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The human face is an elastic object. A natural paradigm for
representing facial expressions is to form a complete 3D model
of facial muscles and tissues. However, determining the actual
parameter values for synthesizing and animating facial expressions
is tedious; evaluating these parameters for facial expression analy-
sis out of gray-level images is ahead of the state of the art in
computer vision. Using only 2D face images and a small number
of anchor points, we show that the method of radial basis functions
provides a powerful mechanism for processing facial expressions,
Although constructed specifically for facial expressions, our
method is applicable to other elastic objects as well.  © 1994 Academic
Press, Inc.

1. INTRODUCTION

Current general object recognition schemes in com-
puter vision fail to recognize human faces since the face
is an elastic object that is subject to major spatial deforma-
tions due to the modification of facial expressions. Yet,
humans can recognize faces even under the most extreme
spatial variations caused by these expressions.

In order to be able to recognize faces by computers, face
images must be analyzed and then normalized, namely, be
transformed to some invariant representation. This ability
to animate facial expressions has been attracting attention
in computer graphics as well, and has many applications
such as dynamic facsimile, low bandwidth video, and
teleconferencing. Such applications require realistic re-
production of faces, as opposed to computer vision face
recognition and classification tasks that do not require
full reconstruction.

Current approaches for synthesizing facial expressions
use 3D face models, which employ a 3D mesh. Some try
to simulate muscle action, skin complexion, and so on
[30, 21, 25, 28], while others employ texture mapping
technigues, which transform 2D texture planes onto the
manifold determined by the 3D mesh representing face
geometry [12, 17, 32, 31, 23]. The two methods can be
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combined to enhance their respective performance. How-
ever, determining the actual parameter values for synthe-
sizing and animating facial expressions is a task requiring
tedious interactions with a human operator. In the case
of facial expression analysis, the situation is even worse.
Evaluating the model parameters out of gray-level images
accurately enough is ahead of the state of the art in com-
puter vision. An alternative approach is not to rely on a
iD model of the face, but rather to use a limited set of
anchor points in 2D face images. This approach is attrac-
tive from the computational complexity point of view
and is supported by psychophysical findings [4]. We have
recently demonstrated the applicability of such an ap-
proach to face recognition. We have developed a system
that automatically detects the most important facial fea-
tures (eves and mouth) using generalized symmetry [26,
5). We have also shown that normalizing a 2D image of
a face using an affine transformation determined by the
location of the eyes and mouth is an effective step towards
face recognition [11]. The affine transformation can com-
pensate for various viewing conditions, but is not effective
if the facial expression is modified. A recent 2D approach
[1], which was impressively used in a video clip, ignores
the affine aspects of the transformation.

All these points have motivated us to look for a smooth
2D transformation, which can be used to compensate for
changes in facial expressions, based on a relatively small
number of anchor points. A 2D transformation should be
robust in the sense that the anchor points need not be
specified very accurately. Moreover, after considering
global constraints, the position of each anchor point
should have a local effect, reflecting the elasticity of the
face and the relative independence of its parts.

In the following we show that the theory of radial basis
functions provides a powerful mechanism for image warp-
ing and demonstrate its application to face images.

2. THE MAPPING

We regard images as 2D objects. In this respect, an
image is a finite domain of a plane with a gray level (or
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color) associated with each point. A warping of an image
is then pomarily a transformation of the plane to itself,
and the gray-level values are transformed according to
the transformation of their associated coordinates. Our
main concern is the construction of a mapping of images
iplanes) that is determined by the mapping of a small
number of anchor points—points whose mapping is pre-
determined. This requirement leads us to interpolation
theory.

2.l. Radial Basis Functions

Radial functions have proven to be an effective tool
in multivariate interpolation problems of scattered data:
Given a univariate function g: 8™ — R one may attempt
o interpolate the scattered d-dimensional data

#,F), ®€RY, FER, i=12,...,N,
by a radial function, 5(x), represented by
¥ _
5(3) =Y ag (|- %], (D
=]

where |- || denotes the usual Euclidean norm on R9. A
function of this type is usually referred to as a pure radial
sum. The choice of a radial function reflects the fact that
the scattered data has no preferred orientation, and the
fact that for given i the data point ¥ equally effects all
points of equal distance to ®'. Interpolation by sums of
the form (1} is possible whenever the system of linear
equations

Ga=F, G=g;=z(|7-#|,
S=(0. 0:..; F=(F Fioiiikials

(2)

a ﬂ.'\l'} r-

has a unique solution. Some classes of functions for which
a unique solution to (2) exists for any N distinct points
¥ = R4 and are well known in the literature [8] are:

. g() = (= 3, 0 < a < | (multiquadrics).

. g(n) = log(s? + A2, ¢ = 1 (shifted log).

. 2() = exp(—Fla?), o > 0 (Gaussian).

d [l e

The drawback of using pure radial sums for our pur-
poses lies in the fact that these sums do not reproduce
polvnomials, and thus vield a poor approximation of the
transformation for points far away from the data points
%. In particular, the natural transformation determined
by three anchor points in general position in the plane
is the affine mapping, however this mapping cannot be
realized by pure radial sums. Thus for our application we
use interpolants of the form

Sff}=gn,gilrf—?'lnwm{zh, PaBEL, (3)

satisfying
5(x% = F4

N _ (4)
> ag(®)=0, YgeIl,

Here I1, is the space of all algebraic polynomials of degree
at most m on R?. This method of interpolation reproduces
polynomials in IT,, whenever (4) is uniquely solvable. Con-
ditions for the unique solvability of (4) can be found in [22].

A large class of radial functions for which (4) is solvable
at distinet {¥'} has the additional property that the inter-
polant satisfies some variational principle, namely, the
interpolant minimizes some functional defined on a rele-
vant space of functions. For example, the interpolant (1)
with g the Gaussian radial basis function (normalized with
o = |, and without a polynomial term) minimizes the
functional (f, f), where (f, k) is defined by

(f. 1) = [ffiN) - R (A) - exp(A)d,

(fis the fourier transform of f), and the minimum is taken
over all functions f for which the functional (f, ) is de-
fined [20]. The relevance of such a variational principle
for our applications seems quite remote.

2l

Designing the Mapping

Since we are interested in R — R? mappings, and inter-
polation deals with R¢ — R functions, we construct our
mapping by using a pair of functions R* — R. Given two
2-dimensional data sets (x', y) and (&, v) i =1, 2,...,
N (anchor points} we are looking for a transformation
T = (Ty, Ty): R* — R* with the following properties:

{a) T is a radial function in each of its components. This
reflects the requirement that the effect of each anchor
point, ¥, is the same for all equidistant points from X.

) T(x', y) = (@, ) foralli = 1, 2,..., N (interpo-
lation).

{c) The number of data points to be interpolated is any
number N = 3; if the number of anchor points is 3, the
mapping is affine, and an arbitrary number of additional
anchor points may be used.

(d) The components of T reproduce linear polynomials
on B2. This condition guarantees that T will be an affine
transformation whenever the interpolation data admits
such a transformation.

(e) There will be a trade-off between the warping condi-
tion—warping the plane as little as possible—and the
locality condition—the interpolation of the anchor points
will have a local effect.

() In some cases the anchor point mapping needs not
be exact. In these cases we would like a trade-off between
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the interpolation error (of the anchor points) and the mini-
mal warping condition stated in the previous condition (e).

Conditions (a—d) are satisfied by T = (T}, T,). where
Ty and Ty are radial functions of the type (3) with m =
1. Condition (e} needs some mathematical formulation.
We postpone the discussion on locality, and concentrate
for the time being on the warping condition. Given a
function f: R*— R which is twice continuously differenti-
able, it is customary to use the functional

JUf) = [ [(f ) + 206,07 + (£, P1d(x, ¥)

as a measure of the total amount of bending of the surface
{x, ¥, fix, ¥) [7]. The functional .J is rotation invariant,
again reflecting the fact that the data has no preferred
orientations. We note that the functional J is only an
approximation to the total bending energy of the surface
(x, v, flx, ¥)). however the 2D surface minimizing J and
interpolating the data {(x,, y, z)}Y, is referred to as a
thin-plate spline and is known as a good approximation
to a thin steel plate under stress.

Recall that our mapping is defined for each coordinate
separately, therefore we are looking for a transformation
T = (Tyl(x, ¥), Tyl(x, )} such that

TyE{flf(d,y) =4, i=1,2,....N}
Ty E{flfix’,¥)=¢, i=1,2,...,N}

ST + (1) is minimal.

This is another approximation to the actual underlying
variational problem, namely the minimization of the total
warping induced by the mapping. Minimizing J(T,) +
J(Ty) can be performed by the separate minimization of
J(Ty) and J(T).

With this formulation in mind, it is known that the
choice g(r) = * log t (with g(0) = 0) provides a uniquely
solvable interpolation problem (3) — (4) with m = 1, the
solution of which minimizes the functional J [7]. Thus the
transformation T = (Ty;, Ty) will be of the form

N
T{_T.__].-‘_:l = (CE| NE (LR + & ¥ T Z ﬂ,-g.a'[l's }’_},

(e |
N \ i5)
Byt Bxt Byt 21 b glx, _ﬂ)

with g,(x, ¥) = [[(x = x', ¥ = ¥D|P - log(]|(x — x', y — ¥)|).
The computation of the coefficients in (5) involves the
solution of two square linear svstems of size N + 3 (with
the same matrix in each case). An algebraic treatment of
the mapping (5) is given in [2].

As stated in property (f), we arc willing in some cases
to relax the interpolating conditions T(x', ¥") = (i, v'),
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i=1,2,..., Nand in turn we wish to further reduce the
bending factor (J(T,), J(T,)) of the transformation T. In
such a case we are to find twice differential functions T,
and Ty, such that for a given A = 0 the functionals

N
J(Ty) = 2, [ = Ty(x', y)F + NI (Ty) (6)
i—1
and
i !\r s - N
J(T) =3 [v' = Tplxd, v + AJ(Ty) (7)
i—1

are minimized. The solution of this variational problem
for Ty is again given by

N
Tylx,y) =y + apx + azy + Z; a;2 (|| x — x|,

the coefficients o, a,, a;, 4, a5, ..
the linear system

., 1y are solutions of

(G + -;'Ll{::'.;{ah Fr AL aN}T -+ '5“1 + ﬁ':le- + oy Vi = M; {E‘}

fori=1,....N
and
hl .
> a,q(x)=0 forg(x,y)=1,x,y, (9)
i=1

where (7 is defined in Eq. (2), and (G + A[T), is the ith row
of the matrix G + AJ [10]. A similar solution exists for
Ty. The equations given in (8) are the generalization of
the interpolation equations, while those given in (9) guar-
antee the reproduction of linear polynomials.

Some special cases of the functionals (6)-(7) are
listed below:

« & = 3, The minimum bending transformation of the
plane reduces to an affine transformation (for which J =
). Thus we meet requirement (¢).

« A = 0. Minimization of J results in an exact inter-
pollant which minimizes J. Thus we prefer exact mapping
of the anchor points rather than a low bending factor.

= A — =, Minimization of J yields the affine mapping
that minimizes the sum of the squares of distances from
Tix', ¥) to (u, v;), i = 1,..., N. Note that

N N
; [Llj oo TV(JC"I. J’IJF + ZI [“5 il T,,.I{x". _'F'.]F

N

= 217G, ¥ = Gy, vl
=1
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* 0 = A < =. The parameter A controls the tradeoff
between the affine transformation that annuls the bending
factor J and the radial factor that interpolates the data,
as stated in property (f). In this formulation, the same
value of A is chosen for all points. We note, however,
thatinageneral setting, different values of & can be chosen
for different points.

Eeturning to property (g), we at last turn to the locality
condition. The functional J has a global nature, thus a
small perturbation of one of the anchor points effects all
potnts in the transformed plane. In some cases we prefer
some or all of the anchor points to have only a local
effect. To this end we will sometimes switch from the
basis function r? log r to a radial basis function which
incorporates a locality parameter, such as the Gaussian
radial basis function g{r} = exp(—ri/c?), o = 0, where
the parameter ¢ may be used to control the locality of
zach radial function: As we increase o, the effect of the
radial part on the interpolant is more global to the anchor
points, while the total bending energy is decreased, Each
anchor point may have a distinet value of the locality
parameter. Determining this parameter is application de-
pendent, while the choice of the thin plate basis function
leaves no free parameters.

A practical feature of the transformation is invariance
of parameter values to image size. Therefore, A of Egs.
161=18) 1s normalized such that & ;= (107" h) ML, where
w and Ak are the image width and image height ziven in
pixels. By the same token, Gaussians are adjusted to the
image size such that [o corresponds to (A + w)f12.

3. APPLICATIONS

We have constructed a continuous mapping for discrete
pictures given in pixels. Its implementation involves over-
coming aliasing problems. A standard procedure is to
apply the backward transformation—the inverse trans-
form from target to source. However, if more than three
anchor points are used, the forward transformation—the
source to target transformation, is not the inverse of the
backward transformation. This drawback notwithstand-
ing, in most practical cases backward transformations can
be safety used. In cases where two anchor points are
mapped to the same or almost the same location, the
backward transformation is ill-defined and the forward
transformation must be used. Overcoming the resulting
aliasing problem is also a standard procedure [17]. We
have found that, in practice, the two directions are useful.
Of the following examples, Figs. 6 and 7 were obtained
using the forward transformation, and the rest were ob-
tained using the backward transformation. When using
backward transformations, bilinear interpolation was
used for antialiasing.

3.1. Determining Mapping Parameters

The free parameters of the family of mappinegs defined
above are the radial function, its locality parameter, o,
when the thin-plate is not used, and the trade-off parame-
ter, A, between the warping condition and the locality
condition. In Fig. 1, a checkerboard is warped using six
anchor points. Four of the points are fixed and the other
two are moderately shifted {(a) and (b). The first four warps
use the thin plate basis function with different tradeoff
between the interpolation error and minimal warping—i
of Egs. (6) and (7). (c) is pure thin plate interpolation, (f)
is almost the affine transformation that minimizes the sum
of the squares of the distances between the desired trans-
formation of the anchor points and their actual transfor-
mation. (d) and {g) are intermediate cases. The last three
mappings of Fig. 1 demonstrate the trade-off between
the warping condition and the locality condition using
Gaussian radials. Note that when the Gaussian becomes
narrower (o increases), the warping is more local and of
a wilder nature close to the anchor points while almost
unnoticeable far away from these points.

3.2. Generalization of Affine Mappings

The use of similarity transformations for face normal-
ization dates back to 1878 when Sir Francis Galton de-
vised a photographic technique called composite photog-
raphy, in which he superimposed images of two or more
faces by means of multiple exposures. For the technique
to succeed, he carefully aligned the different images so
that the pupils of the eves coincided. He superimposed
photographs of faces of army personnel for a definite
portrait of health; of tuberculosis victims for disease; and
of convicted felons for criminality [13, 16]. Being a mem-
ber of the Victorian elitz, he was surprised to see that a
superimposed photograph of people convicted of murder,
manslaughter, or violent robbery tended to look more
respectable than the individual ones used to make it. A
straightforward generalization of the similarity transform,
determined by two points, is the general affine transforma-
tion determined by the position of three anchor points.
Using the center of the mouth as the third anchor point
improves the quality of the superposition of facial images
and is instrumental for face recognition [11].

Figure 2 demonstrates Galton's method and its im-
provement. Instead of superimposing photographs by
chemical means, a similarity transformation (translation,
rotation, and scaling) is used. A generalization is obtained
by using an affine transformation (similarity and shear).

Note that the matching at the chin leaves room for
improvement. This is fine for recognition purposes, since
Mona and Venus possess different types of chins. As-
sume, however, that one wants to change Venus® chin to
one that is similar to Mona's. This is possible by simply
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FiG. 1.

Warping using various radials and other control parameters: (a) source; (b) destination. (e}—{f} thin plate spline radial basis with & =

0, 0.1, 10, and 100, respectively; (g)=(i) Gaussian radial basis with A = 0 and o = 2.5, 2, and 1.5, respectively.

adding another anchor point on the chin and using the
thin-plate spline as demonstrated in Fig. 3. Note that apart
from the chin area the two transformations are not easily
distinguishable.

3.3. Animation and Facial Expressions

The first motivation behind this research is to develop
an effective facial expression transformation using a small
number of anchor points.

Three anchor points are effective in overcoming distor-
tions due to camera positions and some other mild distor-
tions. However, one might expect that more points are
needed for dealing with expressions. It is surprising to
see that in the interpolation of 2D images, the use of a
small number of points is sufficient in many cases. Figure
4 demonstrates the effect of using six carefully chosen
anchor points. Figure 5 demonstrates that drastic changes
in expression can be obtained by a subtle use of more
points.

The technique is useful for animation sequences as well.

Figure 6 shows frames from a videotape in which a single
image was used to produce a whole live sequence. The
trade-off parameter, A, used in Eqs. (6) and (7) is used to
control continuous changes in facial expressions. The first
image in the sequence is the original, the last is the warped
original using exact interpolation with Gaussian radials.
Intermediates were produced using decreasing values of
the trade-off parameter A.

The Gaussian radials, which enable localization, are
used in Fig. 6, and the animated face is realistic. Note
that if minimal warping is pursued, the thin-plate radials
should be used and the result is shown in Fig. 7. Compar-
ing this poor result with that of the previous figure, it is
rather evident that the use of the minimal warping func-
tional is not always adequate for warping purposes.

4. REAL-TIME IMPLEMENTATION

We have implemented the mapping with run-time that
is comparable with time needed to load an image and



FIG. 2. Alignment by eyves and mouth. Top: Original Mono Lisa. Middle (left to right): Original Venus, YVenus aligned to Mona Lisa by the
similarity transformation determined by the eve's location, and Venus aligned to Maona Lisa by the affine transformation determined by the eves
and mouth. Bortom: Superposition of Mona Lisa with each of the Venus images above,

FIG. 3. Lefr: Warping of Venus using four points and the thin-plate spling, Right: Superposition of the left image with the Mona Lisa.
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FIG. 4. The smile lost using only six points and the thin plate radial. Top: Original image; source of the anchor points marked by crosses.

Bottom; Destination of the anchor points and warped image.

present it on the screen. In order to achieve this fast
implementation, some special care should be taken at
certain points.

Let N be the number of anchor points. The coefficients
of the mapping are the solution of an (VW + 3) = (W + 3)
linear system of equations. Since N is much smaller than
the image size. any standard method solves the system
in negligible time. Therefore, we concentrate on the map-
ping itself.

Al this poinl we distinguish between thin-plate splines
and basis functions with local influence (e.g., Gaussians).
In both cases one can use a look-up table instead of com-
puting the function values. In the case of local influence,
function values can be approximated by zero for large
arguments, and a small table can store the values for small
arguments. For example, we store Gaussians in a table
of size 3or. Thin-plate splines do not decay for large argu-
ments, and their look-up table may turn out Lo be too large
for some configurations. Nevertheless, since lag(2fM) =
k log(2) + log(M) for any M, a table of size M can be
used together with shift operations. This implementation
reduces memory requirements while increasing the run-

time by a few shift operations for each function evalua-
tion. Overall the time needed for computing the value of
a basis function at a given point is of the order of the time
needed for an indirection addressing mode.

In order to evaluate the mapping at a given point, one
has to compute the value of the radial function at N,
number of anchors, points or less. When using a local-
influence basis function, each image point is influenced
only by its neighboring anchor points, and in particular
large areas in the image are not influenced by any anchors.
For each influencing anchor an indirection (for evaluating
the radial) plus a multiplication (by the proper coefficient)
is needed. Thus, in any practical application the overall
number of operations needed is a small number of multipli-
cations and indirections times the image size.

When using the thin-plate spline, an alternative to using
look-up iables is 1o use certain linear combinations of
the original basis functions that decay polynomially; i.e.,
another basis (not necessarily radial) can be constructed
using functions f, satisfying f(f) = O(:*) [9]. We, how-
ever, were satisfied with look-up tables, and thus did not
further pursue this approach.
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FIG. 5. Change in expression using 14 points. Toe: Original image and anchor point locations. Bartom: Anchor point destinations and warped
image, Thin platz radials were used. Note the cumulative effect of the minor changes in the positions of the anchor points in the eyes, right

nostril, and mouth.

3. DISCUSSION

3.1. Comparison with Other Works

In the last several years a considerable amount of re-
search has been directed toward image warping in general
and animation of facial expressions in particular. From
our point of view models and procedures intended at facial
animation may be classified into two families: the
first—model dependent—generates facial expressions by
first constructing a mathematical model of the physical
face, and then defining the dynamics which goven the
non-rigid motion of the object, e.g., [24, 28]. These tech-
niques may exhibit impressive results, but suffer from the
fundamental drawback that they are object dependent,
i.e., a different model is needed for different non-rigid

objects. The second family of techniques—maode! inde-
pendent—simulate deformations without using any infor-
mation on the object being deformed [27, 19, 14]. Recently
these two approaches have been combined [18), in the
sense that an association between mathematical parame-
ters defining the transformations and real-life facial ex-
pressions was established, giving rise to an expression
editor, Ideally, modei dependent warps mimic the real
world realistically, however, at the present they are much
simpler than the real world. The lack of knowledge of the
transformation of complex objects renders the construc-
tion of accurate model-dependent warps unsatisfactory.
The present work falls within the category of model inde-
pendent transformations.

Of crucial importance in our model is the small number
of points needed in order to define the warp, their general
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FIG. 6. Animation using only ene snapshot. Top: Original image, source location of the anchor points marked on the image and destination
of the anchor paints, Bottom (lefl to right): Transformations using Gaussian radials with ¢ = 0.25 and the trade-off parameter & = 1073, 109,

and 0, respectively.

position, and the generalization of affine mappings which
is an integral component of the transformation.

Another model that defines a transformation by the
position of anchor points is the free-form deformation

FIG. 7. An unrealistic image caused by using thin plate radials in-
stead of the Gaunssian radials used in the previous figure.

model of Sederberg and Parry [27]. In this model the
anchors (control points) must line on a regular grid, thus
imposing at least four control points in the planar case,
but typically many more. Moreover, the position of the
points may nol coincide with the position of physical
features that are to be manipulated.

Another algorithm that has cumulated in an impressive
video Is the feature based image metamorphosis algo-
rithm [1], where the position of each point is the weighted
average of affine transformations determined by corre-
sponding line segments in the source and target images.
Since each line segment corresponds to two points, this
mapping is again driven by the position of at least four
anchor points, and in any case an even number of points
are needed. Thus a general affine transformation cannot
be realized by this method. We feel that the use of pairs
of points (line segments) is not as natural as using single
points to specify the transformation. In addition, seg-
ments cannot intersect, thus not every configuration of
anchor points is possible. Finally, the weight functions
governing the effect of each segment on the mapping are
not local, and each pair of anchors has a global effect.
This last point may be modified by using locally supported
weight functions.
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FIG. 8. Generalizing affine mappings in different ways. Top: Position of source and target anchor points. Sorrom (1eft to right): thin-plate
warp, (Gaussian warp, and affine least-squares warp (A = =). In all cases the mapping can be well approximated by an affine mapping far away
from the anchors. In the thin-plate case this affine map is different at different regions, uniike the Gaussian case in which the same affine component
appeanng in the definition of the mapping dominates the transformation in all areas away from the anchors.

A model-free warping algorithm driven by the position
of source and target anchor points is the nonlinear map-
pings for modeling of geomerric details of van Overveld
[29]. Like our model, the warp is affine whenever possible.
However, when more than three anchors are used, it is
rare that affine warping is possible, and a definition of a
generalization of affine warping is needed. Unlike the
Overveld model, in our model this is realized by the fact
that an explicit affine component is always present. The
use of the Gaussian basis function enables the affine com-
ponent to dominate the mapping away from the anchors.
While using the thin-plate radial, a minimal deviation from
the affine family of mappings, in the sense of bending
energy, is achieved. Finally, the rich mathematical struc-
ture of radial basis function theory enables additional gen-
eralizations such as the incorporation of nonexact inter-
polation, demonstrated above. The significance of these
generalizations is demonstrated in Fig. 8.

5.2. Image Warping and Face Recognition

Many applications that involve face images, and in par-
ticular face recognition tasks, require normalization of
faces. Invanance to lighting and viewing conditions is
traditionally handled by classical computer vision meth-
ods, but the variability caused by facial expression is
not. Thus, we have tried to construct a facial expression
transformation without ap explicit 3D face model, namely
to construct an R?* — R* mapping of (facial) images that
can handle a large number of facial expressions, using a
minimal number of constraints. These constraints should

rely on the position of few anchor points that can be
detected antomatically.

There are various alternatives for the construction of
such a mapping. Functions of a complex variable have
been suggested in such a setting [14] since R is naturally
incorporated into their structure. Analyticity is a primary
attribute of such functions, meaning that they are confor-
mal transformations. Therefore these functions cannot
reproduce a general affine mapping, a requirement which
is paramount in our case.

Another possibility is constructing a pair of B! — R
functions where each of these functions is constructed by
a tensor product of univarate functions. Such an ap-
proach involves tessellations of the plane, and requires a
relatively large number of points to be specified [3, 6, 13].
This drawback applies to other tessellation dependent
techniques, such as an adaptive meshing technique [30]
which uses a facial muscle control model defined on a
mesh.

Turning to the family of mappings defined in the present
waork, 2D radial basis function transformations overcome
the drawbacks previously mentioned. They are specified
by three or more points, generalize affine mappings, and
satisfy the global requirements while preserving the local
effect of each anchor point on its neighborhood. There
is a rivalry between the locality requirement and global
constraints. The choice of the specific radial basis function
influences the tradeoff factor between these notions. The
use of the thin-plate basis emphasizes the global nature
of the mapping, while the Gaussian basis enables the
stressing of locality, as we have demonstrated. These two
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families of basis functions are by no means the only ones
possible. We have held experiments with other base func-
tions such as 1, 1 << o < 2, with comparable success.

5.3.

A major motivation for this work was the successful
use of affine transformations in face normalization [11].
One feature of affine mappings is their group structure:
the family of affine transformations is closed under com-
position and inversion. This structure is attractive in inter-
active systems, since the position of the anchor points
can be successively tuned. Thus, the final oulcome is
memoryless. It has also a useful role in overcoming
aliasing problems as discussed in the previous section.
We have shown that radial basis mappings generalize the
affine transformation in various respects, but the group
structure is destroyed, Nonetheless, successive applica-
tions of radial basis mappings is possible, and the final
outcome is comparable to the one shot mapping deter-
mined by the total displacement of the anchor points in
case the displacements are small.

We have emphasized the application of this technigue
to face images, although it is valid for other images of
elastic objects, since the aforementioned constraints hold
for such cases as well.

The method we propose in this work can be employed
to map face images of various expressions to standard
facial templates. Thus, an appropriate selection of the
number of anchor points, their approximate location, and
the choice of the basis function can facilitate a 2D model
of facial expressions. Further research may give explicit
interpretation in facial expression terms (such as smiles,
frowns, etc.) Lo the exact parameters chosen.
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