changes of in-
tensity. For instance, a uniform intensity wall is
highly symmetric but probably not very interesting.
In natural scenes we prefer to use the logarithm of
magnitude instead of the magnitude itself, since it
reduces the differences between high gradients, and
therefore the correlation measure is less sensitive to
very strong edges.

1—cos(f+0; — 2a4;) : A maximum symmetry mea-
sure is n.tjhmved when (8 — oij) + (8 — i) = m,
i.e. when the gradients at p; and p; are oriented in
the same direction towards each other. This is con-
sistent with the intuitive notion of symmetry. The
expression 1 — cos (#; + #; — 2a,;) decreases contin-
uously as the situation dcwa.tcs from the ideal one.
Notice that the same measure is achieved when the
gradients are oriented towards each other or against
each other. The first situation corresponds to sym-
metry within a dark object on a light background,
and the second corresponds to symmetry within a

light object on a dark background. It is easy to

distinguish between the two cases.

1 —cos (f; — #;) : The previous expression attains its
ma.xlmum whenever (0 — axij)+ (85 — u',_,} = w, and
includes the case #; — ay; = #; — a; = «/2, which
occures on a straight edge, which we do not regard
as interesting. The current expression compensates
for this situation.

5. can be implemented either as an array of a fixed
number of discrete angle bins (typically n = 1,2,4,8 or
16) or as a dynamic data structure containing all the
nonzero symmetry value directions. Representing in a
discrete number of bins is faster and has a natural inter-
pretation. We shall denote by 5, the symmetry operator
implemented by using n bins as follows:

Ssd)=[ S (e
$eEbin(i)
where bin (f) is defined for i=1,...,n as

bin (i) = | J {h+{.*—7n—”_'-,2%, ;.-,+E_l)

k=01

An important special case is S;:
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which is the isotropic symmetry operator. It is inter-
esting to note, in that regard, that if the image is con-
sidered to be the cotangent field of the intensity image,
then the isotropic operator will detect the singularities of
the principle direction fields [20]. Sz (p,{), for example,
classifies symmetry points as horizontal — 52 (p, 1) and
vertical symmetry points - S3 (p, 2).

Sometimes it is necessary to detect points that are
highly symmetric in several distinct directions. We call
such a symmetry a circular symmetry — CS(p) and its
value can be evaluated using the formula:

CS, (9) = fjﬂs (2,C) S0 {p,n}sm(

MNote that the term sin R?E

and { are in opposite directions, and decreases monoton-
ically until they are identical.

If the operator is implemented in a small number of
discrete bins, a simpler definition for circular symmetry
suffices:

) o

reaches its peak when 5

=10 +Sa(p.i)

CS, (p)

3 Cognitive Correlates

There are many psychophysical works investigating hu-
mans ability to detect bilateral symmetry (For example



Figure 1: Still life (left) and the application of 5} (p, 1}
on it (right).

Figure 2: The strongest four peaks of C\5g (p) are marked

by crosses on the original picture.

[6]). It is accepted that human are able to detect mirror
symmetry and that symmetry detection has a local na-
ture. However, there is no link suggested between these
capabilities and the choosing of attention points. Kauf-
man and Richards [11] studied spontaneous fixation ten-
dencies of the eyes when they are confronted with very
simple forms. Their results are in intriguing agreement
with the results of applying the symmetry operator to a
similar image — the operator 5 (p, 1) attains its peaks at
the same points for all the figures reported.

4 Operation on Natural scenes

The symmetry operator can be applied successfully on
intricate natural scenes. Figure 1 demonstrates that the
operator performance is not affected by the existence of
several objects in the scene.

Figure 2 is a picture of three people on a noisy back-
ground. The strongest four peaks of CSg (p) are marked
by crosses and are located on the three faces,

Another intricate scene is demonstrated in Figure 3.
The location of the two strongest peaks of CSg(p) are
marked by crosses and are located on the eyes. The next
highest peaks (not marked) are located on the reflections
of the face.

Figure 3: An image — the two highest peaks of 05 (p)
are marked by crosses (on the eyes). The next peaks
(unmarked) lay on the reflections of the faces.
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Figure 4:
Sa(p, 1) result on a face — prominent peaks at the facial
features and some additional noise.

Combination of semantics with the symmetry opera-
tor can serve for [eature detection. An example is facial
feature detection. We have already demonstrated that
CSs (p) applied to a face attains high peaks at the eyes,
since the eyes are symmetric along various directions and
scales. In addition, various facial features have high sym-
metry values along vertical lines, and therefore we expect
Sz (p, 1) to highly respond to the eyes, mouth and nose.
Figure 4 shows the result of the application of Sz (p,1)
on a face image.

5 Complexity

We firsi discuss serial implementation. Suppose the op-
erator is applied to a picture composed of n pixels, and
the gaussian in the weight function almost vanish in ra-
dius r < /n. Each two pixels, whose distance is less
than or equal to 2r, contribute a value which can be
computed using look-up tables. Therefore the time com-
plexity is O (nr?). In practice it took a few seconds of
a Sun3 machine to process the pictures presented in this
article.

Space complexity is small too. We can either repre-
sent the symmetry of different phases in a discrete (and
small) number of bins, or alternatively, use a linked list



{or any other form of dynamic memory) to hold the sym-
metry measures at any precision. The worst case space
complexity is O (nr?). It arises when we hold symme-
try measures in maximal phase precision, and the sum
of gradient phase of each two pixels, whose distance is
less or equal 2 r, is different. For the implementation in
a small number, k, of bins the space needed is no more
than kn words.

The complexity of a parallel implementation depends
on the architecture. For an architecture where there is a
processor allocated for each pixel and each processor is
connected to its neighbors up to radius r, we can achieve
maximal speed-up of the algorithm and reduce time com-
plexity to O (r?) (with O (nr?) messages if no global
memory is available). If we have at our disposal a suf-
ficiently large neural network, we can easily implement
the look-up table and summation operations needed and
then perform the operation in constant time.

6 Conclusion and Further Work

We have introduced an operator which can serve as an
efficient. low level process for indexing attention to the
regions that are likely to be of high interest in a picture.
Other processes can then move the attention to these
regions and interpret the data in them. The symmetry
operator agrees with some psychophysical data and can
be further investigated to find its relation to models for
indexing attention in biological vision, such as the mod-
els used by Posner and Peterson [17] and by Ullman [23).

The symmetry operator value is high near points of
high curvature and the location of its peaks is more con-
sistent with psychophysical evidence than the location
of points based on high-curvature per-se. It is also more
general since it locates other classes of interest points.
Busyness measures can also be regarded as a rough esti-
mate of the symmetry operator, since both are influenced
by edge intensities, although busyness does not account
for their relative orientations. Thus, the busyness mea-
sure will yield poor results in noisy scenes.

A powerful tool for object recognition can be designed
using semantics in combination with the symmetry op-
erators. For example, we can locate a face using the
circular symmetry operator, OS5, (p) applied to a rough
resolution of the picture, and then apply both circular
symmetry, OS5, (p), and symmetry along horizontal lines,
Sa(p, 1), on smaller focused regions of the picture in
higher resolution. We have already obtained preliminary
results locating faces and their features using the sym-
metry operator along with the gaussian pyramid [7, 19].

Recent object recognition paradigms [l;‘z, 22, 10] have
shown that recognition can be performed using interest
points in unsegmented scenes. Such paradigms may use
as input the symmetry operator output. Moreover, the
symmetry operator produces more than interest points.
One may view the computation of the symmetry mea-
sure S (p, 1) as a “symmetry edge” extraction procedure.
For every point in the image one gets the strength of the
response in given directions. An appealing consequence
of this approach is in the observation that one may ap-
ply most of the “standard” computer vision operations

to this map exactly in the same way that we apply it
to a standard edge map. For example, by applying a
Hough transform for line detection, one detects signifi-
cant straight symmetry axes. By applying any standard
edge linking procedure, one obtains all the symmetry
axes in the image, which may be curved. All this can
be carried out without prior segmentation of the origi-
nal image. As a consequence, a finer symmetry measure
based on the intersection of symmetry lines rather than
the original symmetry points can be established.
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