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Abstract. Shape-from-Shading (SfS) is a fundamental problem in Computer Vision. A very common assumption
in this field is that image projection is orthographic. This paper re-examines the basis of SfS, the image irradiance
equation, under a perspective projection assumption. The resultant equation does not depend on the depth function
directly, but rather, on its natural logarithm. As such, it is invariant to scale changes of the depth function. A
reconstruction method based on the perspective formula is then suggested; it is a modification of the Fast Marching
method of Kimmel and Sethian. Following that, a comparison of the orthographic Fast Marching, perspective Fast
Marching and the perspective algorithm of Prados and Faugeras on synthetic images is presented. The two perspective
methods show better reconstruction results than the orthographic. The algorithm of Prados and Faugeras equates
with the perspective Fast Marching. Following that, a comparison of the orthographic and perspective versions
of the Fast Marching method on endoscopic images is introduced. The perspective algorithm outperformed the
orthographic one. These findings suggest that the more realistic set of assumptions of perspective SfS improves
reconstruction significantly with respect to orthographic SfS. The findings also provide evidence that perspective
SfS can be used for real-life applications in fields such as endoscopy.
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1. Introduction and Background

Recovery of Shape-from-Shading (SfS) is a fundamen-
tal problem in Computer Vision. The goal of SfS is to
solve the image irradiance equation, which relates the
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reflectance map to image intensity, robustly. The task,
however, appears to be nontrivial. This has caused most
of the works in the field to add simplifying assumptions
to the equation. Of particular importance is the common
assumption that scene points are projected orthograph-
ically during the photographic process.

Many works in the field of Shape-from-Shading
have followed the seminal works of Horn (1975, 1977,
1986), who initiated the subject in the 1970s, and
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assumed orthographic projection. Horn’s (1989) book
reviews the early work on Shape-from-Shading (un-
til 1989). Zhang et al. (1999) surveys and classi-
fies some of the works from the ’90s and compares
the performance of six of them (namely, minimiza-
tion approaches: Zheng and Chellappa (1991) and Lee
and Kuo (1993); propagation approach: Bichsel and
Pentland (1992); local approach: Lee and Rosenfeld
(1985); linear approaches: Pentland (1984) and Tsai
and Shah (1994)). Kimmel and Bruckstein (1995) clas-
sify image extrema and two kinds of saddle points and
use these topological properties of the surface in a
global Shape-from-Shading algorithm. In the current
millennium Zhao and Chellappa (2000) use symmet-
ric Shape-from-Shading to develop a face recognition
system which is illumination insensitive; they show
the symmetric Shape-from-Shading algorithm has a
unique solution. Kimmel and Sethian (2001) proposed
the Fast Marching method as an optimal algorithm for
surface reconstruction. Their reconstructed surface is
a viscosity solution of an Eikonal equation for the ver-
tical light source case. Sethian (1999) provides deep
insight into Level Set and Fast Marching methods.
Robles-Kelly and Hancock (2002) use the Mumford-
Shah functional to derive diffusion kernels that can be
employed for Shape-from-Shading. Prados et al. (2002)
base their approach on the viscosity solution of a
Hamilton-Jacobi equation. They extend existing proofs
of existence and uniqueness to the general light source
case and prove the convergence of their numerical
scheme. Many more orthographic algorithms were sug-
gested in the literature, but only a few can be described
herein.

Despite all the work in this field, the comparative
study (Zhang et al., 1999), which dealt only with or-
thographic SfS, reaches the following conclusions: “(1)
All the SFS algorithms produce generally poor re-
sults when given synthetic data. (2) Results were even
worse on real images, and (3) Results on synthetic
data are not generally predictive of results on real
data.”

The few works that did employ the perspective pro-
jection have been too restrictive and have not addressed
the general problem. Yamany et al. (1999) and Seong
et al. (1997) assumed that distance variations between
camera and surface could be ignored. Samaras and
Metaxas (2003) employed a deformable model for the
SfS problem, so reconstruction took place in 3D space.
Thus, during the deformation process, the image point
onto which a 3D point was projected changed, and its

new location should have been interpolated, resulting
in a nonuniform sampling of the image.

Another approach to perspective SfS is piecewise
planar modelling of the depth function (Lee and
Kuo (1997), Penna (1989)). However, orthographic and
perspective reflectance maps of a plane are identical,
as Section 3.1 would show. Therefore, the two types
of projection of a piecewise planar surface differ only
at the edges, while fully agree at the interior of the
faces.

Recently, Yuen et al. (2002) proposed the use of per-
spective SfS with the Fast Marching method of Kimmel
and Sethian (2001). This work approximated surface
normals in 3D space using the neighboring pixels of
the point under examination. Into these approximations
the equations of perspective projection were substi-
tuted. This approach suffers two drawbacks. First, it
describes a specific numerical approximation without
reference to the theoretic problem (i.e., the image irra-
diance equation itself). Second and most importantly,
neighboring pixels lie on a uniform grid (image space),
while their 3D correspondents need not be so (in 3D
space). The result was that depth derivatives were ap-
proximated in 3D space on a nonuniform grid, while
the underlying assumption was a uniform one (image
space uniformity).

Weiss (1997) suggested a physical formalism which
enables incorporation of invariants of the imaging pro-
cesses and geometric knowledge about the surface.
This work describes a theoretical method, but presents
no numerical results.

Although the great majority of researches in the field
of SfS rely on the orthographic projection, and the mi-
nority which applies to perspective SfS is limited in
scope, no information is available on the image irradi-
ance equation under the perspective projection model.
The goal of this paper is to formulate the image ir-
radiance equation under the perspective assumption
and then to solve the resultant Shape-from-Shading
problem. The proposed solution is a perspective ver-
sion of the Fast Marching method of Kimmel and
Sethian (2001) based on the new formulation of the
image irradiance equation.

To motivate why a change in the underlying as-
sumption from orthographic to perspective projection
has a strong impact on the results, let us introduce
an analytic example of two Lambertian quadrilater-
als (Fig. 1(a)). It can be shown analytically, that per-
spective projection of the filled quadrilateral onto the
image plane is identical to orthographic projection
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Figure 1. Difference in reconstruction between perspective and or-
thographic SfS. (a) Perspective projection of the filled quadrilateral
is identical to orthographic projection of the meshy parallelogram.
(b) The image produced by both surfaces (light source direction:
�L = (0, 0.5, −1)). Orthographic reconstruction of this image must
produce a 3D parallelogram.

of the meshy parallelogram (the mesh is for visual-
ization purposes only). Their images (under identi-
cal directional lighting) would also be the same, as
they reside on the same plane, and hence have iden-
tical normals. This stems from the image irradiance
equation (see Horn, 1986) for a Lambertian surface
illuminated by a point light source at infinity
(Section 2.2 will describe the equation). Consequently,
the perspective image of the quadrilateral is identical to
the orthographic image of the parallelogram under the
same light source (Fig. 1(b)). This implies that if the
quadrilateral was photographed by a perspective cam-
era, but reconstructed by an ideal orthographic algo-
rithm, the reconstruction would be that parallelogram.
Thus, the shape difference between the two quadrilat-
erals is a reconstruction error inherent in the ortho-
graphic model, which cannot be overcome by any spe-
cific orthographic algorithm. Furthermore, it can be
proved that orthographic reconstruction of a rectangu-
lar image of a 3D plane must yield a 3D parallelogram;
this need not be the case if the projection is perspec-
tive, as Fig. 1 demonstrates. (The proof is omitted for
brevity.)

This example (Fig. 1) suggests that the improvement
in reconstruction due to the perspective projection as-
sumption may be considerable, as it diminishes a major
source of error in current SfS techniques.

Preliminary results of the work described by the cur-
rent paper appeared in Tankus et al. (2003). (There,
the algorithm was a very basic one with gradient de-
scent minimization of an energy functional). In parallel
to Tankus et al. (2003), another research group, Prados
and Faugeras (2003), developed the perspective image
irradiance equation but with a different algorithm for
its solution. The current paper will compare these two

perspective methods as well as the orthographic Fast
Marching on synthetic data.

The practical contribution of this paper will be fur-
ther evaluated by a reconstruction comparison of the
proposed algorithm and the original Fast Marching
method on medical images taken by endoscopy from
different parts of the gastrointestinal tract. The com-
parison will show that perspective SfS, in contrast with
orthographic SfS (see the above quote of Zhang et al.,
1999), should be adequate for real-life applications
such as endoscopy.

The paper is organized as follows. We first develop
the image irradiance equation under the perspective
projection model (Section 2), and explain its depen-
dence on the natural logarithm of the depth function
(Section 2.3). Section 3 provides intuition for surfaces
in image coordinates and their reflectance maps un-
der the perspective model. Examples of simple sur-
faces (planes and paraboloids) are described. Section 4
suggests a perspective SfS algorithm based on the
Fast Marching method of Kimmel and Sethian (2001).
Section 5 describes the comparison of orthographic
Fast Marching, perspective Fast Marching and the al-
gorithm of Prados and Faugeras on synthetic images. In
addition, it compares the orthographic and perspective
Fast Marching algorithms on medical images taken by
endoscopy. Finally, Section 6 draws the conclusions.
Appendix A derives the perspective image irradiance
equation in detail. Appendix B develops the equations
for the perspective Fast Marching method and proves
the relevant theorems.

2. The Perspective Image Irradiance Equation

2.1. Notation and Assumptions

Let us first describe the notation and assumptions that
hold throughout this paper. Photographed surfaces are
assumed representable by functions of real-world coor-
dinates as well as of image coordinates. ẑ(x, y) denotes
the depth function in a real-world Cartesian coordinate
system whose origin is at camera plane. If the real-
world coordinate (x, y, ẑ(x, y)) is projected onto im-
age point (u, v), then its depth is denoted z(u, v). By
definition, z(u, v) = ẑ(x, y). I (u, v) denotes the inten-
sity at image point (u, v). f denotes the focal length,
and is assumed known. The scene object is Lambertian,
and is illuminated from direction �L = (ps, qs, −1) by
a point light source at infinity. �N (x, y) is the surface
normal.
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2.2. Equation in Image Coordinates

As a first step in solving the image irradiance equation
under the perspective projection model, we convert the
equation into more convenient forms. The equation is
given by:

I (u, v) = �L · �N (x, y) (1)

where

x = −u · ẑ(x, y)

f
(2)

y = −v · ẑ(x, y)

f
(3)

Substituting Eqs. (2), (3) and �L by==
def

(ps, qs, −1) (see
Section 2.1) into Eq. (1) yields:

I (u, v) = 1 + ps ẑx + qs ẑy√
1 + p2

s + q2
s

√
1 + ẑ2

x + ẑ2
y

(4)

We then express ẑx and ẑ y in terms of u, v, z, zu , and
zv , and substitute the resultant expressions along with
Eqs. (2) and (3) into Eq. (4). Appendix A derives these
expressions from the projection equations, and obtains:

I (u, v) =
(u − f ps)zu + (v − f qs)zv + z√

1 + p2
s + q2

s

√
(uzu + vzv + z)2 + f 2

(
z2

u + z2
v

)
(5)

where z(u, v)
def= ẑ(x, y) for (u, v) which is the per-

spective projection of (x, y, ẑ(x, y)). Equation (5) is
the perspective image irradiance equation.

2.3. Dependence on ln(z(u,v))

Equation (5) shows direct dependence on both z(u, v)
and its first order derivatives. If one employs ln(z(u, v))
instead of z(u, v) itself (by definition z(u, v) > 0), one
obtains the following equation:

I (u, v) =
(u − f ps)p + (v − f qs)q + 1√

1 + p2
s + q2

s

√
(up + vq + 1)2 + f 2(p2 + q2)

(6)

where p
def= zu

z = ∂ ln z
∂u and q

def= zv

z = ∂ ln z
∂v

. Equation (6)
depends on the derivatives of ln(z(u, v)), but not on
ln(z(u, v)) itself. Consequently, the problem of recover-
ing z(u, v) from the image irradiance equation reduces
to the problem of recovering the surface ln(z(u, v))
from Eq. (6). Because the natural logarithm is a bijec-
tive mapping and z(u, v) > 0, recovering ln(z(u, v)) is
equivalent to recovering z(u, v) = eln(z(u,v)).

The image irradiance equation under orthographic
projection is invariant to translation of ẑ(x, y), which
means ẑ(x, y) + c (for constant c) produces the same
intensity function as ẑ(x, y). In contrast, the perspective
image irradiance equation (Eq. (5)) is invariant to scale
changes of z(u, v). That is, the intensity functions of
c · z(u, v) and z(u, v) are identical. This follows from
the properties of the natural logarithm, and can also be
verified by Eqs. (5) and (6). Invariance to scaling seems
to be a more plausible assumption than invariance to
translation when employing real cameras.

3. The Perspective Irradiance Equation
of Simple Surfaces

We next provide some analytic examples of surfaces
and their representation in the image coordinate sys-
tem (u, v, z(u, v)), and their reflectance map (R(u, v))
under the perspective model. These formulae would
sharpen the difference between the orthographic and
perspective models and would give the reader some
intuition for the difference between the real-world rep-
resentation of a surface (x, y, ẑ(x, y)) and its repre-
sentation in image coordinates (u, v, z(u, v)) under the
perspective model (under the orthographic model, these
representations are identical).

We examine two types of real-world surfaces: planes
and paraboloids.

3.1. Planes

Let us consider a general plane:

ẑ(x, y) = z0 + a(x − x0) + b(y − y0)

where a, b, x0, y0, z0 are constants. Substituting image
coordinates (u, v) according to the perspective projec-
tion equations and solving for z(u, v) yields:

z(u, v) = z0
f + au0 + bv0

f + au + bv
(7)
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where u0
def= − f ·x0

z0
, v0

def= − f ·y0

z0
. The last equa-

tion states that the depth of the planar surface at point
(u, v) is proportional to the reciprocal of au + bv.
The opposite takes place in orthographic projection:
x ∝ u, y ∝ v, and hence depth is proportional to
au + bv = ax + by, by definition of ẑ(x, y).

Under both perspective and orthographic projec-
tions, the image irradiance equation becomes:

R(u, v) = psa + qsb + 1

‖�L‖√a2 + b2 + 1
(8)

This fact is trivial for the orthographic projection.
In Tankus (2004) we derive this equation for the per-
spective case as well. The equation shows that for a
planar object the image irradiance is constant (i.e., in-
dependent of u and v) under both projection models.

3.2. Paraboloids

3.2.1. Canonical Paraboloids. We first consider a
canonical paraboloid of the form:

ẑ(x, y) = ax2 + by2

Its representation in image coordinates under perspec-
tive projection is:

z(u, v) =



f

au2 + bv2
, if au2 + bv2 �= 0

0, if au2 + bv2 = 0

Again, the perspective and orthographic equations are
reciprocal (up to a scale factor).

The reflectance map in this case is:

R(u, v) = 2 f (psau + qsbv) − (au2 + bv2)

‖�L‖√au2 + bv2
√

au2 + bv2 + 4 f 2

3.2.2. General Paraboloids. For a general paraboloid
of the form:

ẑ(x, y) = z0 + a(x − x0) + b(y − y0) + c(x − x0)2

+ d(y − y0)2 + e(x − x0)(y − y0)

the image coordinate representation is:

z(u, v) = S(u, v) −
√

S2(u, v) − 4T (u, v)P

2T (u, v)
(9)

where

T (u, v)
def= cu2 + dv2 + euv

S(u, v)
def= f 2 + u( f a + 2cu0z0 + ev0z0)

+ v( f b + 2dv0z0 + eu0z0)

P
def= z0 f ( f + au0 + bv0)

+ z2
0

(
cu2

0 + dv2
0 + eu0v0

)
(assuming T (u, v) �= 0). The reflectance formula in
this case is omitted due to its complexity. Even though
there exists another solution to the quadratic equation,
in the general case that solution is not physical. This is
because substitution of z0 into the other solution results
in z(u0, v0) �= z0 (unless f + au0 + bv0 = 0), which
contradicts the definition of z0.

4. Perspective Fast Marching

This section suggests a perspective SfS algorithm.
The algorithm is a modification of the Fast March-
ing method of Kimmel and Sethian (2001) from the
orthographic set of assumptions to the perspective one.

4.1. Solving The Approximate Problem

The algorithm of Kimmel and Sethian (2001) stems
from the orthographic image irradiance equation:
I (x, y) = �L · �N (x, y). This equation is known as the
Eikonal equation and can be written as:

p2 + q2 = F̃2

where p
def= zu = zx , q

def= zv = zy and F̃ =√
(I (x, y))−2 − 1. Similarly, the perspective image ir-

radiance equation (Eq. (5)), can be transformed into the
form:

p2 A1 + q2 B1 = F̂ (10)

where A1 and B1 are positive and independent of p as
well as of q. F̂ , on the other hand, depends on both
p and q. The complete expressions for A1, B1 and F̂
appear in Appendix B.

Following Kimmel and Sethian (2001), we use
the numerical approximation (originally introduced
in Rouy and Tourin (1992) as a modification of the
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scheme of Osher and Sethian (1988)):

pi j ≈ max
{

D−u
i j z, −D+u

i j z, 0
}

qi j ≈ max
{

D−v
i j z, −D+v

i j z, 0
}

where D−u
i j z

def= zi j −zi−1, j

�u is the standard backward

derivative and D+u
i j z

def= zi+1, j −zi j

�u , the standard forward

derivative in the u-direction (zi j
def= z(i · �u, j · �v)).

D−v
i j z and D+v

i j z are defined in a similar manner for the
v-direction.

The motivation for employing this numerical scheme
is due to its consistency and monotonicity. For the
Eikonal equation, Rouy and Tourin (1992) have shown
that an iterative algorithm based on this scheme with
Dirichlet boundary conditions on image boundaries
and at all critical points converges towards the viscos-
ity solution with the same boundary conditions. Ex-
istence of the viscosity solution has been proven in
Lions (1982) and uniqueness, in Rouy and Tourin
(1992) and Ishii (1987). Sethian (1996) have proven
that the Fast Marching algorithm produces a solution
that everywhere satisfies the discrete version of the
Eikonal equation.

Substituting the numerical approximation into
Eq. (10), we get the discrete equation:

(
max

{
D−u

i j z, −D+u
i j z, 0

})2
A1

+ (
max

{
D−v

i j z, −D+v
i j z, 0

})2
B1 = F̂ i j (11)

where F̂ i j
def= F̂(i ·�u, j ·�v). As Appendix 6 details,

the solution of this equation at every point (i, j) is:

z =




z1 +
√

F̂

A1
, if z2 − z1 >

√
F̂

A1

z2 +
√

F̂

B1
, if z1 − z2 >

√
F̂

B1

A1z1 + B1z2 ±
√

(A1 + B1)F̂ − A1 B1(z1 − z2)2

A1 + B1
,

otherwise

(12)

where z1
def= min{zi−1, j , zi+1, j } and z2

def=
min{zi, j−1, zi, j+1}.

4.2. The Iterative Solution

An important observation described in Kimmel and
Sethian (2001) is that information always flows from
small to large values at local minimum points. Based
on this, the orthographic Fast Marching method re-
constructs depth by first setting all z values to infin-
ity, and the correct height value at the local minima.
Then, every step extends the reconstruction to higher
depths. Reconstruction is thus achieved by a single
pass.

Nevertheless, a single pass cannot solve the afore-
mentioned formulation of the perspective problem
(Eq. (11)), because the approximate solution (the right-
hand side of Eq. (12)) depends on F̂ , which depends on
both p and q. Hence, we suggest an iterative method. In
every iteration, F̂ is calculated according to the depth
recovered by the previous iteration. Based on this ap-
proximation of F̂ and on Eq. (12), a solution is calcu-
lated for the new iteration. We initialize this process
by the orthographic Fast Marching method of Kimmel
and Sethian (2001).

Following each iteration, the resulting depth map
was normalized (i.e., divided by the norm of all depth
values). This preserves a correct reconstruction, be-
cause the perspective SfS is invariant to multiplication
by constant (see Section 2.3).

5. Experimental Results

5.1. The Experiments

To evaluate the contribution of perspective SfS, we
compared it with the Fast Marching method of
Kimmel and Sethian (2001). The reason for select-
ing this orthographic algorithm for the comparison is
triple. First, we consider the Fast Marching method
a state-of-the-art technique. Second, in Tankus et al.
(2003) we compared three orthographic methods (Lee
and Kuo (1993), Zheng and Chellappa (1991) and
Kimmel and Sethian (2001)) with a basic perspective
method that was suggested there (based on gradient de-
scent). Among these three orthographic methods, the
Fast Marching method performed best. Third, the fact
that the suggested perspective method is based on this
orthographic method, neutralizes the effect of the nu-
merical scheme on the results. Therefore, any improve-
ment would be a consequence of the transition to the
perspective equation, and not of the different ways of
solving the equations.
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Recently, another perspective algorithm has been
suggested by Prados and Faugeras (2003) in parallel
to ours. We compare our algorithm with this algorithm
as well.

An important advancement over (Tankus et al.,
2003), which compares merely synthetic images, is
the experimentation with real images. In addition to a
demonstration with synthetic data, we compared the or-
thographic and perspective Fast Marching algorithms1

on medical images taken by endoscopy.

5.1.1. Experiments with Synthetic Images. All syn-
thetic input images were produced from an original
surface ẑ(x, y) in the real world. The surface was pro-
jected onto plane [uv] according to the perspective
projection equations (Eqs. (2) and (3)). A rectangular
area bounded by the projection and symmetric about
the optical axis was uniformly sampled. The origi-
nal surface ẑ(x, y) was then interpolated to the sam-
pling points. The orthographic image irradiance equa-
tion then served to create the intensity at each point.
This procedure was applied to avoid direct usage of
the perspective formula, which the proposed algorithm
attempts to recover.

A large amount of synthetic inputs was examined,
but only few can fit into this paper. Section 5.2 provides
representative examples.

To evaluate the contribution of the perspective Fast
Marching, we compared it with two other algorithms:
an orthographic algorithm (Fast Marching by Kimmel
and Sethian (2001)) and a different perspective algo-
rithm by Prados and Faugeras (2003).

We evaluated the performance of the algorithms on
synthetic images according to three criteria adopted
from Zhang et al. (1999): mean depth error, stan-
dard deviation of depth error, and mean gradient error.
For completeness, we also supply the standard devi-
ation of gradient error, although it is considered not
physical.

Notwithstanding, the adoption of orthographic cri-
teria (such as the above) to the perspective case is non-
trivial. In contrast with a pure orthographic compari-
son (as in Zhang et al., 1999), where reconstructed [xy]
domains are guaranteed to be rectangular, in a perspec-
tive comparison each algorithm may recover a different
[xy] domain. Thus, the resultant surface points need
not have the same (x, y) rates as points on the original
surface. Consequently, scaling the recovered surface
to fit the original (due to invariance to depth scaling;
see Section 2.3) is also more complicated. The scaling

now need be calculated by surface samples at different
(x, y) locations.

To best fit the reconstructed [xy] domains to the true
ones (in the least-squares sense), we scaled them lin-
early. In order to determine a scale factor for the depth
functions (ẑ(x, y) = z(u, v)) we projected the recon-
structed surface onto the true one, and calculated the
scale factor between reconstructed points and their pro-
jection. The distance from reconstructed points to the
projections was taken as the distance for mean depth
error.

We considered three methods of projection:

1. The trivial one, to compare depths at points cor-
responding to the same image pixel. This method
ignores the discrepancy in [xy] domain.

2. To interpolate and extrapolate the original surface
by a Thin-Plate spline, and approximate the z value
of the original surface at the (x, y) rates where the
reconstructed surface is provided. Thus, projection
is vertical (i.e., parallel to the z-axis).

3. To project reconstructed points onto the true sur-
face using an approximation of the Moving Least
Squares (MLS) method (Levin, 2004). The main
idea is to project a point onto a surface by finding the
nearest neighbor of the point among surface points,
approximating a plane in its vicinity (from surface
points), and projecting the point onto this plane, per-
pendicularly. Then, the surface is approximated by
Weighted Least Squares in a local coordinate sys-
tem (defined by this plane) at the point of projection.
This type of projection is locally perpendicular to
the target surface.

When comparing orthographic and perspective algo-
rithms, measures based on the first two methods led
to inconclusive results. The comparison we describe
hereafter would therefore be based upon the third pro-
jection, Moving Least Squares.

5.1.2. Experiments with Real Images—Endoscopy.
We studied endoscopic images taken from different
parts of the gastrointestinal channel.

Endoscopy is a practical field of life on the one hand,
while it has the advantage of a controlled light source
environment, on the other hand. The light source can
be considered a point light source, but not an infinitely
distant one. To overcome this limitation, we worked
on a small portion of the original endoscopic image
at a time. This had a double effect. First, light in this
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case came from a narrow range of directions, which
could be approximated by a constant lighting direc-
tion. Second, because the light source and camera were
adjacent, a narrower range of distances from object to
camera meant a narrower range of distances to the light
source as well. This diminished the decay of illumina-
tion strength with distance.

5.1.3. Algorithm Implementation. We tested the al-
gorithm of Kimmel and Sethian using two implemen-
tations. First, we extended the implementation of the
Fast Marching method by the Technical University
of Munich2 to accommodate the oblique light source
case as well. Then, to ensure the correctness, we re-
implemented the algorithm from scratch. Both imple-
mentations gave similar results. In the comparison, we
quote our own implementation, but results are practi-
cally the same with both.

The code of the orthographic Fast Marching served
as the basis for the implementation of the perspective
Fast Marching too. Thus again, two implementations
were produced and verified.

The implementation of the algorithm of Prados and
Faugeras (2003) is courtesy of the original authors. To
be consistent with the original paper, the implementa-
tion starts from a subsolution and uses Dirichlet bound-
ary data on image boundaries and at all the critical
points. The stopping criterion was a threshold of 10−10

on the difference between the surfaces reconstructed
by two successive iterations.

Table 1. The formulae and parameters of five typical synthetic examples. These examples were part of a
much larger comparison, and would be described in detail herein.

Formula �L = x ∈ y ∈

1. ẑ(x, y) = 300+30(sin(2x)+sin(2y)) (0, 0, −1) [−3.0788, 3.054] [−3.0788, 3.054]

2. Vase image. The image was slanted
by 20o about the x-axis, because
otherwise the background would
have a constant depth and need be
supplied to Fast Marching as
minima points.

(0, 0, −1) [−12.3654, 12.3654] [−12.3654, 12.3654]

3. ẑ(x, y) = 5(cos(
√

x2 + (y − 2)2)
+ cos(

√
x2 + (y − 1)2)

+ cos(
√

x2 + (y + 2)2)) + 100

(0, 0, −1) [−2.9016, 2.9016] [−2.9478, 2.9486]

4. ẑ(x, y) = ln(
√

x2 + y2) (0, 0, −1) [−15.3283, 15.3283] [−15.3283, 15.3283]

5. ẑ(x, y) = sin(2x), ẑ(x, y) is then
rotated by 20o about the x-axis
and the result is scaled by factor
of 2 and translated by 20

(0, 1, −1) [−2.5820, 2.5276] [−1.9440, 2.3582]

5.1.4. Parameters and Visualization Issues. The
three algorithms under study assume that light source
direction is known. For the synthetic images the true
direction was provided, but for the endoscopic images
these data were unavailable. We therefore utilized very
rough estimations of light source directions. A human
viewer estimated the azimuth and elevation of the light
source direction from the endoscopic image itself in
multiples of π

8 or π
6 radians. The same estimated direc-

tion was supplied to all methods.
In addition, perspective SfS requires the knowledge

of the focal length f . Our implementation arbitrarily
set an identical value for all examples.

Another kind of data required by all three algo-
rithms is the points of local minimal depth. Again,
for the synthetic examples the true data was sup-
plied, while for the real ones a human viewer visu-
ally located the points in the photographs, and set their
depth to an arbitrary constant (identical for all real
images).

The algorithm of Prados and Faugeras was supplied
with the Dirichlet boundary data extracted from the
synthetic images. It was also supplied with the true
[uv] grid size used to construct the images.

As a post-processing step, all real-image reconstruc-
tions underwent a translation and a rotation to convert
camera coordinates to object coordinates, for better vi-
sualization.

The suggested algorithm converges very fast. No
more than 2 iterations, in addition to the ortho-
graphic stage, were necessary for the perspective Fast
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Marching method to converge on real-life images. We
demonstrate this in our comparison by inclusion of im-
ages of 5 iterations per example, all of which appear
to be visually the same. We exploit the excessive im-
ages to provide more viewing angles of the perspective
reconstruction. Viewing angles were selected so as to
let the reader appreciate the three-dimensionality of re-
constructed surfaces.

In all real examples, the orthographic reconstruction
and the perspective reconstruction after 1 iteration were
plotted from an identical viewpoint to allow their visual

Figure 2. Comparison of surfaces reconstructed by the orthographic Fast Marching, perspective Fast Marching, and the perspective algorithm
of Prados and Faugeras (2003). The leftmost column indicates the serial number of the example (see Table 1). In Examples 1 and 2, some spikes
in the reconstruction by perspective Fast Marching were cropped for better visualization only.

comparison. Also, the same illumination and albedo
were used to reproduce the orthographic and perspec-
tive surfaces.

5.2. Comparative Evaluation of Synthetic Examples

The synthetic surfaces we study are described in
Table 1. Figure 2 shows the original image of each
example (size: 50 × 50 pixels), the real surface and
reconstruction by three algorithms: orthographic Fast
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Figure 3. Juxtaposition of the surfaces reconstructed by the three algorithms and the true surfaces. The leftmost column indicates the serial
number of the example (see Table 1). In Example 1, some spikes in the reconstruction by perspective Fast Marching were cropped for better
visualization only.

Marching, perspective Fast Marching and the perspec-
tive algorithm of Prados and Faugeras (2003). The re-
constructed surfaces and the real ones are juxtaposed in
Fig. 3. Tables 2–6 summarize the error rates according
to the aforementioned criteria.

Example 1. Perspective Fast Marching and Prados
and Faugeras gained error rates lower than those of
the orthographic Fast Marching according to all mea-
sures. Perspective Fast Marching performed better than
Prados and Faugeras according to mean and standard
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Table 2. Comparison of algorithms on example 1.

No. of Mean depth Std. dev. of Mean gradient Std. dev of
Algorithm iterations error depth error error gradient error

Kimmel and Sethian: 1 0.46340 0.31221 51.79201 1862.09956

Perspective FM: 1st 0.44414 0.31049 21.42945 202.78671

Perspective FM: 2nd 0.31569 0.23315 58.57205 1112.16660

Perspective FM: 3rd 0.31123 0.22648 22.57623 376.79622

Perspective FM: 4th 0.30853 0.22492 19.27577 254.64257

Perspective FM: 5th 0.30787 0.22477 29.18984 623.03837

Prados and Faugeras: 169 0.32077 0.25668 26.82533 274.27769

Table 3. Comparison of algorithms on example 2.

No. of Mean depth Std. dev. of Mean gradient Std. dev of
Algorithm iterations error depth error error gradient error

Kimmel and Sethian: 1 4.66332 2.47092 0.08462 0.59064

Perspective FM: 1st 3.02464 3.29558 0.06061 0.69701

Perspective FM: 2nd 3.11067 3.28568 0.06012 0.69318

Perspective FM: 3rd 3.11062 3.28573 0.06010 0.69300

Perspective FM: 4th 3.11062 3.28573 0.06010 0.69301

Perspective FM: 5th 3.11062 3.28573 0.06010 0.69301

Prados and Faugeras: 89 1.80394 1.15217 0.30808 2.06713

Table 4. Comparison of algorithms on example 3.

No. of Mean depth Std. dev. of Mean gradient Std. dev of
Algorithm iterations error depth error error gradient error

Kimmel and Sethian: 1 0.58363 0.44509 12.16410 120.05034

Perspective FM: 1st 0.41374 0.27841 8.13954 284.45168

Perspective FM: 2nd 0.09686 0.06990 0.40490 2.60023

Perspective FM: 3rd 0.09474 0.06947 0.32935 1.00981

Perspective FM: 4th 0.09455 0.06935 0.31795 0.80138

Perspective FM: 5th 0.09455 0.06938 0.31755 0.80125

Prados and Faugeras: 356 0.03068 0.03564 0.15031 0.25134

Table 5. Comparison of algorithms on example 4.

No. of Mean depth Std. dev. of Mean gradient Std. dev of
Algorithm iterations error depth error error gradient error

Kimmel and Sethian: 1 0.16896 0.10483 0.08623 0.16119

Perspective FM: 1st 0.08131 0.06237 0.04360 0.09746

Perspective FM: 2nd 0.07401 0.05411 0.02924 0.06335

Perspective FM: 3rd 0.07418 0.05436 0.03056 0.06359

Perspective FM: 4th 0.07419 0.05437 0.03058 0.06361

Perspective FM: 5th 0.07419 0.05437 0.03058 0.06361

Prados and Faugeras: 35 0.07950 0.06459 0.03628 6.94938
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Table 6. Comparison of algorithms on example 5.

No. of Mean depth Std. dev. of Mean gradient Std. dev of
Algorithm iterations error depth error error gradient error

Kimmel and Sethian: 1 0.35744 0.21890 9.10098 284.53313

Perspective FM: 1st 0.34954 0.23540 6.74028 88.13782

Perspective FM: 2nd 0.40338 0.25898 2.28858 4.98138

Perspective FM: 3rd 0.40178 0.26164 16.31858 164.50187

Perspective FM: 4th 0.40222 0.26133 8.77626 38.31631

Perspective FM: 5th 0.40249 0.26089 14.39487 216.13707

Prados and Faugeras: 73 0.38651 0.25717 5.27366 32.45018

deviation of depth error. Prados and Faugeras per-
formed better than perspective Fast Marching accord-
ing to mean gradient error. In general, both perspective
algorithms are better than orthographic Fast Marching,
while they equate with each other, both being based on
the same equation.

Example 2. Perspective Fast Marching has lower
mean depth and gradient errors than the orthographic
version. The orthographic Fast Marching has lower
standard deviation of depth error than the perspec-
tive Fast Marching. Prados and Faugeras obtains low-
est mean and standard deviation of the depth error,
but highest mean gradient error. In a visual inspec-
tion it is clear that except for some peaks, the perspec-
tive Fast Marching generated a reconstruction most
similar to the original. (Fig. 2; Indeed, removing the
peaks would result in lowest error rates according to all
criteria.)

Example 3. Perspective Fast Marching and Prados
and Faugeras performed significantly better than ortho-
graphic Fast Marching according to all error criteria.
Prados and Faugeras performed better than perspective
Fast Marching according to all error criteria.

Example 4. The two perspective methods perform
better than the orthographic. Perspective Fast March-
ing gained lower error rates than Prados and Faugeras
according to all criteria. This can be seen in Fig. 2
especially by the more accurate shape of perspective
Fast Marching at the vicinity of the peak. Bear in mind
that the smoother surface at image boundaries obtained
by Prados and Faugeras is due to their requirement of
Dirichlet boundary condition at both critical points and
image boundaries (i.e., true depth is supplied to Prados
and Faugeras on the boundaries as well).

Example 5. In this example orthographic Fast March-
ing obtained lowest error rates according to mean
and standard deviation of depth error. It gained lower
mean gradient error than perspective Fast Marching,
but higher than Prados and Faugeras. Nevertheless, vi-
sual inspection of the perspective Fast Marching and
the algorithm of Prados and Faugeras (Fig. 2) reveals,
that both algorithms managed to reconstruct the sinu-
soidal structure of the true surface (with some errors),
while orthographic Fast Marching did not recover this
structure at all. The original surface consists of parallel
sinusoidal waves, but due to the perspective projec-
tion, the images of the crests become unparallel. The
perspective methods succeeded to recover this struc-
ture, but the orthographic Fast Marching reconstructed
waves which are neither parallel nor uniform along the
y-axis. It reconstructed one of the sinusoidal waves ap-
proximately half-sized and with incorrect orientation
(unparallel to the y-axis). The other wave is again un-
parallel to the y-axis, with one orientation for positive
y-rates and another for negative ones.

We see that in most examples, the perspective meth-
ods obtained lower error rates than the orthographic
one. Nevertheless, there were cases when the ortho-
graphic method gained lower error rates according to
all or some criteria. In these cases (as exemplified by
Examples 2 and 5), the orthographic reconstruction
appears to be inferior to the perspective ones in vi-
sual inspection. This demonstrates why error measures
common in the literature, such as mean and standard
deviation of depth or gradient errors, disagree with hu-
man vision. While the errors ranked the orthographic
Fast Marching as best in Example 5, visual inspection
revealed its failure to recover the underlying sinusoidal
structure (in contrast with the perspective methods). In
Example 2, the measures failed to show that except
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for a very small portion of the image (the peaks) the
reconstruction by perspective Fast Marching was very
accurate. This mainly stem from incorrect scaling in
the first stage of the computation of the measures (cf.
the perspective Fast Marching in Fig. 2 with its appear-
ance in Fig. 3, where the peaks were not cropped). The
source of the deviation of Examples 2 and 5 from the
ground truth may be related to numerical errors caused
by the low resolution of the input image and/or the way
the boundary conditions are introduced in the numeri-
cal scheme.

Another important factor in a reconstruction com-
parison is the projection of the reconstructed surface

Figure 4. The gastric fundus (cropped image size: 64 × 64 pixels). Perspective reconstruction is visually the same at all iterations; we exploit
this to display more viewing directions of the reconstructed surface. The viewpoint in (C) and (D) is identical.

onto the original one. This is especially important for
perspective algorithms, where scaling of the surface
and its comparison in real-world coordinates are sen-
sitive to this projection. An inaccurate scaling process
can change comparison results drastically. Improving
the error measures or the projection model is beyond
the scope of this paper, and is a subject for future
research.

While the perspective Fast Marching and the algo-
rithm of Prados and Faugeras equate when considering
the quality of the reconstructions they produce, per-
spective Fast Marching has three important advantages
over the algorithm of Prados and Faugeras:
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1. It requires a significantly lower number of iterations
to converge, at least 1–2 orders of magnitude on the
simple synthetic images examined.

2. The algorithm of Prados and Faugeras uses the full
knowledge of the focal length and the [uv] grid on
which the image has been produced. The perspective
Fast Marching, on the other hand, lacks the grid size
information, and thus spaced the grid with 1 unit
intervals. This is equivalent to lack of knowledge of
the focal length f .

3. Perspective Fast Marching does not require a
Dirichlet boundary condition on image bound-
aries. Knowledge of the true boundary depth is

Figure 5. The gastric angulus (cropped image size: 64×64 pixels). The perspectively reconstructed surface is visually the same at all iterations;
we use this fact to show more viewing angles of the surface. The viewpoint in (C) and (D) is identical.

not trivial to obtain (unlike depth at minima
points, where a global topology solver can be
applied (Kimmel and Bruckstein, 1995; Brook and
Chojnacki, 1994; Kimmel and Sethian, 2001). [If
one had an algorithm to obtain the boundary depth,
one could run this algorithm, then crop the bound-
ary of the image, re-run the algorithm, etc. and thus
build the depth map from the boundary inward.]

5.3. Comparison on Real Medical Images

Figure 4(A) shows the gastric fundus.3 The cropped
version of this image focuses on a cavity with folded
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walls (Fig. 4(B)). The orthographic Fast Marching
method failed to recover the cavity. Straight horizontal
folds were recovered instead of curved gastric folds
along cavity walls (Fig. 4(C)). These showed little
match to the true ones. The perspective method pre-
sented high correspondence of both the cavity and its
folds to the contents of the original image (Figs. 4(D)–
(H)). Figures 4(D)–(H) show perspective reconstruc-
tion after 1–5 perspective iterations. As no signifi-
cant improvement occurred at the second or higher
iterations, we use different viewing angles to em-
phasize the 3D structure. Figures 4(C) and (D) have

Figure 6. The descending duodenum (cropped image size: 40 × 40 pixels). The appearance of the perspective reconstruction is similar at all
iterations; we use this fact to present more viewing directions of the surface. The viewpoint in (C) and (D) is identical.

an identical viewpoint, which enables their visual
comparison.

Figure 5(A) introduces the gastric angulus.3 The
cropped version of this image contains three folds
(Fig. 5(B)). The orthographic method reconstructed
one fold, but instead of the second one, a bend of the
surface was recovered. Between the first and second
folds there was a very prominent pyramid-like cavity.
The third fold is missing (Fig. 5(C)). Perspective recon-
struction clearly recovered all three folds (Figs. 5(D)–
(H)). In Figs. 5(D)–(H), pay special attention to the
change in width of the shadow casted by the folds. The
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visible part of the shadow alters between different view-
ing directions. This implies that the reconstructed folds
are indeed three dimensional. Fig. 5(H) emphasizes the
height of each fold above the gastric wall.

Figure 6(A) exhibits the descending duodenum.3

The cropped version contains three plicae circulares
(folds typical of the small intestine; Fig. 6(B)). The or-
thographic method yielded two surfaces with a sharp
edge between them, which did not appear in the origi-
nal data (Fig. 6(C)). In contrast, the perspective version

Figure 7. An inverted appendix (cropped image size: 40×40 pixels). Perspective reconstruction is visually the same at all iterations; we exploit
this to show more viewing angles of the reconstructed surface. The viewpoint in (C) and (D) is identical.

recovered all three folds correctly (Figs. 6(D)–(H)).
Fig. 6(H) is a side view of the folds which lets their
different heights be appreciated.

Figure 7(A) presents an inverted appendix.4

Figure 7(B) focuses on the appendiceal orifice; its
image is of low quality. Figure 7(C) presents the
reconstruction by the orthographic Fast Marching
method, which recovered merely horizontal folds.
Figures 7(D)–(H) introduce perspective reconstruction.
The appendiceal orifice was faithfully reconstructed.
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Figure 8(A) shows the colon ascendens.3

Figure 8(B) shows three plicae semicircularis
(typical folds of the large intestine) from Fig. 8(A).
Even though this image visually resembles Fig. 5(B),
bear in mind that it is of a different part of the gas-
trointestinal tract. Figure 8(C) shows the orthographic
reconstruction, while Figs. 8(D)–(H), the perspective.
The orthographic reconstruction produced horizontal
and vertical folds which did not exist in the original
image. Two of the main folds could difficultly be
noticed in the reconstruction (center and bottom–left

Figure 8. The colon ascendens (cropped image size: 50 × 50 pixels). Perspective reconstruction is visually the same at all iterations; again,
more viewing angles of the reconstructed surface are introduced this way. The viewpoint in (C) and (D) is identical.

of Fig. 8(C)). Both of these folds suffered strong noise
in the form of short vertical folds. In the perspective
reconstruction, all three folds were prominent.

Even though both algorithms use the same numerical
methodology, the perspective Fast Marching appears to
outrank the orthographic one. This suggests that the as-
sumption of a perspective rather than an orthographic
image irradiance equation yields an important improve-
ment in reconstruction.

While many orthographic algorithms rival the best
numerical way to solve the classic equation, the
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suggested one adopts its numerical scheme from
Kimmel and Sethian (2001) and thus avoids compe-
tition in the numerical arena. Instead, it demonstrates
that the perspective equation may be better suited for
the task of SfS.

6. Conclusions

This research re-examined the roots of the field of
Shape-from-Shading, the image irradiance equation.
We reformulated the equation under the assumption of
perspective projection and showed its dependence on
the natural logarithm of the depth function. Based on
this equation, a perspective variant of the Fast Marching
method of Kimmel and Sethian (2001) was developed.

We compared three algorithms: the orthographic
Fast Marching, the perspective Fast Marching and the
perspective algorithm of Prados and Faugeras (2003).
In general, the two perspective methods showed lower
error rates than the orthographic, while they equated in
accuracy with each another.

Even though the perspective Fast Marching and
Prados and Faugeras exhibited similar accuracy per-
formance, the perspective Fast Marching has three im-
portant advantages. First and foremost, perspective Fast
Marching needs orders of magnitude less iterations to
converge than the algorithm of Prados and Faugeras
(each iteration has similar complexity for both algo-
rithms). Indeed, proving the convergence of the per-
spective Fast Marching is still an open issue, but in prac-
tice no more than 5 iterations were ever necessary (on
both synthetic and real images). Second, the algorithm
of Prados and Faugeras requires prior knowledge of the
true depth on image boundary (Dirichlet boundary con-
dition). This requirement is nontrivial and in practice
cannot be obtained for real-life images. This require-
ment does not exist for the perspective Fast Marching
method. Third, the algorithm of Prados and Faugeras
uses the grid size on which the image was constructed.
This data cannot be obtained unless exact camera pa-
rameters are available. Lack of these data (as is the case
for the perspective Fast Marching method) is equiva-
lent to lack of knowledge of the true focal length of the
camera.

Despite the comparison results described above, it
is important to pay attention to the fact, that a compar-
ison of perspective algorithms is more complex than
in the orthographic case. Perspective algorithms pro-
duce their own [xy] domain, which has to be fit to the

original one. This scaling of the domain, along with
scaling of the surface to fit the original (due to invari-
ance to depth scaling) are sensitive to the method used
for projecting one surface onto the other.

In addition, error measures common in the literature
(see Zhang et al., 1999), namely: mean and standard de-
viation of depth and gradient errors, are also sensitive to
noise. This is due to their pixel-wise nature. Translation
of a reconstructed feature of the surface by 1 pixel from
the original may cause a drastic change in mean and
standard deviation of the depth error, for example. In
addition, the need for scaling described above increases
the sensitivity of the measures. Their inaccuracy is fur-
ther demonstrated by disagreements between different
measures when comparing the perspective Fast March-
ing method with the algorithm of Prados and Faugeras
(see Example 1, Section 5.2): some measures rendered
the perspective Fast Marching method better, while oth-
ers, that of Prados and Faugeras. Another important
deficiency in these measures is their discordance with
human visual inspection. As Example 5 shows, lower
error rates according to these measures not necessar-
ily reflect better correspondence to the original surface
from a human point of view. Development of more ade-
quate error measures is beyond the scope of the current
paper.

As a result of the above, visual inspection remains
a major evaluation technique. As such, fitness of SfS
algorithms for real-life tasks should mainly be evalu-
ated visually for the specific task under consideration.
Zhang et al. (1999) draws similar conclusions, saying
synthetic images has low predictive power for real-life
images.

To show the aptness of perspective SfS to real-
life tasks, we compared reconstruction by the ortho-
graphic and perspective variants of the Fast Marching
method on endoscopic images from different parts of
the gastrointestinal channel. It appears that perspec-
tive SfS outperformed the orthographic Fast Marching
method. As we compared two variants with a sim-
ilar numerical basis, the results seem related to the
underlying assumptions, rather than to the numerical
methodology. Consequently, we infer that the perspec-
tive assumption yields a significant improvement in
reconstruction.

From the practical point of view, the comparison
demonstrated that perspective SfS could be used for
real-life images. The application to endoscopy suggests
that, unlike orthographic SfS, perspective SfS should
be robust enough to handle real-life images.
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Appendix A: Deriving The Perspective Image
Irradiance Equation

We next develop the formula of the perspective image
irradiance equation in image coordinates u, v.

Let us define a scene surface S = {(x, y, ẑ(x, y)) :
(x, y) ∈ �̄scene} where �scene is an open domain. Due to
the perspective projection equations this surface can be
written as: S = {(−uz

f , −vz
f , z(u, v)) : (u, v) ∈ �̄image}

where �image is an open domain. Let us assume the
surface is differentiable with respect to (u, v) and also
with respect to (x, y). The surface is depicted in Fig. 9.

In addition, let us assume that surface S is Lam-
bertian and visible from all points of �̄image under
the perspective projection model. A point light source
at infinity illuminates the scene from direction: �L =
(−ps, −qs, 1). The image intensity in image coordi-
nates is a function I : �̄image 	−→ [0, 1], which maps
the brightness of S as observed at point (u, v, − f ) to
image coordinate (u, v).

Figure 9. The image plane is π = {(u, v, − f )} where f is the focal length. Point �Q = (x0, y0, ẑ(x0, y0)) on scene surface S is projected
onto point �P = (u0, v0, − f ) on image plane π . The curves c1(u), c2(v) ∈ π are parallel to axes x, y (or u, v). The curves C1(u), C2(v) ∈ S
are the curves on the object whose perspective projections on π are curves c1(u), c2(v) ∈ π , respectively. The tangents to C1(u), C2(v)
at point �Q are computed from �P and the perspective projection equations. The normal to the two tangents is the normal to S at point
�Q.

Theorem 1. Under the above definitions and
assumptions, the perspective image irradiance equa-
tion is:

I (u, v)

= (u − f ps)zu + (v − f qs)zv + z√
1 + p2

s + q2
s

√
(uzu + vzv + z)2 + f 2

(
z2

u + z2
v

)
(13)

Proof: Let us examine a curve on the projection
plane:

c(s)
def= (u(s), v(s), − f )

with parameter s. This curve is the projection of a
curve on the real-world surface S. Due to the perspec-
tive projection equations, the real-world curve can be
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written as:

C(s) =
(

−u(s)z(s)

f
, −v(s)z(s)

f
, z(s)

)

= z(s)

f
(−u, −v, f )

A tangent to the real-world curve C(s) is:

dC(s)

ds
= 1

f
(−us(s)z(s) − u(s)zs(s),

− vs(s)z(s) − v(s)zs(s), f zs(s)) (14)

Now, let us consider two different curves through image
point �P = (u0, v0, − f ) (where (u0, v0) ∈ �image). We
define the curves to be parallel to the x and y axes at
the vicinity of �P . Thus,

c1(u) = (u, v0, − f )

c2(v) = (u0, v, − f )

where u and v are the parameters of the curves (see
Fig. 9). Substituting these curves into Eq. (14) provides
two tangents to surface S at point �P:

dC1(u)

du
= 1

f
(−z − uzu, −vzu, f zu)

dC2(v)

dv
= 1

f
(−uzv, −z − vzv, f zv)

A normal to the surface is therefore parallel to the cross
product:

�N = dC1(u)

du
× dC2(v)

dv

= z

f 2

(
f zu, f zv, uzu + vzv + z

)
A unit normal is thus given by:

N̂ = ( f zu, f zv, uzu + vzv + z)√
(uzu + vzv + z)2 + f 2

(
z2

u + z2
v

)
The image irradiance equation thus becomes:

I (u, v) = N̂ · L̂

= (−ps, −qs, 1) · ( f zu, f zv, uzu + vzv + z)√
1 + p2

s + q2
s

√
(uzu + vzv + z)2 + f 2

(
z2

u + z2
v

)
= (u − f ps)zu + (v − f qs)zv + z√

1 + p2
s + q2

s

√
(uzu + vzv + z)2 + f 2

(
z2

u + z2
v

)

Appendix B: Perspective Fast Marching

B.1. The Equation

We raise the image irradiance equation to the power of
2, and rearrange the terms:

p2 A + q2 B + 2pqC + 2pD + 2q E + F = 0

where

A
def= I 2‖L‖2(u2 + f 2) − (u − f ps)2

B
def= I 2‖L‖2(v2 + f 2) − (v − f qs)2

C
def= I 2‖L‖2uv − (u − f ps)(v − f qs)

D
def= I 2‖L‖2u − (u − f ps)

E
def= I 2‖L‖2v − (v − f qs)

F
def= I 2‖L‖2 − 1

We would like to have the left-hand side of this equa-
tion positive semidefinite. We therefore transfer non
positive definite terms to the right-hand side:

p2 A1 + q2 B1 =
p2 A2 + q2 B2 − 2pqC − 2pD − 2q E − F

where

A1
def= I 2‖L‖2(u2 + f 2)

A2
def= (u − f ps)2

B1
def= I 2‖L‖2(v2 + f 2)

B2
def= (v − f qs)2

Let us also define:

F̂
def= p2 A2 + q2 B2 − 2pqC − 2pD − 2q E − F

so the equation becomes:

p2 A1 + q2 B1 = F̂ (15)

where A1 and B1 are positive definite, by definition. It
therefore also implies that F̂ ≥ 0.
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B.2. Solution of the Main Case

Similarly to Kimmel and Sethian (2001), we estimate
the directional derivatives by:

pi j ≈ zi j − z1

qi j ≈ zi j − z2

where zi j
def= z(i · �u, j · �v) is the depth of

the pixel (i, j), z1
def= min{zi−1, j , zi+1, j } and z2

def=
min{zi, j−1, zi, j+1}. Substituting into Eq. (15), we get:

A1(zi j − z1)2 + B1(zi j − z2)2 = F̂i j

where F̂ i j
def= F̂(i · �u, j · �v). Solving this equation

for zi j yields:

zi j =
A1z1 + B1z2 ±

√
(A1 + B1)F̂i j − A1 B1(z1 − z2)2

A1 + B1

(16)

B.3. Solution of the Degenerate Cases

The degenerate cases of the solution (Eq. (16)) re-
sult from negative discriminant �

def= (A1 + B1)F̂ i j −
A1 B1(z1 − z2)2 < 0. This case can be written as:

|z1 − z2| >

√
F̂ i j

A1
+ F̂ i j

B1
(17)

We next consider three lemmas which solve the equa-
tion (Eq. (15)) for the degenerate case. We adopt
the following notation from Kimmel and Sethian
(2001): D−u

i j z
def= zi j −zi−1, j

�u is the standard backward
derivative approximation and D+u

i j z
def= zi+1, j −zi j

�u is the
standard forward derivative approximation in the u-
direction. D−v

i j z and D+v
i j z are defined in a similar man-

ner for the v-direction. W.L.O.G we assume �u =
�v = 1.

Lemma 1. If z2 − z1 >

√
F̂ i j

A1
, then zi j

def= z1 +
√

F̂ i j

A1

is a solution of the equation:

(
max

{
D−u

i j z, −D+u
i j z, 0

})2
A1

+ (
max

{
D−v

i j z, −D+v
i j z, 0

})2
B1 = F̂ i j

Proof: The estimate of the u-derivative is:

max
{

D−u
i j z, −D+u

i j z, 0
} =

zi j − min{zi−1, j , zi+1, j , zi j } =

z1 +
√

F̂ i j

A1
− min

{
z1, z1 +

√
F̂ i j

A1

}
=

z1 +
√

F̂ i j

A1
− z1 =

√
F̂ i j

A1

The estimate of the v-derivative is:

max
{

D−v
i j z, −D+v

i j z, 0
} =

zi j − min{zi, j−1, zi, j+1, zi j } =

z1 +
√

F̂ i j

A1
− min

{
z2, z1 +

√
F̂ i j

A1

}

Now, because z2 − z1 >

√
F̂ i j

A1
, it follows that:

max
{

D−v
i j z, −D+v

i j z, 0
} =

z1 +
√

F̂ i j

A1
−

(
z1 +

√
F̂ i j

A1

)
= 0

If we substitute into Eq. (15):

(
max

{
D−u

i j z, −D+u
i j z, 0

})2
A1

+(
max

{
D−v

i j z, −D+v
i j z, 0

})2
B1

=
(√

F̂ i j

A1

)2

A1 + 02 B1 = F̂ i j

Lemma 2. If z1 − z2 >

√
F̂ i j

B1
, then zi j

def= z2 +
√

F̂ i j

B1

is a solution of the equation:

(
max

{
D−u

i j z, −D+u
i j z, 0

})2
A1

+
(

max{D−v
i j z, −D+v

i j z, 0}
)2

B1 = F̂ i j

The proof is similar to that of Lemma 1.

Lemma 3. If � < 0 then necessarily either z2 −z1 >√
F̂ i j

A1
or z1 − z2 >

√
F̂ i j

B1
holds. In other words, any

degenerate case is contained in one of the cases of
Lemmas 1 or 2.
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Proof: By definition: A1 > 0 and B1 > 0. Therefore,
any F̂ i j which satisfies Eq. (15) is positive: F̂ i j > 0.

From Eq. (17), if � < 0 then |z1−z2| >

√
F̂ i j

A1
+ F̂ i j

B1
.

Hence, |z1 − z2| >

√
F̂ i j

A1
+ F̂ i j

B1
> max{

√
F̂ i j

A1
,

√
F̂ i j

B1
}.

We distinguish three cases:

1. If z1 > z2, then z1 −z2 = |z1 −z2| >

√
F̂ i j

A1
+ F̂ i j

B1
>√

F̂ i j

B1
.

2. If z1 < z2, then z2 −z1 = |z1 −z2| >

√
F̂ i j

A1
+ F̂ i j

B1
>√

F̂ i j

A1
.

3. If z1 = z2, then � = (A1 + B1)F̂ i j > 0.

It follows, that in any case where � < 0, either z2 −
z1 >

√
F̂ i j

A1
or z1 − z2 >

√
F̂ i j

B1
holds.

Lemmas 1 and 2 found solutions for the cases z2 −
z1 >

√
F̂ i j

A1
and z1 − z2 >

√
F̂ i j

B1
, respectively. Lemma 3

showed that these cases contain the degenerate case
(� < 0), which means that the solutions introduced by
Lemmas 1 and 2 cover the degenerate case � < 0.
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