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Shape Description with a Space-Variant Sensor:
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Abstract—Omne of the ways by which early human vision is sharply
distinguished from machine vision is the fact that the human visual
representation is strongly space-variant and the human system builds
up a representation of a scene through multiple fixations during scan-
ning. -

In this paper, we discuss three algorithms related to the **blending™”

of a single scene from multiple frames acquired from a space-variant
SEASOT.
1) Given a series of space-variant contour-based scenes with
different **fixation points,”’ we show how to fuse these into a single,
multiscan view, which incorporates the information present in the in-
dividual scans.

2) We demonsirate an (attentional) algorithm which recursively ex-
amines the current knowledpe of the scene in order to best choose the
next fixation point, based on focusing attention in regions of maximuom
boundary curvature.
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3 We discuss a simple metric for evaluating *‘convergence' over
scanpath. This may be used to guantify the performance of (2) above,
i.e., to compare the performance of various **attentional”’ algorithms.

Finally, we discuss this work in light of both machine and biological
vision.

Index Terms—Active vision, eve scanning, saccade, scan path, space
variant vision, visual cortex.

INTRODUCTION

When we view a scene, we have the subjective impression that
what we see is stable and constant, both in position and resolution.
However, this impression is far from correct. If we try to read a
newspaper that is slightly off center (see Fig. 1), we become aware
that the very high resolution provided in the region of our fixation
(faveal projection) falls off rapidly toward the edges of our field of
vision. The fact that the human visual representation is strongly
space-variant implics that the human system builds up a represen-
tation of a scene through multiple fixations during scanning.

The space-variant nature of the human visual system is well
understood, at least to the level of primary visual cortex. The
threshold for visual acuity, stereo acuity, motion, and other psy-
chophysical quantities scale at least roughly as the inverse of dis-
tance from the fovea. There is general consensus [1], [91, [10] that
the spatial representation of the visual field,' at the level of the
primary visual cortex, is approximated by a complex logarithmic
mapping [4]. Fig. | and Fig. 6 of this paper show natural scenes
processed by this form of mapping function. We are thus in a po-
sition to provide realistic estimates of the nature of a specific space-
variant imaging system: that of the human.

In the present paper, we discuss three algorithms related to the
“‘hlending’” of a single scene from multiple frames acquired from
a space-variant sensor. We used contour-based scenes, rather than
gray-scale scenes, in order to focus attention on the problem of
space variance, as opposed to segmentation. The following generic
problems are raised by considering a space-variant system.

1) Given a series of space-variant contour-based scenes with dif-
ferent ‘‘fixation points,”” how might one fuse these into a single
multiscan view which incorporates the information present in the
individual scans?

2) How might one choose successive fixation points in order to
rapidly gather shape-dependent data? Is there a simple attentional
algorithm for contour-based scenes?

3y How could one quantify the rate of convergence of such a
system as a function of the number of scans? What is the rate of
converzence suggested by such a metric?

In the present work, we do not address the classical issues of
how the system (human or machine) is to obtain knowledge of its
motor state (see [B]). Our intention here is to discuss the image
processing problem of blending together multiple scans, obtained
from a strongly space-variant sensor, and the problem of choosing
a ““scan path”” which provides optimal information about the scene.

Assuming that a space-variant sensor similar to a human retina
were available, it would be necessary to consider some of the issues
discussed in the present paper: how should one choose a series of
fixation points for such a sensor, how would one blend the succes-

"In this paper, we do not discuss the detailed spatial architecture of pri-
mary visual cortex, which would include details such as ocular dominance
columns, orientation columns, efc. We are only concerned here with the
first-order topographic structure of the human visual system as a model for
5.'|:|E|_‘r_'¢-'\.'z|1'ju|'|1 machine vision systems,

*In addition to these purely computational issues, the human system has
also needed to: 1) evolve systems of accurate motor control [7], and 2}
provide information to the organism gbout the current motor state (i.e.,
direetion of gaze). This aspect of the problem has been much discussed
under the terms proprioceptive perception, efference copy, corollary dis-

charge, etc. [8].
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(a)

(b}

Fig. 1. (a) Simulates six successive scans of a newspaper, using a cortical
map function derived from primate data [5], a reading distance of about
20 cm, and about 1.5 of visual field on each side of the fixation point.
Each of the small **bow ties'' represents the cortical *“image”” of a sec-
tion of newspaper print. Thus, the first frame is fixated on the letter “"o"™
in the word “‘roaches.”” There are two “‘bow ties”” representing the lefi
and right visual fields. The newspaper is then scanned, and the corre-
sponding cortical *‘images'" are presented in the figure. Note the strong
space variance, even for the central few degrees of visual field. (b) Shows
these six scans projected back to the visual field, and **fused™ into a
single scene [14]. The region of text scanned, which read **roaches don't
die. .."” and to some extent the lincs above and below this line, are seen
clearly, but there is a rapid loss of detail in the text regions which are
not close to the scanmed text. Fig. & of this paper shows a wide-angle
simulation of the human visual field and cottical image.

sive frames, and how could one place a metric on the quality of
this scanning process?

THE SPACE-VARIANT IMAGE AND BOUNDARY-ANGLE FuNCTION

We define the resolution at the point » of an image as the fune-
tion R, (r) where p is the spatial location of a fixation point and R
is a monotonic nonincreasing function of |» — p|. This is to say
that R is proporional to the reciprocal of the minimal distinguish-
able distance (i.e., visual acuity). In the current context, the exact
specification of K is not crucial; any R having the mentioned at-
tribuie can be used. The following discussion uses a function of
the form ¢/ | ¥ — p| for r £ p where ¢ is a constant.

This definition might be applicd to any gray-scale image (sce
Fig. 1). In other work, we address some of the difficult issues which
arise when using gray-scale images [14]. In the current application,
we consider only contour-based images in order to avoid dealing
with issues such as segmentation. This siluation can arise either
naturally, when a scene is two-dimensional and consists only of
contours, or artificially, after an edge-detection mechanism has
been applied to an image of a complex three-dimensional scene
(segmentation).

Bounpary CoNTOUR DESCRIPTOR

In applications in which a one-dimensional representation of
contours is desired, it is customary to use the boundary-angle fune-
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Fig. 2. {a) Images (left) and their boundary-angle functions (right). Top:
the onginal contour (black silhouenie) and its boundarv-angle function.
Bottom: the image as it is *‘viewed™" from the fixation point (indicated
by a star), with space-variant resolution. The tail of the airplane, being
fairly far from the fixation point, is described very roughly. Therefore,
the boundary-angle function bears only a rough resemblance to the orig-
inal function. (b) A scene consisting of several planes, silhouettes (a),
asitis ““received "’ from different fixation points ( b-d ). The fixation points
are depicted by an asterisk. The original airplane silhouvette consists of
243 points, and the space-variant silhoueties average five points (for the
less detailed ones) to 40 points (for the highly detailed).

tion 6(/), which is the angle of the tangent to the contour as a
function of the arc-length I. In the current application, since we
have discrete points connected by line segments (i.e., polygons),
we use the representation 8 (/[ ), which is the difference between
two consecutive angles of the polygon. This one-dimensional rep-
resentation of contours is most useful in shape-recognition tasks
where it is further processed by a Fourier transform to yield the
Fourier descriptors (FD's) of the contour [3]. There are also some
indications that the FD of a shape might be wseful as a shape de-
scriptor in physiological studies of the primate visual system [6].

We apply spatial-variant resolution both to the image of the con-
tour in the xv plane and to the boundary-angle © (/) representation
of it. as explained below (see also Fig. 2).

1) The original contour is represented by line segments between
the points { U, i = 1, k}. We assume that the distance between
these points represenis the highest possible resolution of the
“viewer,""

2} A new contour is defined by a fixation point: given a fixation
point p and a contour point U7, the value of R, ( U; ) determines the
next point U (i.e., by looking for the next point whose distance is
at least 1 /R). Thus, starting at Lf, this procedure yields a contour
whose points are a subset of the original points.,

33 The boundary-angle function of the new contour @, (L ), i e
{1,k} is obtained. To allow reconstruction of the original image,
we also keep the resolution value R, (U, ) for each Uf;.

In the xv plane, variable resolution produces a detailed image
near the fixation point and a “*blurred”” image away from the fix-
ation point. in the boundary-angle representation, the neighbor-
hood of the fixation point is properly described, while other arcas
retain only smoothed, low-frequency details. The parameters used
in this work yield a ratio of | : 10 between the full resolution image
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Fig. 3. {a) View of a triangle from three fixation poinis. The contour of
the original triangle (top) is seen from three fixation points, each in the
neighborhood of a particular vertex. These views are indicated by the
corresponding boundary-angle functions. For each fixation point, only
the closest vertex and itz neighborhiood are detailod, while the other ver-
tices are approximated roughly. The reconstructed boundary-angle func-
tion {bottom) consists of the *‘best™ contribution from each space-var-
iant view. (b) A silhouette of an airplane, viewed from three fixation
points, selected (by hand) because they are near areas containing many
details. Details as in (a).

-

and a single space-variant view, which is in good agreement with
the functional form of human visual acuity.”

BLENDING BOUNDARY-ANGLE FUNCTIONS AND IMAGES

For a given fixation point, there exists a corresponding repre-
sentation of the original contour, Several fixation points { p = p,
* + * p, } produce different representations of the same contour. This
situation is shown in Fig. 3, in which images are viewed from sev-
eral different points. Although the boundary-angle function a,0L;)
is guite detailed near the corrcsponding fixation point, it just
roughly approximates the original boundary-angle function in all
the other areas.

Because resolution depends only on the distance between a given
point and the fixation point, and because the most detailed bound-
ary functions {or images) are obtained for high-resolution areas, an
appropriate blending scheme should use the “*best’” of each view.
The only information the blending scheme needs is the resolution
associated with each point in the subcontour, which is kept when
the subcontour is calculated. Thus, the reconstructed boundary-an-
gle function is

e*(l;) = B;{Ur]

*One recent estimate of primate magnification factor [1] suggests that
there is a 10: 1 decrease in spatial resolution of a stimulus between the
fovea and 5° of eccentricity. This is a reasonable **viewing aperture™ for
shape perception. Note that a 10: | {linear) change corresponds toa 100: 1
area change, and that this area change is a more relevant index of **data
compression.””
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such that
Ri(U) = max,—,...,, {R(U))}.

The reconstructed function ©*(/}) is an approximation to the
original ©(! ). This approximation depends on the number of fix-
ation points and their location. A more elaborate blending scheme
might also depend on the **scan path™ or sequence of fixation points
humans select when viewing a given scene [12].

CHOICE OF SCaN PATH: AN “ATTENTIONAL™™ ALGORITHM

Although early vision and artificial intelligence have received a
great deal of attention recently, a great intermediate area exists
which has received little study in this context, and that is the sub-
ject of “attention’” itself. A single fixation provides partial infor-
mation about a scene. Assuming that a unified representation of the
scene can be extracted from successive scan, we must address the
problem of locating the fixation points in such a way as to provide
maximal information to the imaging system. This represents an ill-
defined problem, as difficult issues relating to context and goal di-
rection are implied by it. However, little advantage can be gained
from a space-varianl system without providing an attentional al-
gorithm. In the following, we will discuss a simple candidate for
attentional choice of successive fixation points,

In psychophysical contexts, the nature of visual scanning has
been extensively explored (e.g., [2]). In general, fixation points
tend to cluster around sharp cdges, ends of lines, and locations
where some ‘‘unpredictable’” change takes place. Most existing
research considers only the question of the location of the fixation
points. MNoton and Stark [12] have addressed the issue of choosing
fixation points. They termed the temporal order of fixation points
the “*scan path,”” and found it to be consistent within a given sub-
ject and a given scene, but no further characteristics have been
specified.

In our case, the scene consists of contours. The curvature of the
contours is very likely to be a prime fixation-point *'attractor’” since
large curvature represents rapid rate of change of boundary orien-
tation. We can represent the curvature in terms of a boundary-angle
function, indicating areas of high curvature by corresponding peaks
in the function. A simple form of atentional algorithm, then, con-
sists of the following steps.

1) Choose (randomly or by any method) an initial fixation point.

2} Calculate the boundary-angle function according to the cur-
rent fixation point.

3) Select the next fixation point according to the maximum of
the boundary-angle function ©,( I} ).

4) Keep the boundary angle function and the corresponding res-
olution values, Keep a reference point in the current fixation that
will be associated with a point in the next fixation.

5) Blend the views and the boundary angle functions to yield a
single view/function.

A} Go to step 2) until “convergence’” (see below).

Such a procedure is shown in Fig. 4. The fixation points in this
figure seem plausible in comparison to the points that one would
likely select without using the algorithm. However, the algorithm
has one drawback. In cases where several high values of the bound-
ary-angle function cluster together, the algorithm picks several fix-
ation points at almost the same place. Because the scans obtained
from adjacent fixation points do not differ much, and because the
foveal area can cover several points of high curvature, this clus-
tering of points is redundant.

In order to remove the redundancy, we modify the algorithm [in
step 3)] by considering (U} W(U;) instead of G(1}). The
weight function W{ L) can be used to enhance {or mask) selected
features. If W is chosen such that it equals 1 everywhere except for
a neighborhood of the fixation point where it vanishes. the redun-
dancy problem is solved. In other words, after a fixation point is
selected, the relevant foveal arca (i.e., the area immediately sur-
rounding the fixation point where the high resolution still holds) is
not counted when the algorithm searches for the next higher value.
Fig. 4(b) shows the results of this approach.
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Fig. 4. (a) Images (left) and the comesponding boundary-angle functions
(right). The top row shows the original image and function; the next
three rows represent three fixation points {denoted by small stars on the
images), and the bottom row shows the integrated image and function.
The fixation points, which are selected automatically, are the spatial lo-
eations that correspond to the three largest values of the original bound-
ary-angle function (denoted by bars under the function). (b} Results of
the modified algorithm. The fixation points are chosen by the maximum
of @(LL )/ ROL ).

One might also select Wto be 1,/R, thus emphasizing **remote””
features rather than “*close’” ones. Finally, W might contain some
random fluctuations in order to avoid the possibility of being **trap-
ped’” between two features.

The algorithm.needs a reference point that is shared between
each two successive fixations: this is nccessary when the views or
the boundary-angle functions are *“tailored’ together.

CONVERGENCE AND NORMS

Because our figures consist of simple contour drawings, it is easy
to define a norm that compares composile space-variant scenes after
i scans with the original high-resolution scene. A reasonable choice
for this norm is a least-squares measure of the two boundary-angle
functions. Thus, let A, represent the difference between the full-
resolution scene and the composite scene after the incorporation of
the nth fAxation point: A, = | U — C,|.

Using this norm, it is possible to define the convergence rate as
a function of the scan path. Thus, for a sequence of fixation points
Pis P2 ©°* 2 P we define the rate of convergence for the scan
path at point » as &, — A, _,. This method is suitable for the pur-
pose of the algorithm’s evaluation or for calibration when we have
aceess to the full-resolution contour, However, in a **real-time"*
situation (i.e., in robotic vision), the full-resolution image is not
necessarily available. Thus, we can define A, as | C, — C,— |, and
base the "‘convergence’’ decision on it (see Fig. 5). If onc thinks
of n as a time variable, then this measure indicates the “‘rate’” of
error reduction.
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Fig. 5. Converging rate of the algorithm, as depicted by the difference A,
hetween successive blended figures, Lefi: bended figures after 1, 2, 3,
coo B fixation points. Right: A, versus nomber of fixation points.

Thus, one algorithm for adding scan paths might be based on
the addition of a new point which, among all the possible fixation
points, maximizes the above “‘rate”” of convergence. Conversely,
the addition of new points becomes unnecessary when no points
can be found that significantly improve the rate of convergence.
The algorithm we propose rapidly converges: it is monotonic in the
sense that only *“*better’” resolution points are introduced, and it is
bounded by the original set of points which constitutes the object.
Fig. 5 shows an example of an aireraft sithouette which is scanned
by this algorithm, with a plot of convergence based on the latter
methoed described above. It is clear that there is rapid convergence
to an accurate representation of the boundary of the figure. It is
interesting to note that Noton and Stark [12] repont that humans
typically view scenes with perhaps three—cight scans; our algo-
rithm also converges quite rapidly, in this case in which parameters
of space variance derived from human vision have been used,

In more general cases, however, the choice of a norm is likely
to be quite difficult. In the general case, both the attentional algo-
rithm and the norm used to evaluate its success would likely be
dependent on past expericnce, the goal-directed state of the imag-
ing entity, and the full context of the current task. In liew of en-
gaging in this full-blown algorithmic study of visval attention, we
propose that the simple curvature-based norm and scanning algo-
rithm outlined above provides an initial step in the direction of
understanding viswal attention, and is one which is optimal in those
situations in which a value-neutral estimate of boundary curvature
is the desired information.
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Fig. 6. (a) shows a wide-angle fish-cye view of a scene in the hall of our
laboratory. A ladder is to the right, an eve chart is in the very center of
the frame (almost invisible). The original version of this scene was dig-
itized 1o an effective resolution of 16 000 x 16 000 pixels by a polar-
coordinate mosaic technique, A “*blowup™ of the central region of this
original frame is shown in (b). This is an eye chart, and the distance to
the charl was 20 ft. In the original, line 7 of the chart could be easily
read, indicating an effective ““acuity”” of 20 /30 or about [.5 min of arc.
The purpose of this work was to simulate a wide-angle scene (about
1007 ), roughly comparable to human vision, at human visual acuity. (c)
shows this scene, blurred by a space-variant filter which is modeled after
human visual acoity. (d) shows the image of (a), modeled in terms of a
complex-logarithmic model [4] of human visual cortex, The eye char
occupies almost half of the surface of visual corex. although it occupies
a tiny fraction of the original scene. The ladder and the windows of the
original are compressed 1o almost the same size as the centrally fizated
letters of the eyve chart. This illustrates the tremendous space-variant
compression of human vision. Variations in linear size of about 100°:
{ 10" in solid angle) occur from the center to the periphery of the human
visual system,

IMPLICATION OF SPACE-WVARIANT IMACGE PROCESSING TO GRAY-
LEVEL IMAGES

Although we address mainly contour-based images in this work,
it might be of interest to point out its application to gray-level im-
ages, especially from the aspect of *‘data compression.™

The human visual field subtends more than 100 x 100° [13].
with a maximum resolution of about 1 min of arc (foveal). Using
a space-invariant sensor {e.g., conventional CCD camera), one
would have to resolve 6000 x 6000 samples ( 1 min of arc x 100"
in each direction ). In order to achieve this performance, one would
have to sample at two—-three times this resolution in each dimen-
sion. An image of 16 000 x 16 000 would provide this perfor-
mance, but would extend close to the gigapixel range in size.

We have experimentally demonstrated this estimate by digitizing®
a conventional eye chart, at a distance of 20 ft, using a wide-angle
{fisheye) lens, which recorded from about 80° of field. Fig. 6 shows
the “*full scene’’ and a highly magnified detail of the eye chart at
the center. We continued to magnify the scene until the 20 /20 line
of the eye chart was visible (indicating a resolution of about 1
min /arc). We calculate that this occurred at an effective sampling
resolution of 16 000 x 16 000 pixels.

Although both of the previous estimates are ad hoc, they agree
well enough to suggest that the effective resolution of a single scan

*We used a conventional NTSC frame grabber, at 480 % 523 resolution,
together with a polar coordinate mosaic technique [11] o produce this sim-
ulation.
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of the human system is equivalent, were it recorded by a space-
invariant system, to a | /4 gigapixel image. Now, this estimate of
1 /4 gigapixel is based on the use of a constant resolution system,
which extended over 100 x 1007 at full visual acuity. In fact, we
simulated the logarithmic structure of the human visual system,
and our simuolated image occupied only about 16 000 pixels (see
Fig. 6). Nawrally, we only abtained high resolution over a small
““foveal”” representation with this simulation; in order to use this
approach effectively, multiple scans would nced to be performed.
However, with a relative data compression of about 16 000: 1, we
can afford to perform the scanning process over a number of fixa-
tion points. Even 16 successive fixations would yield an effective
1000 1 data compression relative to a constant resolution system,
provided that one obtained a satisfactory representation of the im-
age regions of interest.

SUMMARY

Space-variant imaging has been little explored in the context of
machine vision, but is a major area of interest in the context of
biological vision. Space-variant imaging provides a number of ad-
vantages, and difficulties, with respect to conventional space-in-
variant systems. One advantage is that very large ficlds of view can
be covered, and very high resolution can also be provided. This
leads to a form of image data compression which can be extremely
large. However, a number of algorithmic difficultics are introduced
by considering strongly space-variant systems. Attentional algo-
rithms are required to make effective use of the small high-reso-
lution **fovea,”” while other algorithms are required to **fuse’” sue-
cessive space-variant scans.

In the present paper, we have provided preliminary solutions to
each of these issues. Using our algorithms, we obtain satisfactory
convergence, for reasonable parameters of space variance derived
from human vision, over a small number of scans {perhaps three-
five scans).

The possibility that space-variant sensors (e.g., CCD's) may be-
come available for application in machine and robotic vision should
provide some motivation to begin studying the issues which such
a sensor would provide. Perhaps the possibility that some of the
high performance of the human visual system derives from its use
of a space-variant architecture may provide some impetus to de-
velop such a sensor.
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