
Recall and Recognition in an Attractor Neural Network Modelof Memory Retrieval.E. Ruppin and Y. YeshurunDepartment of Computer ScienceSchool of Mathematical SciencesSackler Faculty of Exact SciencesTel Aviv University69978, Tel Aviv, IsraelOctober 23, 1996AbstractThis paper presents an Attractor Neural Network (ANN) model of Re-call and Recognition. It is shown that an ANN Hop�eld-based network canqualitatively account for a wide range of experimental psychological datapertaining to these two main aspects of memory retrieval. After providingsimple, straight-forward de�nitions of Recall and Recognition in the model,a wide variety of `high-level' psychological phenomena are shown to emergefrom the `low-level' neural-like properties of the network. It is shown thatmodeling the e�ect of memory load on the network's retrieval propertiesrequires the incorporation of noise into the network's dynamics. Externalprojections may account for phenomena related with the stored items' as-sociative links, but are not su�cient for representing context. With lowmemory load, the network generates retrieval response times which have thesame distribution form as that observed experimentally. Finally, estima-tions of the probabilities of successful Recall and Recognition are obtained,possibly enabling further quantitative examination of the model.
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1 IntroductionIn recent years, considerable progress has been made in investigating the properties of At-tractor Neural Network (ANN) models as content addressable memory devices. The goalof this paper is to demonstrate that a Hop�eld-based [Hop82] ANN model can qualita-tively account for a wide range of experimental psychological data pertaining to the twomain aspects of memory access, Recall and Recognition. In the context of psychologicalexperimental conditions, Recall is de�ned as the ability to retrieve an item from a list ofitems (words) originally presented during a previous learning phase, given an appropriatecue (cued Recall), or spontaneously (free Recall). Recognition is de�ned as the ability tosuccessfully acknowledge that a certain item has or has not appeared in the tutorial listlearned before.Attractor neural networks are part of the more general connectionist framework that hasbeen developed in recent years in parallel to the classic arti�cial intelligence mainstream ofsymbolic processing. While in the latter information is stored at speci�c memory addressesand processed by explicit rules, in the connectionist framework no such distinction betweenthe information and the processing algorithm exists. The modeled entities are representednot locally (at speci�c nodes of the network), but their corresponding representations aredistributed, involving many nodes of the network, activated in parallel. Parallel DistributedProcessing modeling of a broad spectrum of experimentally established phenomena concern-ing human memory have begun only recently [Sch89]. Previous memory modeling e�orts doinclude somemodels which are computationally related to connectionist models, as the holo-graphic distributed model [Eic82], and a distributed convolution-correlation model [Mur82].However, these models lack the biological 
avor accompanying connectionist modeling.An ANN is a network of formal neurons (the network's nodes) connected by synapses(the network's links). After the network's state is set in accordance with a given inputpattern, the dynamics of the network are characterized by the following iterative process:Every neuron receives inputs from all other neurons to which it is connected, and �res only ifthe sum of the inputs is above a certain threshold. When a neuron �res, its output (weightedby the synaptic strengths) is communicated to other neurons, and as a consequence thenetwork's state evolves. By using speci�c learning rules, governing the way the strength ofthe synapses in the network are established, a speci�c set of input patterns can be learned.I.e., these memorized patterns are made to be attractors of the network, such that thenetwork will converge to a memory state if a closely related pattern is presented as aninput to the system. Since ANNs have the ability for performing error correction, they canperform content addressable memory retrieval. Indeed, ANN models of psychological dataconcerning speci�c aspects of memory retrieval have been presented; e.g., of high speedscanning experiments of the Sternberg type [ASU90], and of semantic memory queries[RU90]. 2



Previous classical `mathematical' models of memory retrieval (reviewed in [GS84]) haveshown a remarkable ability to �t experimental data. However, these models entail theexistence of numerous parameters bearing arbitrarily assigned high-level cognitive `inter-pretation'. Moreover, the broad spectrum of values possibly assigned to these parametersresults in the existence of a large scope of `model manipulation' possibilities [And91], whichcontributes signi�cantly to their capability of obtaining a close �t with the data. The ANNmodel presented in this paper contains very few such high-level parameters explicitly. Var-ious cognitive attributes will be shown to be implicitly manifested as `bottom-up' emergingproperties of the network. Another important motivation for ANN modeling of memoryretrieval is that `reaction times' are naturally represented in such models by the time re-quired for the network computation to be completed [And91]. Indeed, it will be shown thatwith low memory load, the network generates retrieval response times which have the samedistribution form as that observed experimentally.The model of memory retrieval presented here is based on a particular ANN model, theHop�eld model [Hop82]. The Hop�eld framework has been selected because of two mainreasons: the �rst is that this model has been subject to considerable research e�orts, whichhave yielded several results enabling the analysis of Hop�eld-based models. The secondreason is that in recent years an extensive family of Hop�eld-based models have been derived[Wei86], rendering possible the construction of more `real' biologically-oriented networks,and making it plausible that the model presented can be further extended in the future.The Hop�eld model's dynamics are composed of a non-linear, iterative, asynchronoustransformation of the network state [Hop82]. The process may include a stochastic noisewhich is analogous to the `temperature' T in statistical mechanics. Formally, the Hop�eldmodel is described as follows:Let neuron's i state be a binary variable Si, taking the values �1 denoting a �ring or aresting state, correspondingly. The network's state is denoted by a state vector S specifyingthe binary values of all its N neurons. Let Jij be the synaptic strength between neurons iand j. Then, hi, the input `�eld' of neuron i is given byhi = NXj 6=i JijSj (1)and the neuron's dynamic behavior is described bySi(t+ 1) = ( 1; with probability 12(1 + tgh(hiT ))�1; with probability 12(1� tgh(hiT )) (2)Storing a new memory pattern �� in the network is performed by modifying every ijelement of the synaptic connection matrix according to3



Jnewij = m� 1m Joldij + 1m��i��j (3)where m denotes the number of currently stored memory patterns. A few properties ofthe Hop�eld model as a memory device, bearing relevance to the model presented, shouldbe noted:� The maximal number m of (randomly generated) memory patterns which can bestored with good retrieval quality is m = �c � n, �c � 0:14. If more memories arepresented in a storage attempt, the network becomes overloaded and the retrieval ofall stored memories deteriorates abruptly [AGS85], a phenomena termed the blackoutcatastrophe [Ami89]. When noise is incorporated into the neuron's dynamics, thememory capacity �c(T ) monotonically decreases.� Every stored memory is an attractor having an area surrounding it termed its basinof attraction. This `area' denotes a subgroup of the n-dimensional state space. Whenthe network is initiated by an input vector belonging to the basin of attraction ofsome memory ��, the networks' state will gradually evolve to the vicinity of ��, if thenoise (temperature) is not too high.� In addition to the stored memories, there exist also other attractors, denoted as spuri-ous states, which do not have a high level of similarity with any single stored memoryvector [AGS85]. The dynamic behavior of a Hop�eld network can be pictured asfollowing a descending trajectory in the `energy' plane, where all the attractors areminima of the `energy' function E = �1=2Pi6=jPSiSjJij . In a noiseless deterministicHop�eld network the network's attractors are stable states of the dynamics and thenetwork is ensured to converge to such a state [Hop82].Section 2 provides a description of the model. In section 3, it is demonstrated thata low level ANN model can indeed display the global dynamics that characterize highlevel, memory related phenomena. We relate some basic principles of human memoryperformance to the behavior of the model, by showing a qualitative analogy between them,and assuming that the encoding re
ects the level of similarity existing between the variousitems. It should be stressed, however, that a more accurate comparison heavily dependson the nature of the encoding of the stored memories. This encoding is obviously currentlyunknown, expressing our present ignorance of the nature of the `representation' used inthe brain, thus inherently limiting our ability to provide a detailed quantitative account ofmemory retrieval. In section 4, the probabilities of successful Recall and Recognition areestimated, providing for a further quantitative examination of the model in the future, whenmore is known about the encoding. Finally, in section 5., we brie
y discuss the modelingof correlated patterns and of free recall. 4



2 The Model.The model consists of a Hop�eld ANN, in which distributed patterns representing thelearned items are stored during the learning phase, and are later presented as inputs duringthe test phase. In this framework, successful Recall and Recognition are de�ned. Someadditional components are added to the basic Hop�eld model for the modeling of the relevantpsychological phenomena.The distributed representation incorporated is well suited to account for Tulving's en-coding speci�ty principle, which asserts that \... remembering of events always dependson the interaction between encoding and retrieval conditions, or the compatability betweenthe engram and the cue as encoded ... " [Tul83]. Indeed, by assuming that successfulcues are represented by patterns closely related to the stored memory patterns, Tulving'sencoding speci�ty principle is `naturally' conserved. The only assumption we make on therepresentation of the items is that the Hamming distance 1 between the test pattern andthe various memories re
ects their similarity.The psychological data accounted for by the model is composed of experiments wherememory is assessed with recognition and recall tests that make explicit reference to a spe-ci�c previous experience, i.e., the tutorial phase. This deliberate recollection of recentexperiences has been referred to as explicit memory, as opposed to another kind of episodiclong-term memory, referred to as implicit memory. There exists a considerable amount ofevidence supporting the existence of fundamental performance di�erences between implicitand explicit memory [Sch89]. In this work, we have adopted the assumption that di�erentmemory systems underlie the various di�erences in memory performance [Tul85]. Follow-ing [GM84], it is further assumed that explicit memory storage depends on the formationof new episodic representations. It is assumed that these representations are formed in adistinctly `allocated' network, shared by all items learned within the same learning episode(i.e., context).Recall is considered successful when upon starting from an initial cue the network'sstate is transformed to the vicinity of the stored memory nearest to the input pattern.Since every stored memory pattern is an attractor, the network's state is guaranteed toremain in this vicinity for a considerable amount of time. If the network converges to aspurious stable state, its output will stand for a `failure of recall' response. The question of\how do such non-memory states bear the meaning of `recall failure'?" is out of the scopeof this work. However, a possible explanation is that during the learning phase `meaning'is assigned to the stored patterns via connections formed with external patterns, and sincenon-memory states lack such associations with external patterns, they are `meaningless',yielding the `recall failure' response. Another possible mechanism is that every output1The Hamming distance between a state vector S and a memory pattern �� is de�ned as H(x) =12nPni=1 jSi � ��ij 5



pattern generated in the recall process passes also a recognition phase so that non-memorystates are rejected, (see the following paragraph describing recognition in our model). Foran interesting interpretation of spurious states as pathological phenomena see [Hof87].Let the rate of change of activity (RCA) denote the number of neurons 
ipping theirstate during a time unit. Recognition is considered successful when the network's RCAbecomes lower than some threshold 
 during a time interval �, beginning from input pre-sentation. When a pattern precisely identical to a stored memory is presented as an inputto the network, successful Recognition is obviously instantaneous; the state of the networkwill remain for some time in the vicinity of the stored memory, with a very small amountof change in its activity. However, allowing for partially corrupted inputs, the model in-corporates a certain degree of `tolerance' towards slightly distorted inputs, expressed in thelength of the interval �. Simulation results show that convergence is monotone [AM88]and this is analytically proven for the synchronous case [KP88]. Therefore, the shorterthe distance between an input and its nearest memory, the faster is its convergence. Thelength of the interval � hence determines the probability of successful Recognition. Sincenon-memory (non-learned) stable states have higher energy levels and shallower basins ofattraction than memorized stable states [AGS85, LN89], convergence to such states takessigni�cantly longer timer. This observation has also been strongly supported by simulationswe have performed, in which convergence of random input vectors to non-memory statestakes a much larger number of asynchronous iterations than their convergence to memorystates. Therefore, there exists a range of possible values of � that enable a successfuldistinction between stored to non-learned inputs.The de�nition of successful Recognition presented is close in spirit to Hop�eld's originalobservation [Hop82] that familiarity can be recognized in a Hop�eld network, by monitoringthe initial 
ip rate, which is slower for familiar (memory) states). Our de�nition also re
ectsthe notion been suggested before in the psychological literature, that the check of noveltyof an input pattern is one of the �rst steps in information processing [Pos78].The context of the psychological experiments is represented as a substring of the input'sencoding. However, since the storage of strongly correlated memory patterns may lead toambiguity in memory retrieval due to interference, the size of the context encoding relativeto the total size of the memory encoding is kept small, preserving the low level of inter-pattern correlation.The external in
uence exerted upon the behavior of the allocated network by connectionsfrom other networks, expressing the total associational linkage of a learned item, is modeledas an external �eld vector E. When a learned memory pattern �� is presented to thenetwork, the value of the external �eld vector generated is E = h���, where h is a `projection'coe�cient, expressing the association strength supporting ��.The weakening of the networks inter-connections as a function of the elapsed time be-6



tween the tutorial and testing session is modeled by a decay parameter �. Denote theconnection matrix at the end of the learning phase as Jij0, then the connection matrix aftert time has elapsed is Jij(t) = e��(t�t0)Jij0. Such a decaying factor has no e�ect on anyof the other test phase phenomena analyzed since it operates on a much longer time scalethan the length of the test phase being modeled.The model may shed some light upon the historical dispute whether Recall and Recog-nition involve a basically similar mechanism (one-process theories), or whether there existessential di�erences between them (two-process theories) [Kin70]. Indeed, in the modelpresented, both Recall and Recognition are performed in the same network, sharing thesame dynamics; the dynamic behavior of an ANN can be viewed as performing a parallel,mutual exclusive search in the phase space [RU90]. Yet, during a Recognition assignment,the `read-out' of this similar process is di�erent than in Recall, since familiarity is thenexamined. For a similar observation regarding feed-forward networks see [YRD79].3 The modeling of experimental data.In this section we describe how various psychological phenomena are accounted for. Memoryretrieval research has yielded an accumulation of a broad spectrum of experimental data,giving rise to elaborate mathematical models where the data is modeled in excruciatingdetail in a highly sophisticated manner. We have used as reference the list of experimentalphenomena described by Gillund and Shi�rin in their comprehensive SAM model [GS84].The interested reader may �nd there a detailed review of the literature, providing exten-sive support to the psychological phenomena described. When appropriate, more recentlyacquired data has been considered. Regarding every phenomenon discussed, a brief de-scription of the psychological �ndings is followed by an account of its modeling. We relyon the known results pertaining to Hop�eld models to show that the psychological phe-nomena reviewed are emergent properties of the model. When such analytical evidence islacking, simulations were performed in order to account for the experimental data. Severalphenomena can be accounted for by considering the memory load of the network. Whenassociations with items not presently studied have an important role, the in
uence of theexternal `projection �eld' is shown to account for the observed data.3.1 Phenomena accounted for by the e�ect of memory loadThe List-Length E�ect: It is known that the probability of successful Recall or Recog-nition of a particular item decreases as the length of list of learned items increases[GS84, AJ73, RM76b].List length is expressed directly as the memory load. It has been shown (in networkswith several hundred neurons) that the width of the memories basins of attraction7



monotonically decreases following an approximately inverse parabolic curve [Wei85].Hence, Recall performance should decrease as memory load is increased. Simulationspreviously performed with networks having noiseless dynamics have shown that re-trieval times of successful trials remains about the same, with various memory loads[Ami87], as long as the memory load is sub-critical. However, we have found that thisis not true when noise is incorporated into the dynamics of the network: We haveexamined the convergence time of the same set of input patterns at di�erent valuesof memory load. Figure 1 shows that as the memory load is increased, successfulconvergence has occurred only after an increasingly growing number of asynchronousiterations. Hence, convergence takes more time and can result in Recognition failure,although memories' stability is maintained till the critical capacity �c(T ) is reached.

Figure 1: Recognition speed (No. of asynchronous iterations) as a function of the numberof stored memories (determining the memory load). The network has n = 500 neurons, andT = 0:2.Presentation Time: Increasing the presentation time of learned words is known to im-prove both their Recall and Recognition [RM76a].8



This is explained by the phenomenon of maintenance rehearsal; items presented for alonger time are considered as if presented repeatedly for a number of times, and thustheir memories' basins of attraction get deeper: Assume that rehearsing a word for ktimes is equivalent to presenting it as a learned memory for f(k) times, (f monotoni-cally increasing), then its corresponding energy level will get deepened by a factor off(k). Deeper basins of attraction are also wider [HFP83, KPKP90]. Therefore, theprobability of successful Recall of rehearsed items is increased.The e�ect of a uniform rehearsal of all learned items (without renormalizing thesynaptic weights) is equal to a global uniform energy decrease by a factor of k, i.e.,a decrease in the temperature T by a factor of 1=k. The temperature decrease isknown to increase the memory capacity of the network [AGS85], and thus to decreasethe actual memory load, leading to a higher probability of successful Recognition.The model predicts that increasing presentation time will attenuate and delay theList length phenomenon. It can be seen that there is a certain limit beyond whichthe increase of the presentation time will not have any signi�cant e�ect since thetemperature is already approaching zero. This is in accordance with the �ndings[PA85] that beyond a certain amount of daily repetitions, there is little impact onfact retrieval. Moreover, the temperature decrease will lead to a lesser variation ofretrieval times with memory load and therefore the model predicts that increasingpresentation time will decrease the magnitude of the list-length phenomenon.Test Delays: When a list of items is learned, it is known that as the time delay between thetutorial and test phases get longer, Recall and Recognition performance deteriorates[She67].The Test Delay phenomena is accounted for by entering the decay parameter � into themodel, simulating the weakening of neuronal synapses as a function of the elapsed timebetween the tutorial and testing session. Relative to the length of the test delay, theduration of the test phase itself is short, and this justi�es discarding the synaptic decayoccurring during the latter phase, and treating the synaptic matrix as �xed throughthe test period. Contrary to the case of an increase in presentation time, now theenergy level of stored memory patterns is increased, and their basins of attraction getshallower and smaller, resulting in a deterioration of Recall performance. The actualmemory load is increased (since decreasing the neurons' input �eld h is equivalent toa temperature raise), leading to a parallel decrease in Recognition performance.Age di�erences in Recall and Recognition: It was found that older people performmore poorly on Recall tasks than they do on Recognition tasks [CM87]. An analysisof covariance, with recognition performance as the covariate, showed a reliable agedecrement in recall. 9



These �ndings can be accounted for by assuming that synapses are being deleted in theprogress of life. The data supporting this assumption is inconclusive. However, someevidence supports an age-related decrease of synaptic membrane surface densities inthe hyppocampus [BFFMRU89], and a progressive decrease in hippocampal dendriticspine density [MR88].It has been previously shown that most of the retrieval failures occurred, even whenthe network's synapses were quite radically diluted, only with input states which werefar apart from stored memories [HD89]. The quality of the retrieved pattern is onlymildly a�ected by synaptic dilution; up to 80% dilution, the �nal converged stateshave �nal overlaps above 0:9 with the nearest memory states [Som86].We have investigated the retrieval performance as a function of the input's initialsimilarity (overlap) with its nearest memory pattern, for various levels of synapticdilution and memory load: At low levels of synaptic dilution, memory retrieval re-mains intact. For every level of initial overlap of the input patterns, there exists a`critical' level of dilution whereupon a rapid decrease in the retrieval of such patternsoccurs. As demonstrated in Figure 2, when the memory load is increased, this `criti-cal' level begins at lower levels of synaptic dilution. Accordingly, it is predicted thatduring the early phases of synaptic dilution, the deterioration of Recall performancemight be noticeable only when the tutorial phase involves long lists of items. Onlya mild decrease (up to 12%) in recognition speed was found. taken together, these�ndings could account for the relative stronger decrease in Recall vs. RecognitionPerformance. One may further speculate that during aging the the network's noiselevel may decrease, and hence attenuate the e�ect of the actual increase of memoryload on recognition speed.3.2 Considering the e�ect of external projectionsThe total sum of external, currently active associations, projecting on the allocated networkfrom all other networks (i.e., `the rest of the brain') is represented in the model by anexternal �eld vector E. It has been shown that the probability of retrieval of a memorypattern associated with an external �eld vector increases monotonically with the amplitudeof such a �eld [AGS87].The word-frequency e�ect: The more frequent a word is in language, the probability ofrecalling it increases, while the probability of recognizing it decreases. [She67, Rao89].A word's frequency in the language is assumed to e�ect its retrieval through the storedword's semantic relations and associations [Kat85, NCBK87]. Thus, activation invarious other networks (i.e., `cortical areas'), and not just exclusively in the speci�callyallocated network has to be considered.10
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Figure 2: The probability of successful Recall as a function of the number of stored memoriesand the input's initial overlap (similarity) with its nearest memory pattern. The right �gurepertains to 50% dilution and the left �gure to 55% dilution. The network has n = 500neurons, and T = 0:2.When, during a Recognition test phase, a stored memory pattern �� is presentedto the network, it is assumed that the external �eld vector generated has a compo-nent projecting at ��, such that E = h� � ��, where h� is a `projection coe�cient'representing the strength of associational linkage supporting ��.It is assumed, that relative to low frequency words, high frequency words have moresemantic relations and therefore more connections between the patterns representingthem and other patterns stored in the memory (i.e., in other networks). This one-to-many relationship is assumed to be reciprocal, i.e., each of the externally storedpatterns has also connections projected to several of the stored patterns in the al-located network. Let the overlap H�, denoting the level of similarity between thecurrent network's state S and a corresponding memory pattern ��, be de�ned asH� = 1nS � �� = 1nPi Si��i. The process leading to the formation of the external �eldE (acting upon the allocated network), generated by an input pattern nearest to somestored memory pattern �� is assumed to be characterized as follows:1. There is a threshold degree of overlap �min, such that E > 0 only when the allo-cated network's state overlap H� is higher than �min. This re
ects the initiationof activation of associated items in the external networks. As the network's stateevolves towards the nearest memory pattern ��, (the overlap H� is increased)more patterns corresponding to items associated with this memory are activated.2. Patterns which are activated already at low overlap (H�) values are stronglyassociated with ��. They are assumed, in turn, to strongly support ��, re
ected11



in an increase in the value of h�. Patterns which are activated only at highoverlap values (and thus are only loosely connected to the memory representedby ��) generate a more di�use projection on the allocated network, which resultsin a decrease in the value of h�. Consequently, asH� rises, h� rises monotonicallytill some maximal point beyond which it monotonically decreases.3. High-frequency words have lower �min values than low-frequency words. Thisre
ects the widely held assumption that high-frequency words have stronger as-sociational linkage, which enables the earlier excitation of their related items'patterns of activity.In Recognition tests, since the input patterns represent stored memories, a high valueof overlap H� to some memory �� is obtained. Such high values of H� are alreadymuch larger than the relatively low �min values of high-frequency words, and thereforethe value of h� and E generated is already post-optimal and therefore small (smallerthan in the case of low-frequency words which have higher �min values). Thus, high-frequency words generate a more di�use external �eld E, accounting for their relativelylower probability of successful Recognition. Since the e�ect of the external �eld onmemory retrieval is increased at conditions of high memory overload [AGS87], themodel predicts that the relative inferiority of Recognition of high-frequency wordswill be chie
y manifested with long lists of learned words.In Recall tests, however, only a cue pattern is presented to the network. The initialsituation is therefore characterized by low values of overlap H� to some nearest mem-ory ��. At such conditions, only the overlap value of high-frequency words may su�cefor activating associated items, i.e. H� > �min, and thus an external �eld stronglyoriented at �� is generated. Hence, the relatively higher probability for successfulRecall of high-frequency words is accounted for.We have presented here the analysis of a `classical' case of Recall testing. Generally,however, a wide spectrum of Recall cues, di�ering upon their overlap value to theirnearest memory, may be presented. This may lead to various scenarios, dependingon the relation between the initial H� and �min. It is interesting to note that this isin fact in accordance with some newer inconclusive psychological experiment resultsregarding the in
uence of word frequency upon Recall [GMC80], while the �ndingsregarding Recognition remain robust. In addition, the model predicts the creationof a speci�c type of Recall error; namely, successful recall of a learned-list word, butnot the one nearest to the cue. This can happen since a Recall cue nearest to a low-frequency stored word may generate an external �eld oriented toward a near (but notnearest) high-frequency word, which may modify the convergence toward it.12



Word Fragment Completion Tests: In this version of Recall testing, graphemic wordfragments are presented as Recall cues. In contradiction to the generally acceptedpositive correlation found between successful Recall and Recognition (i.e., the prob-ability of successful Recall is greater for items that can be recognized than for thosethat cannot), no such positive correlation is found when using graphemic fragmentcompletion for Recall [TSS82]. The relation actually found was one of stochastic in-dependence; a word appearance in the study list does enhance the subject's abilityto generate the word to its fragment cue, but such enhancement was identical for therecognized words and for those not recognized.The results reported in [NCBK87] indicate that while cued recall has also a semanticsearch component in addition to lexical search, fragment completion does not. Inaccordance, it is assumed that while in regular Recall tests the semantic associationshave an important role and exert considerable in
uence on the �nal form of the energyplane, in word fragment completion the situation is entirely di�erent: The external�eld vector is inactive since the cue is presented in a fragmented form, incapable ofgenerating the semantic re-enforcing associations. The energy plane is therefore totallydi�erent during such tasks than in Recognition testing (where, like in Recall testing,semantic associations are activated), resulting in the lack of correlation described.3.3 Modeling other phenomenaContext Shift: The term Context Shift refers to the change in context from the tutorialperiod to the test period. Studies examining the e�ect of context shift have shown adecrement in Recall performance with context shift, but little change in Recognitionperformance [SGB78].The context is represented as a substring of the patterns' encoding. Let � denotethe size of the common context sub-string relative to the size of the stored pattern,and let � denote the memory load. In simulations we had performed it has beendemonstrated that there exists a certain range of values of � and � where Recall andRecognition are successful in the majority of trials. However, as shown in Figure 3,when context shift is simulated by entering random input patterns, but with half ofthe context substring inverted, Recall performance severely deteriorates. We havefound only a small increase (of 5%) in the number of asynchronous iterations requiredfor convergence, in accordance with the experimental �ndings.It is interesting to note that representing the context of memorized words as part of theexternal connections projecting upon the network cannot successfully account for thecontext shift phenomena. In such an approach (inspired by the modeling of contextused in Semantic networks models), the tutorial phase's context would be represented13



as an external �eld C projecting equally on all stored memories. However, such a�eld, averaged on all stored memories, (E = h �Pm�=1 ��) has been demonstrated tocause only a marginal increase in the retrieval properties of the network [AGS87], andthus is incapable of accounting for the decrease in Recall accompanying context shift.
Figure 3: The probability of successful Recall as a function of the initial overlap betweenthe input vector and its nearest memory pattern, after a context shift. The network hasn = 500 neurons, T = 0:2, and m = 30; 40. The corresponding pre-shift probabilities havebeen 100% success.Distractor Similarity e�ect: Distractors are unlearned words that are intermixed withthe learned items while performing a Recognition test. It turns out that data con-cerning distractor similarity e�ects on Recognition are mixed; some studies indicatethat increased similarity of the distractors to certain learned words decreases Recog-nition performance [GS84, AK68] while others do not report any signi�cant change[UF68, CE72].By de�nition, the model predicts that increased distractor similarity will cause an in-crease in false positive recognition (i.e., of wrongly `recognizing' non-stored patterns).However, this depends on the degree the encoding preserves this similarity. It is in-teresting to note in this respect, that physical similarity produces greater amount offalse alarms than semantic similarity [GS84], possibly indicating that the encodingconserves better the �rst kind of similarity than the latter. Moreover, one should notethat the retrieval of an input pattern in a Hop�eld network is not determined by the14



initial Hamming distance solely [AM88]. The precise form of the memories' basinsof attraction in the network's n-dimensional space is not known [Ami89]. These ob-servations therefore make the model not necessarily inconsistent with the the mixedresults obtained concerning the similarity e�ect of distractors.Serial position e�ect It has been found that the serial position of the learned items inthe tutorial phase has a considerable in
uence on the probability of their successfulRecognition, and on the mean response times (MRT) obtained: The items presentedearlier in the learning phase had been recognized with more accuracy and during ashorter MRT [RM76b, Rat76].Serial position is modeled by ascribing higher synaptic weights to the patterns storedearlier in the tutorial phase. Following the original experimental data, we have di-vided the stored patterns into four groups of `serial position', in accordance with theperiod in which the item was learned during the tutorial phase. The original synapticlearning rule is slightly modi�ed so that the strength �k by which a memory patternis embedded in the synaptic matrix is a function of the period k in which the item waslearned, i.e., Jij = Pm�=1 �k��i��j , where m denotes the number of stored memories.Selecting �1 = 1:15, �2 = 1:1, �3 = 1:05 and �4 = 1 leads to the results depictedin Figure 4. It can be seen that the MRTs obtained have a monotonically increasingtrend similar to that obtained experimentally. The analysis of all other phenomenaremains valid when the latter modi�ed learning rule is considered.We have selected a temporal threshold and examined the Recognition performanceas a function of the serial position. Figure 4 displays the percentage of correct hitsobtained in the network, simulated by entering random input vectors generated witha high degree of similarity to the stored memories. Indeed, the results obtainedhave a decreasing trend, similar in general to the experimental data. However, inthe experimental data, the two groups memorized in the second half of the learningphase (3 and 4) have shown essentially the same MRT and recognition accuracy.Obviously, a closer �t with the data could have been obtained simply by selecting�3 = �4. Such a close �t with the data can be achieved in a less arbitrary manner bymodifying the synaptic learning rule so that it will generate a relative `weighting' ofthe stored memories in accordance with the time t of their storage, for example therule �(t) = �0(1 + e�(t��)), where � is some time constant of the learning phase.3.4 Response TimesIn addition to the set of data shown to be accounted for qualitatively, the model presentedcan account for the data concerning retrieval response times. Figure 5 displays the distribu-tion of retrieval times of correct hits at a low memory load. The response times distribution15



Figure 4: Left: The MRT (No. of asynchronous iterations) as a function of the serial posi-tion. The network has n = 500 neurons, m = 30 memories, and T = 0:2. Right: Percentageof correct hits as a function of the serial position. The network has n = 500 neurons,m = 30memories, and T = 0:2. The temporal threshold was set to 950 asynchronous iterationsobtained looks like the experimentally observed distributions [RM76b], which are asymmet-ric and typically have a long, low density, right-sided tail. Such experimentally-matchingresponse times distributions have been obtained previously by Anderson in an analog ANN[And91]. However, it should be noted that as the memory load is increased towards maximalcapacity, the distribution tends to loose its typical asymmetric form and becomes essentiallysymmetric. It would be interesting to examine experimentally, if considerably extendingthe list length may lead to a similar change in the response times distribution.The experimentally observed response times distribution of correct rejections has a formsimilar to the response times distribution of correct hits [RM76b]. However, using a single,�xed � time interval seems to lead to a narrow distribution of response times of correctrejections. Moreover, a naive `implementation' of the interval � requires one to assume theexistence of an internal `clock' in the network. However, a possible neural realization of �may be achieved by assuming the existence of positive feedback between the network's RCAand the thermal noise level. I.e., the level of thermal noise is monitored by the level of thenetwork's RCA [LN89]: When the network converges into an attractor its RCA diminishes,resulting in a temperature decrease. If convergence does not occur during some time interval,the noise will gradually increase leading to a chaotic state which denotes recognition failure.Such a process can account for an actual dynamically varying temporal recognition interval,and will `spread-out' the response times distribution of correct rejections. The previousresults concerning positive hits would still hold since in the case of correct recognition a16



Figure 5: Response times distribution of correct hits. The network has n = 500 neurons,m = 30 memories, and T = 0:2. Time is denoted by the number of asynchronous iterations.noise surge will not occur.4 Quantitative Estimations of Recall and Recognition.In this section we present some estimations of the expected probabilities of successful Recalland Recognition, in the framework of the model presented. Since the precise form of thememories basins of attraction is yet unknown, our calculation is based on the assumptionthat a memory's basin of attraction can be approximated as a `sphere' of radius r in the n-dimensional space surrounding it. We recall that any attempt to quantitavely analyze `highorder' experimental data as the psychological manifestation of `low order' neural activityrequires prior knowledge of the encoding. Yet, one hopes that perhaps by trying to evaluatesome predictions of such ANN models, some insight about the encoding itself may be gained.4.1 Estimating Recall performanceIn a given network, with n neurons and m memories, the radius r of the basins of attractionof the memories decreases as the memory load parameter (� = m=n) is increased. McElieceet. al. [MPRV87] have related n;m; and r by the expression m = (1�2�r)24 � nlogn . Using thisresult in the framework of our model, we can estimate the probability of successful recall.The concept of the basins of attraction implies a non-linear probability function with lowprobability when input vectors are further than the radius of attraction and high probability17



otherwise. The slope of this non-linearity increases as the noise level T is decreased. Evenwithout `thermal' noise (T = 0) this probability is not unity, in light the presence of non-thermal noise created by the attraction of the other memories. Similarly, the probabilityof successful Recall (to the nearest memory) when the input is further than the radius ofattraction is small but non-zero [Cot88].In Figure 6, the calculation of r as a function of the memory load �, is shown. r denotesa vector being r �n bits (neurons) apart from its closest memory. The calculated r's denotethe maximal allowed distance between the cue and its closest memory so that Recall willstill be successful, with high probability.
Figure 6: The radius of attraction as a function of memory load. The network has n = 500neurons, and T = 0:2The probability Pc that a random input vector will converge to one of the stored mem-ories is � Prnd=1 (nd)2n . It converges very fast toward zero as r is decreased. Thus, at moderatememory load conditions we already obtain a relatively small cumulative attraction size,since the memories' basins of attractions de�ned by these radia cover only a small part ofthe total state space.Figure 7 presents the results of a simulation performed in order to observe the probabilityPc as a function of the memory load. These results are in correspondence with the estimationof Pc presented, i.e, Pc, decreases very fast (faster than r) with the increase of memory load.Hence, Recall tests beginning from randomly generated cues would yield a very low rateof successful Recall (Pc). Yet, if one examines Recall by picking a stored memory, 
ipping18



some of its encoding bits, and presenting it as an input to the network (determining r),reasonable levels of successful Recall can still be obtained even when a considerable numberof encoding bits are 
ipped.
Figure 7: The probability of successful Recall of randomly generated input patterns as afunction of memory load. The network has n = 500 neurons, and T = 0:2It is interesting to note that the allocated networks' size n can be estimated: Thenumber of learned items (stored memories)m in the psychological experiments is known (ofthe order of a few dozens), and since the capacity ratio � = m=n is bounded by �c = 0:14,then n is between several hundred to several thousand neurons (i.e., of the order of the sizeof cortical columns). When considering the context representation, Pc can be estimatedas � Pr�nd=1 (n�cd )2n�c � m. Finding a value of c providing a good �t with experimental datamay provide an estimation of the relative size of the context encoding. The size of thecontext encoding could also be estimated by examining the e�ect of total context shift:Accordingly, the relative expected deterioration in the probability of successful randomRecall due to a change of context involving all c bits of the encoding (RD(c)), is estimatedby RD(c) � Pr�n�cd=1 (n�cd )Pr�nd=1 (n�cd ) .4.2 Estimating Recognition performanceThe probability of correct Recognition depends mainly on the the length of the interval �.Assume that after an input pattern is presented to the network, during the time interval �19



k iterations steps of a Monte Carlo simulation are performed: In each such step, a neuron israndomly selected, and then it examines whether or not it should 
ip its state, according toits input. Since successful Recognition involves input patterns with a high level of overlapto one of the stored memories, it is plausible to assume that a selected neuron will indeedupdate its state correctly; i.e., in accordance with its corresponding state in the inputpattern's nearest memory.Let n denote the number of neurons in the network, and let d denote the Hammingdistance between an input pattern presented to the network and its nearest stored memorypattern. Obviously, the set of neurons which are selected must include all d `faulty' neuronsso that successful convergence could be achieved. Let us now estimate the probability Pgthat the input pattern will be successfully recognized, i.e., that the network will converge toits nearest memory pattern during (at most) k iterations: Let �ik denote the event `neuroni was not selected (and if necessary, updated) during k iterations'. Its probability, Prf �ikg,is given by (1 � 1n)k. The event `at least one of the d faulty neurons was not selected' isequivalent to the union of all the events Sdi=1 �ik. Therefore, its probability �Pgfdg is boundedby �Pgfdg � dXi=1 prf �ikg = d(1� 1n)k � d � e�kn (4)and the probability of successful recognition of an input at distance H(d) Pgfdg =1 � �Pgfdg, is bounded by Pgfdg � 1 � d � e�kn . It can be seen from equation 4 that thedependence of the successful Recognition on the initial Hamming distance is multiplicative,which re
ects our intuitive notion that Recognition's success depends strongly on the initialinput proximity to a stored memory. However, successful Recognition is even more criticallydependent on the number of allowed asynchronous iterations k, determined by the lengthof �. For a selection of k = n(ln(d) + c), one obtains Pg � 1� e�c.The expected number of iterations Exp(X) till successful convergence is achieved iscalculated as follows: Let the random variable Xi denote the number of iterations per-formed when i faulty neurons are left, till one of them is selected and corrected. Therefore,Exp(X) = Pdj=1Xj . Since there are i faulty neurons left in the network, the probabil-ity of selecting a faulty neuron is i=n, the expected number of iterations Xi performed isE(Xi) = n=i, and E(X) = dXi=1E(Xi) = n � dXi=1 1i � n � ln(d) (5)The calculations presented above pertain to the case of `complete' retrieval, where thenetwork converges to a stable state which is precisely identical to the input's nearest storedmemory. However, it is known that in most times, when presented with a successful input20



cue, a Hop�eld network converges to a stable state which is very similar, but not identical,to its nearest stored memory [AGS85]. Let o denote the Hamming distance below whichretrieval is considered successful, then a similar calculation yields Pg � 1� �do� � e� o�kn andE(X) � n � ln(do). In simulations we have performed, (n = 500, m = 10, d = 20, o = 10),the average number of iterations until successful convergence was in the range of 300 - 400,in excellent correspondence with the predicted expectation, E(X) = 500 � ln(2).Two kinds of Recognition errors exist: False negative (FN) recognition { in which we donot recognize a learned item that should be recognized, and false positive (FP) recognition{ in which we do recognize an item that should not be recognized, (i.e., was not learned).In order to estimate the probabilities of FP and FN recognition errors, one must adopta criterion for determining which input patterns should be recognized; let us assume thatthere exists a constant j such that any input pattern X with Hamming distance H(X) < jshould be recognized, and otherwise rejected. Since all correctly recognized input patternshave a Hamming distance smaller than j, than, using equation 4, Pfjg is a lower boundon the probability of correct recognition, and an upper bound on the probability of FPerrors. Similarly, (1 � Pfjg) is a lower bound on the probability of correct rejection andan upper bound on the probability of FN errors. The measurement of these probabilitiesexperimentally can set constraints on the possible value of j.5 DiscussionA prime motivation behind neural networks research is the claim that such networks' be-havior may be viewed as a simpli�ed model of the brain. True, the Hop�eld model incor-porates extensive simpli�cations in comparison with the known biological data pertainingto neural activity. Yet, some of these simpli�cations have been challenged in a family ofHop�eld-based models been recently derived. These models preserve the basic propertiesof the original Hop�eld model, and therefore it is plausible that the model presented couldbe modi�ed in accordance, thus better approximating real biological data. The interestedreader may �nd an account of such models in [Wei86], and a detailed discussion of ANNmodeling from a neurophysiological point of view in [Ami89, Abe91].The work presented is limited to the storage of patterns with low correlation, since thestorage of strongly correlated patterns will lead to erroneous memory retrieval. Indeed, itis known that a list composed of highly similar items is considerably more di�cult to learnthan one with dissimilar items. E�cient storage and retrieval of patterns with considerableinter-item correlation is possible, using Hop�eld-based Hierarchical neural networks (HNN)[FI87, Gut86]. Such networks have already been utilized for modeling Semantic memory[RU90], and they can potentially be used for modeling of Recall of categorized items. HNNnetworks can be used as a starting point for an alternative approach to that presented in this21



work; instead of assuming the existence of speci�cally allocated networks, an HNN couldbe used to store di�erent `assemblies' of stored memories, each characterized by commona substring representing its learning context. The context substring could be then viewedas a `key' for obtaining access to the appropriate assembly of memories, stored during thesame learning phase.In the model presented, only cued Recall is accounted for. The modeling of free Recallseems a more complicated task, since it requires the understanding of an autonomous, selfgenerated cognitive processes. In principle, a model of an autonomous cognitive processmust include two components; the �rst being a mechanism for generating a continuousmovement in the model's phase-space between the various stored memories. The secondcomponent being, that once the network has reached a memory state, it should remain inthis state for a certain amount of time. Free recall is therefore envisioned as a continuous
ow of the system between some of its states, whereas upon arriving at a stored memorystate, it remains there for a certain duration. This period is essential for rendering thesestates as `cognitively signi�cant' and thus as representing successfully recalled items. Bothrequirements can be ful�lled using Hop�eld-like ANNs: The motion between the variousstored memories may be either deterministic [CS87, HU89], or stochastic (for a review ofsuch mechanisms see [Bel88]). Once the network's state approaches the vicinity of a storedmemory it remains there for some time before moving to the vicinity of another attractor.The context of the tutorial list is used as a cue guiding the recall process to the storedpatterns of learned items.We have shown in this paper that modeling the e�ect of memory load on the network'sretrieval properties requires the incorporation of noise into the network's dynamics, andthat external projections are not su�cient for representing context. In addition to numerousqualitative accounts of the experimental data, the network is shown to generate retrievalresponse times which have the same distribution form as that observed experimentally, atlow memory load. As Schacter claims, \... no current theory gracefully accommodates allor most of the important empirical facts" [Sch89]. However, we feel that the ANN modelpresented has the intuitive appeal of being considered as an approximation (as coarse asit may be) of some principles of neural correlates of cognitive processes related to memoryretrieval.Acknowledgment: We are indebted to Professor J. Anderson for his many illuminatingcomments, and for bringing to our attention R.D. Luce's book `Retrieval Times'.References[Abe91] M. Abeles. Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge UniversityPress, 1991. 22
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