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We present a testbed implementation for a foveated robot
vision system. To achieve foveation, the visual sensor simulates
nonuniform sampling and is mechanically directed toward a
specific fixation point. An interest operator is used to select a
sequence of fixation points. Successive snapshots of high foveal
and low peripheral resolution are combined to create a wide-
angle representation of the scene. Such visual processing has
been studied with primate and human subjects from a biological
point of view. The purpose of this work is to create an active
vision system with which we can study foveated machine vision.
The current implementation incorporates a CID camera posi-
tioned by a PUMA robot to pan and tilt around a fixed point,
a SIMD parallel computer, and conventional computers to con-
struct gray-level, edge, and interest maps from several fixations.
The system is highly modular, and its architecture permits the
efficient incorporation of sequential and parallel components
for real-time operation. We demonstrate the modularity of the
system and its potential as a testbed for active vision by incorpo-
rating two different attentional mechanisms and quantitatively
evaluating their performance on artificial and natural images.
We propose three types of norms that can be used for this
performance evaluation. e 1996 Academic Press, Inc.

1. INTRODUCTION

Where do we focus our attention next? When faced with
a new environment, we view it by moving our eyes to
fixation points (saccadic eyve movements) along a scan-path
at the approximate rate of three per second [1]. After a
short time—a few seconds at most—we have access to
visual data which represent a field of view ol approximately
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200°. This somewhat small amount of time is achieved by
directing computational resources to selecied areas only.
To accomplish this, we possess movable space-variant vi-
sual sensors (our eyes) which combine a high-resolution
central fovea with decreasing resolution in the periphery
[2]. Thus high-resolution processing is applied only where
necessary. It would require 1000 times more pixels to repre-
sent the whole field of view at the highest (foveal) resolu-
tion than the number needed for the actual space-variant
sensor. This perspective implies a remarkable reduction
of data and computational resources. How should this ob-
servation be taken into account for machine vision? Where
should the robot look next? If we adopt the philosophical
position that biological vision is the upper limit of a feasible
mechanism for sensory information processing, then we
have a clear motivation to produce biologically motivated
solutions in the context of machine vision. Until recently,
machine vision applications have used only uniform resolu-
tion and multiresolution images [3]. However, this is chang-
ing, as some vision systems with nonuniform sampling (fo-
veated vision) have appeared [4, 5], as well as active vision
systems [6, 7] and mechanical systems to support sensory
movement (robot heads) [8, 9].

Following each saccade, a [oveated vision system faces
at least two basic tasks (the so-called what?/where? dichot-
omy): (i) to analyze the information in the fovea and (ii)
to select the next gaze position from data projected ento
the peripheral region of the retina ( focus-of-arttention). The
latter task is one of the major characteristics that distin-
guishes a foveated vision system from a conventional ma-
chine vision system. Foveated vision is heavily dependent
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on this mechanism. A realistic biological model of focus-
of-attention is beyond the scope of current computational
vision, since this process is significantly context-dependent
and involves high-level processes ol pattern analysis and
object recognition. Similarly, a computer vision implemen-
tation of high order gaze control also requires specific
knowledge of and expectation about the objects in the
environment [10, 11]. However, we believe that it is still
of interest to study context-free, pattern-based image oper-
ators (interest operators) which select regions of interest
by invoking only low-level vision computations. Using the
context-free approach, many researchers have defined in-
terest points as points of high curvature (e.g., [12, 13, 14]),
while others have suggested a measure of “busyness™ in-
volving the smoothed absolute value of the Laplacian of
the data [15] or rapid changes in image gray levels [16]. It
has also been suggesied that generalized symmetry is a
more general concept for defining such points [17]. How-
ever, until now these interest operators have only been
applied to the vsual uniformly sampled images. In our
work, we study the problem of robot focus-of-attention
using foveated eye-in-hand sensors.

Another characteristic of human foveated vision is that
the visual system gathers partial information about the
surrounding environment by moving the focus-of-attention
and then determining the next step for the specific task.
While a single image is clearly represented in an ““iconic™
(though spatially transformed) manner on the retina and in
the primary visual cortex, it is uncertain whether successive
fixations are actually integrated to yield an “‘integrative
iconic buffer” in our brain [18, 19, 20]. In the machine
vision context, however, it is clearly useful to have such a
buffer in order to use existing object recognition methods.
Since information-merging methods and data structures
using a sequence of gaze positions have not been investi-
gated in great detail in the context of machine vision, fur-
ther examination with an actual foveated machine vision
system is desirable.

In this paper, we present a testbed implementation of
our system, called Fovla (FOVeated Image Application),
which will be used to study the applicability of visually
guided foveated gaze control for machine vision. The sys-
tem incorporates a CID camera positioned by a PUMA
robot to pan and tilt around a fixed point in 3D-space, a
SIMD parallel computer which simulates a foveated sen-
sor, and conventional computers to construct gray-level,
edge, and interest maps obtained from several fixations,
Figure | shows a scan path obtained by using our system.
This partial drawing by Paul Klee was used by Noton and
Stark over 2() years ago in their pioneering research on
human focus-of-atiention. Although we do not claim to
actually simulate human perception, nevertheless the gaze
paths exhibited by humans and our system are surprisingly
similar. This kind of scan path can serve as a subjective

FIG. 1.

Scan paths, (A) A human observer. {B) This svstem.

evaluation of the attentional algorithm. However, it is also
useful to have an objective estimate in order to quantita-
tively compare different attentional mechanisms. Thus as
an experimental tool, we propose three types of norms
that are used for this performance evaluation. Section 2
of this paper describes the system configuration and details
each of the modules. In Section 3, experimental results with
focus-of-attention mechanisms as well as the performance
evaulation method are discussed. Discussions and conclu-
sions are given in Section 4.

2. SYSTEM IMPLEMENTATION

Figure 2 shows the current Fovla system configuration.
In our current research we are primarily interested in gaze
control and image integration. Thus we have implemented
space-variant sampling, context free mechanisms for focus-
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FIG. 2. Fowvia system configuration.
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ittention, image integration over saccades, system cali-
tion, and robot control. In this paper, we reserve the
n “image™ for the data acquired by a single fixation of

camera, and “map” for the data merged by images
ained from several fixations. The system iterates the
lowing steps:

1) Input a wide-angle gray-level image R according
the space-variant sampling function.

[2)  Apply the focus-of-attention mechanism to R.

(3) Calculate a foveated gray-level image G and a fove-
xd edge image E from R.

{4) Merge G and E into unified long-term maps yield-
g a gray-level map LTG and an edge map LTE.

{(5) Update an interest map LTI by recording the reso-
tion (as a measure of interest) with which the cell at the
wresponding point in LTG and LTE is stored. This map
modified by a focus-of-attention mechanism described
i Section 2.3.2.

(6) Select the next gaze position according Lo the spe-
fic attentional mechanism and LTL

(7) Move the camera to the new selected position.

‘urrently, Step (4) and (5) are performed by conventional
sorkstations (Silicon Graphics Personal Iris); the other
teps are run on a SIMD parallel machine (MasPar), con-
iected to a Datacube frame-grabber and PUMA robot
:ontroller. These computers communicate with each other
1sing a specified protocol. However, as long as the different
nodules use the specified communication protocol, they
:an be developed separately and complied and run on
any available machine. For example, the image integration
module was developed independently of the other mod-
ules. It supports the specified communication protocol and
is a stand-alone process on the workstation. This is true for
both robot control and top-down gaze control processes,
although these are not discussed in this paper.

The main components of the system are space-variant
image sampling, bottom-up focus-of-attention, and inte-
grative iconic memory. In the following, we describe each
component in detail.

1.

The human monocular field of view is 208° [21]. The
combined binocular field of view is also 208 due to the
overlap in the monocular representation. Visual data flows
from the retina to the striate cortex, via the lateral genticu-
late nucleus. Since each hemisphere of the cortex processes
only one visual hemifield, a single hemispherical cortical
image spans only 104°. From a practical point of view, a
208" lens for the retina is not feasible. Thus we have arbi-
trarily restricted ourselves Lo a field of view about half this
size, which spans about 100°.

Space-Variant Sampling

Receptive Fields

FIG. 3. Space-variant image sampling,

The spatial sampling that covers this relatively wide
angle of view is not well defined, since the visual system
cannot be readily described in terms of pixels. In general
terms, however, it 15 possible to describe two main retinal
areas according to their spatial cone density, a foveal (up
to 3%) area with constant sampling rate and a peripheral
area where the sampling rate decreases according to a
power law [22]. To simulate this biological aspect in the
machine vision context, we define a computational model
of image sampling. In the following subsections, we de-
scribe our model of space-variant image sampling and its
implementation in the system.

2.1.1. Sampling model. The log-polar mapping model
is widely used as a model of space-variant image sampling
in machine vision, since it is rotation- and scale-invariant,
is useful for pattern matching [23], and conforms well with
the psychophysical evidence [2]. Wilson [24] proposes a
maodel for such a space-variant receptive field arrangement
and explains how the human contrast sensitivity function
arises from it. However, he makes no distinction between
the photoreceptors and the receptive fields. Since the ratio
of cones (photoreceptors) to panglion cells (receptive field)
is 1:1 in the fovea and definitely larger in the periphery
[25], this difference should be considered. Therefore, we
have modified his model to include space-variant sampling
of both photoreceptors and receptive fields by invoking
the log-polar mapping.

In our sampling model, which is shown in Fig. 3, the
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receptive fields in the periphery are arranged in a similar
fashion to Wilson. In the periphery, (i) receptive field size
increases as a linear function of eccentricity and (ii) spacing
between adjacent receptive ficlds is such that the diameters
of the two fields overlap by a constant fraction, about 50%.
Thus we have the lollowing:

= In the periphery, the center of a receptive field is lo-
cated on a ring the center of which is at the fovea.
= The eccentricity of the ath ring R, is

er R (I. + —-L" ﬂu}f o

{1-— fJu}r:m) 2 211

where

R, is the radius of the fovea (in degrees).

is the ratio of the diameter (in degrees) of the re-

ceptive field to the eccentricity (in degrees) of that

receptive field from the center of the fovea.

o, isthe overlap factor. If the receptive ficlds touch each
other, o, = 0. If they extend to the center of the next
field. o, = 0.5.

The above equation is equivalent to R, = Rpe™™

where

w = log (1 + 41-« ) (2-1-2)

~ L =8 )

* The radius of the receptive field on the nth ring is
Con Rn

2-1-3

- (2-1-3)

+ The number of receptive fields is — (I 0 per ring.
"|

(2-1-4)

We also use a log-polar mapping to describe the arrange-
ment of the photoreceptors within these receptive fields.
However, in this case we assume the following: (i) The
density of the photoreceptors in the fovea is equal to that
just outside it. (ii) In the fovea, each photoreceptor pos-
sesses its own output and thus functions independently as
its own receptive field. (iii) The photoreceptors are distrib-
uted uniformly in the fovea. (iv) Each receptive field forms
a disk of radius p photoreceptors and therefore contains
the same number of photoreceptors. This is the number
of photoreceptors within a disk-shaped window of dimen-
sions (2p + 1) % (2p + 1) placed around the center of the
receptive field. From the above assumptions, we obtain:

* The eccentricity of the nth ring of photoreceptors r,
in the periphery is r, = Rge™. (2-1-5)

* The number of photoreceptors in the periphery is

2z-p
A=) per ring. (2-1-6)

« The number of photoreceptors in the fovea is

ekl —0,))
In the fovea, every photoreceptor has its own private chan-
nel to a unique ganglion cell. This ratio of 1:1 between
photoreceptors and ganglion cells increases in the periph-
ery in a continuous manner. In our system we simulate
this sampling function by defining two distinct regions; a
foveal, uniformly sampled region and a peripheral region
that is processed as previously described.

212, Implementation of nonuniform sampling.  In or-

der to implement our specific choice of sampling function,

it is possible to select one of the following mechanisms';

(2-1-7)

= Optics. A custom-made lens can simulate our model
and produce an image that will be projected on a uniformly
sampled CCDY array.

= Analog VLSI. A nonuniform CCD array can produce
our foveated image with a commercially available lens [26].

* Video-rate filter. A normal video signal can be con-
verted to the foveated image using special hardware [27].

» Software filter. Conversion software can produce a
foveated image from a uniformly sampled image [5].

Although none of these can achieve enough resolution to
simulate biological vision, we have chosen the last method-
ology. It is more flexible than the others and better fits the
general idea of our system, that is, testing and experiment-
ing with different modules and algorithms for active vision.
In our system, each PE (processor element) in the SIMD
parallel machine can independently and in parallel access
a pixel stored in the frame grabber. Thus, simulating our
sampling model is fast enough for many applications.

A wide-angle lens (Cosmicar C30402) and CID camera
(CIDTEC CID2250) with exactly 512 X 512 square pixels,
provide us with over a 100° viewing angle and a uniformly
sampled image. The system resamples the photoreceptors
(R in Fig. 2) from this image. The data in the fovea and
in the periphery are stored on the PEs in different ways.
Each PE contains one photoreceptor in the fovea; on the
other hand, the periphery data are stored so that each FE
has p>p photoreceptors. This scheme is shown in Fig. 4.
To obtain the receptive field response (G and E in Fig. 2),
Gaussian filters and the methods described below in Sec-
tion 2.2 are employed. The results are also stored in the
PEs, so that each PE contains one receptive field output.
For example, the foveal area is taken to be the central

! Mote that the first cases cannot include overlapping receptive fields,
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FIG. 4. Data structure for space-variant image.

34 X 54 photoreceptors of the uniformly sampled image,
while the peripheral area contains 51 X 150 photoreceptors
and 27 X 50 receptive fields, given ¢, = 0.25, o, = 0.5,
p=3

22, Focus of Aitention

The idea of directing computational resources to loca-
tions where they are mostly required is obviously based
on the behavior of living organisms. While it is clear that
this is the strategy of choice for primates, among others,
it is far from obvious what are the visual cues that attract
attention over the many dimensions of vision. In [28],
Treisman describes a “Feature Integration Theory ol AlL-
tention.” In her conception, separable features such as a
color and orientation are registered “early, automatically,
and in parallel across the visual field,” thereby forming
“preattentive feature maps.” Spatially focused attention is
required to combine the different features. On the other
hand, in [29], Hillyard er al. state that “the selection of
different cues is initiated with latency that depends on their
complexity, in approximately the following order: location,
contour, color, spatial frequency, orientation, and finally
conjunction of these features.” According to this model,
each feature should be examined to see whether it can
determine the next eye position by itself, before combining
it into a unified interest map.

While visual attention is a major research topic in psy-
chology, neurobiology (see [30] [or a review), and the com-
putational [31, 32] aspects of vision, most of the work in
this area relates to covert attention. This term refers Lo a
situation where the gaze is fixed on a single image and the
focus of attention moves covertly within that image. In our
research, we are concerned with overr attention where the
gaze is physically shifted to view a sequence of images

according to some meaningful criterion. We do not seck
to model the actual human visual attention process but
rather to explore the use of context-free, contour- and
edge-based overt attention.

By limiting the scope of attention to the visual dimen-
sions of contour and edge data, it is clear that, generally
speaking, eye movements are strongly task-, expectation-,
and context-dependent [33]. On the other hand, when
tracing the eye movements of newborns, it scems that there
exist certain “hard wired™ context-free attentional mecha-
nisms, such as fixating corners or borders of objects [34]
or around a single prominent edge featurce [35]. Thus, it
seems plausible that earlier, low-level, context-free mecha-
nisms are gradually merged with more context-dependent
algorithms, as more and more knowledge about the world
becomes available. Thus it is very natural for a system like
ours to initially employ context-free attentional mecha-
nisms as a core for more elaborate, context-dependent al-
gorithms.

With respect to machine vision, researchers have consid-
ered points of high curvature ([12, 13, 14]), rapid changes
in image gray levels [16], and generalized symmetry [17]
as features that might serve as “interest areas”™ and can
be detected with low-level vision algorithms. We have cho-
sen Lo implement the following two interest operators to
compare their performance: corner detection and general-
ized symmetry [17]. These interest operators are applied
to the peripheral region of the current image R and the
next gaze position is selected according to the response.
The details of these operators are described in the follow-
ing subscctions. Though these operators provide us with
interest points based on the current gaze direction, we still
require a focus-of-attention mechanism to create the link
between this interest point information and the currently
accumulated information. We describe this interaction in
Section 2.3.2,

2.2.1. Cornerdetector. The most commonly used cor-
ner operator is the Moravec operator [36]. This operator
calculates the sums of the squares of the differences of
pixels in each of the four directions over a small window.
Then the minimum of these variances is computed as the
value of the interest operator. Finally, the interest points
are obtained from the local maxima of these values. This
operator is widely used to obtain interest points because
of its simplicity. Here we have chosen a method motivated
by a set of representations obtained from orientationally
selective receptive fields (simple celly) in the visual pathway
[37]. Electrophysiologically it has been reported that sim-
ple cells respond maximally Lo straight-line stimuli with a
given orientation and location; if either of these is varied,
then the response drops. Thus a set of simple cells at each
image point can represent potential multiple orientations
at that point corresponding to a corner or other complex
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FIG. 5. Cormer interest operator.

feature. In [37], Zucker uses an elongated difference-of-
Gaussians to model these simple cells.

In our implementation, we use a simplified version of
simple cells, as shown in Fig. 5. The essential characteristics
of this approach are: (i) the receptive field models a step-
edge template for a specified direction, (ii) these templates,
for each direction, are applied to the image data R by a
process of convolution, (iii) the responses characterize the
orientational representation, and (iv) the corners are de-
tected by choosing points that indicate multiple responses.
Mathematically these templates are specified by a collec-
tion of operators,

Tdi, j) =10
0.0

if sin( )i + cos(#)j = 0.0

otherwise, (2-2-1)
where # indicates the orientation of the operator and p
indicates an image position, Since the templates are dis-
crete. the orientation # is quantized into eight different
directions & (k = 1. ..8). Each of these can be interpreted
as a model of an edge passing through its spatial support.
After applying these eight templates to the nonuniformly
sampled image, we have eight outputs E(p) at each spatial
location p. These Eg(p) are the elements of the orienta-
tional representation of the scene. We can obtain corners
by picking those locations that have multiple responses,
that is where two template outputs are above a predefined
threshold. In a similar fashion, we can also determine the
edge at each location by selecting the maximum response
from the orientational representation, that is, max,_;_g
Ei(p). In the past, corner detectors have been defined
for conventional uniformly sampled images. However, in
general, orientations are not preserved under nonuniform
sampling. Nevertheless, since log-polar sampling function
is a conformal mapping, local orientations are still pre-
served. Thus, by restricting the interest operator to local

FIG. 6.  Svmmetry inlerest operalor.

neighborhoods, we can still use the conventionally defined
operator for foveated images. The orientation representa-
tion is also useful for detecting curves and other image
features [38].

222, Symmetry detector.  Since natural and artificial
objects give rise to a certain measure of coarse symmetry,
it has been demonstrated [17, 39] that the peaks of the
activity map produced by this operator are useful for detec-
tion of regions of interest. We believe that this is also true
for the nonuniformly sampled image. In [17]. the symmetry
operator defines the measure of symmetry 5,(p, o) at each
pixel position p in direction 4 as by the following equations
(see Fig. 6):

Sdp )= 2

(LFETT )

Di, (YP(E, fyrr, (2-2-2)

where

_fa a
Vo= (ﬂ.rph'_}fp'ﬁ) (2-2-3)

=log (1 + ||Vp.|) is the edge strength at position py

(2-2-4)
8 = tan~" (Vp,) is the direction at position p,
(2-2-5)
P,« g+ 8
Fip, v = {fi e == -‘I’} (2-2-6)
D (i, [y = ——— e lPrrjie (2-2-7)
2w
(i, j) = (1 — cos(8; + 6 — 2a;))(1 — cos(6, — 6;)).
(2-2-8)

The isotropic symmetry operator 8(p) is then defined by
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$(p) = [, Sulp, e (229)

The local maxima of 5{p) give us the interest points in the
image. As described above, this method does not reguire
object segmentation or knowledge about the scene. Hence
it is applicable to natural scenes containing multiple objects
and can be used after the edge detection stage.

In our implementation, we have slightly modified the
above equations to use the orientation representation de-
scribed in Section 2.2.1. The measure of symmetry S.(p,
i) at each pixel position p in the direction ¢ is redefined
by the eqguation

Sip. W)= 2 2 DJSij)

(i IEN p aiar=1..8

(2-2-10)
-PU(i j. L. m) - E{p;)- E.(p;).

where
Pij Lm) = (1 —cos(h+ &, — 2(}:,;]}(1 — cos( & — 8,.))
(2-2-11)

{ and m are the indices of the orientation at image
locations p; and p;, respectively,

Efps) and E,.(p;) are the strengths of the orienta-
lional responses al image locations p; and p; re-
spectively, as described in Section 2.2.1.

The isotropic symmetry operator §'(p) is still defined by
Eq. (2-2-9). We use the local maxima of this operator as
the interest points in the scene. Again, as is the case for the
corner detector, the local implementation of the operator
approximates the desired results due to the fact that local
angles are preserved.

23, [Integrative Iconic Memory

Though there is no evidence for the existence of an
iconic buffer in primates, it is obviously necessary for an
active, foveated vision system to maintain an up-to-date
image of the whole environment, integrated from the single
foveated images of single fixations [40]. Thus, we have
chosen a data structure and merging algorithm for inte-
grative maps as described below. Gray-level (G) and edge
{(E) maps are transferred to this module and merged into
the integrative maps LTG and LTE, respectively.

231, Daiastructure.  In our current experimental im-
plementation, we restrict the camera movements to pan
and tilt around a fixed point in 3D space. This restriction
is useful for quick eve movements (saccades) that do not
involve visual feedback. Once the next gaze position is
decided using the focus-of-attention mechanism, we can

determine the direction of the target and rapidly position
the fovea on it independently of the distance to the object.
On the other hand, to support camera translation, we
would need the distance between the current camera posi-
tion and the target to determine the amount of translation
in order to bring the target onto the fovea. Unless we have
the distance, perhaps by using a rangefinder, we need visual
feedback to check whether the target actually appears in
the fovea after we move the camera.

From these assumptions, we observe that a spherical
surface is much more appropriate than a planar 2D array
for storing the images from different view directions. In
order 1o implement a spherical data structure, we need
to tessellate it into cells that are preferably symmetric,
identical in shape and size, and controllable in specific
resolution of tessellation. However, it 15 known that there
is no tessellation method that satisfies these characteristics.
There exist only five regular solids for tessellating a sphere
into faces, but these do not provide enough resolution.
The best that can be achieved is the well-known geodesic
data construction as follows [41]: (i) use one regular solid,
(ii} subdivide each face into surfaces by dividing each edge
of a face into f (frequency of geodesic division) sections,
and (iii) project the subdivided faces onto the sphere.

Several data structures for this geodesic dome have been
proposed. Horn [42] has used a hierarchical tree structure.,
Fekete and Davis [43] adopted a complex node labeling
scheme for a quadtree data structure to represent the tes-
sellated sphere using an icosahedron. Chen and Kak [44]
have proposed an alternate method for storing an object-
centered feature map. In their approach, logical adjacency
between elements of the data structure corresponds to
physical adjacency between the cells on the sphere. Since
we need to project a receptive field onto a circular region,
this point is very important for fast processing. Therefore
we have used their data structure for the integrative maps.

The degree of tessellation (that is, [) is determined by
the space-variant sampling model described in Section 2.1,
In the following, we assume that we need the same spatial
resolution on the geodesic dome as exists in the fovea. In
[42], Horn writes that a lower bound on the angular spread
# (the half-angle of the cone formed by the hexagonal disc)
for a tessellation with n cells is

87
3V3n

= »* 180/ [degrees). (2-3-1)

From (2-1-7), the radius of the fovea (R;,) corresponds to

. S
‘-"".r.lr{-I . Ou}’\;:’;

|[photoreceptors].  (2-3-2)

Ny

Since the angular spread of a photoreceptor is
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as Ry
N{

o (2-3-3)

we gel o= 1293 878 by substituting for  in Eq. (2-3-1)
using Eq. (2-3-3), and [or N, using Eq. (2-3-2), given R, =
30° ¢, = 025, 0, = 0.5, p = 3. That is, we need 1,293 878
cells to provide enough resolution for mapping images
onto the geodesic dome. Since in our implementation [44]
we have

n=10x+2 (2-3-4)
where fis the frequency of geodesic division, we therefore
require f = 360 in order to obtain the necessary number
of cells.

We have implemented this data structure and a merging
algorithm based on a “winner-take-all” algorithm [14]. The
G and E images are transferred to this module and merged
into the long-term maps LTG and LTE, respectively. Si-
multaneously, the integrative interest map LTI is modified
so that the cell at point p in the map LTI, LTI{p), records
the resolution with which the cells at the corresponding
points in LTG and LTE, L7TG(p) and LTE(p), are stored.
Since points with low resolution are likely to be investi-
zaled next by the system, LTI represents the measure of
interest by the resolution, and its local maxima indicate
the previous fixation points.

232, Merging algorithm. For a given fixation point,
there exist corresponding foveated images G and E of the
original scene. Thus successive fixations provide different
representations of the same scene. We employ the winner-
take-all algorithm to integrate these representations into
one integrative map [14]. In this algorithm a cell in the
integrative maps at point p is replaced by new data only
if the resolution of the new information, r(p), is higher
than the current value of LTI{(p). In this case, LTG(p),
LTE(p), and LTI p) are replaced by G(p), E(p), and r{p),
respectively.G(p), E(p), and r(p) are the gray-level data
obtained {rom the current fixation that is mapped onto
point p in the map LTG, the edge data that are mapped
onto point p in the map LTE. and the resolution data that
are mapped onto point p in the map LTI, respectively.

The LTI map is used by the focus-of-attention mecha-
nism to simulate the scan path. Using context-free gaze
mechanisms, such as our interest operators, the system is
prone to get stuck at a local point of high interest value
or to oscillate indefinitely between a few points [31]. To
avoid these problems, we update LTI Lo reflect the best
available resolution at each point, as well as to include
the time elapsed from its last update. We define f; as the
forgetting rate, ry as the resolution in the fovea, and ry,.
(Fuax = r¢) as the highest resolution in the periphery. We
then make the following modilications to the normal win-
ner-take-all algorithm described above.

(i} The cells of LTI that correspond to the curren
foveal region are set to the value ry + f,, instead of r, =
r(p), as in the normal winner-take-all algorithm. That is
LTI(p) = ry+ [.if the point p is in the current foveal region

(ii) Each time the system moves its gaze to a nev
fixation point, the value of the LTI cell is decreased by 1
That 15, LTHp) = LTI(p) — 1 for all points p. If LTHp
is less than 0, the value is left unchanged.

(iii) For a point p to be the candidate for the nex
gaze position detected by a interest operator, the value o
L.TI{p) should be less than or equal 1o r,,.

The parameters related to this algorithm can be selected br
the user. This decision will influence whether a “forgettin,
mechanism’™ (i.e., points (1) and (i) above) or the norma
algorithm is employed. For example, if we set f, &
(Fmax — r7). the system will select the next gaze position
independently of past information. On the contrary, if w
sct f; to a very large number, the system will not select th
previously investigated point as the next gaze position.

3. EXPERIMENTS

Active vision systems are currently in their infancy, an
much trial and error will be required in order to evaluat
emerging algorithms and methods. Thus, modularity is on
of the main goals of our system. While the global desig
concept bears a certain resemblance to biological system
in its foveated sampling function and the asynchroneous|
accessed multiple maps, the system allows for testing ¢
various algorithms for each of its modules. At the currer
stage, we have chosen to test a module that is fundament:
to any active vision system. the early vision attention:
mechanism based on the detection of interest points. [
the following, we describe the evaluation norms that w
have developed for comparing atientional mechanism:
and we describe the actual experiments and conclusior
that were drawn from them.

3.1. Experimental Methods

After the eve-to-hand calibration described in the Aj
pendix, we point the camera at the scene. The field-o
view is, as previously described, 104°, the viewing distanc
is 50 cm, the maximal image size is 80 cm, and the maxim;
pan and tilt angles are 45°. When using two-dimension;
targets, they were usually affixed 1o a vertical room divide
We were able to observe the system performance by di
playing the integrative iconic memory, LTI on a grapl
ics workstation.

However, although the integrative iconic memory an
the scan paths can serve as subjective evaluations of th
functioning of the attentional algorithm, it is also usef
to have an objective estimate of system performance
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order to compare different interest operators. A reason-
able performance measure is the convergence rate, that is,
the distance between the actual map (reference map) and
that obtained by the system as a result of the number of
fixations. In [14], Yeshurun et al. utilized the convergence
rate of a specific norm as a function of the scan path. They
used scenes containing outline contours rather than gray-
scale images; the original known high-resolution scene
model was used as the reference to construct the norm. In
our case, since we employ gray-scale scenes with a field of
view of more than 1007 as the tarpet scenes, and a single
view cannot cover such a wide angle of view, we require
a long-term gray-level reference map (U). To create this
reference map, we scan the whole scene using only the
tovea (that is, the uniformly sampled high-resolution area)
before we start the experiment. This is easily implemented
with a stand-alone server process which sends top-down
commends to move the camera, as described in Section 2.
We also use an alternative reference interest map (K)
which is obtained by having a person subjectively choose
the salient points and focusing the fovea only at these
points. Thus in this map the interest areas surrounding the
points we have selected have the highest value, while other
areas will have lower interest values.

Once we obtain a reference map for a scene, it is easy
to define norms that compare composite long-term maps
(LTG & LTT) afier each scan with these reference maps.
We have chosen three types of norms,

> U(p) — LTG(p)?

Norm-A £ N(LTC) (3-1-1)
> V) - LTG(p)P
' 2 N(L)
Norm-B N(LTG) XN{LTG} (3-1-2)
> U(p) — LTG(p)F % LTHp)!K(p)
Norm-C N(LTG) :
(3-1-3)

where U(p), K(p), LTG(p), and LTI p) are the values
of the maps U, K, LTG, and LTI at point p, respectively.
N(L1) is the number of pixels in U. N{LTG) is the number
of pixels for which LTG possesses data. 2, [|[U(p) -
LTG(p)|* is the sum of the L2 norm between the reference
map L and the current long-term gray map LTG over the
area where LTG possesses data. LTI is the interest map
which stores the best local spatial resolution for LTG at
each point. K 15 the resolution map in which we manually
select the interest points,

Norm-A is normalized by the number of pixels in LTG.
Although this norm is quite basic, it is normalized by the

size of the areas in the map that have already been acquired
by the system. Thus, the system might converge even if it
has only scanned a very small area of the scene. We have
used Norm-B to compensate for the actual area that the
system has scanned, because Norm-B is multiplied by the
ratio of the number of pixels in U to that of LTG. Obvi-
ously, evaluating the distance between any two maps isa
nontrivial problem, and hence any formal norm is not very
likely to capture differences that humans consider im-
portant. Thus, we employ an additional norm, Norm-C,
that might more closely reflect this type of subjective judg-
ment. The K map actually represents the relative impor-
tance that the human operator assigns to each region (since
it is constructed manually). By normalizing the L2 differ-
ence using the ratio between LTI(p) (the interest value
assigned by the attentional mechanism) and K(p) (the in-
terest value assigned by a human), we attempt to empha-
size the performance of the system in “important™ areas
and to neglect its performance in relatively *unimportant™
areas. In the experiments described below, we use these
norms to illustrate the performance of the focus-of-atten-
tion mechanism, as well as to determine which norm is
appropriate for characterizing it.

We have employed three types of scenes in our experi-
ments: (i) single object, (ii) multiple objects, and (iii) natu-
ral. The experiments with single-object scenes permit us
Lo observe how the gaze moves to locate a target. Different
sizes of squares and disks were used as targets. Using
multiple objects permits us to determine how the system
selects the scan-path among them. We have presented two
natural scenes in this paper; one is the well-known drawing
by Noton and Stark [1], used in their experiments with
humans, and the other is a typical 3D laboratory scene. In
the following subsections, we illustrate the experimental
results vsing both L2 norms and scan-paths. The resulis
will be discussed in Section 4.

32. Single-Object Scene

In this experiment, we attached white squares and circles
of size 10, 6, and 2 cm to a black background. The camera
was initially pointed at a target 40 cm away from the object.
The results of this experiment were rather similar for the
circles and squares, and the convergence rate was also
similar for all three norms. It can be seen in Fig. 7 that
the symmetry and corner operators converged in a similar
manner and that the convergence rate depends on the
size of the object; the smaller the object, the faster the
convergence. This is also to be expected, since a smaller
object can be covered within fewer fixations. The main
point of this experiment was to test the stability of the
two benchmark operators and to assure that the attention
mechanism did not get stuck at unexpected locations.

Performing the same experiment on larger objects
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FIG. 7. Convergence graphs [or a single object. (a} L2 Norm A with cornerity operator for a disk. (b) L2 Norm B with cornerity operator for
a disk. (c) L2 Norm C with cornerity operator for a disk, (d) L2 Norm A with symmetry operator for a square. (e) L2 Norm B with symmetry
operator for a square. (f) L2 Norm C with symmetry operator for a sguare.

(squares and circles of size 14 cm}, we have found a differ-
ence between the behavior of the symmetry and corner
operators. The symmetry operator tends to achieve better
results for the lirst {or first two) fixations. This can be
explained by the fact that the symmetry operator yields
higher values in the vicinity of the center of gravity of an
object. Thus the view obtained using its first fixation is
usually better than that obiained by the corner operator,
which will tend to fixate along the border of the object.

33 Muliiple-Object Scene

In this experiment, the scene consisted of a few artificial
objects. The initial position of the camera was as in the

previous experiment, and the scene was scanned using sym-
metry and corner detection. Figure 8 shows the gaze path
for multiple objects using corner detection. Analyzing the
convergence graphs for such an image (Fig. 9}, it is evident
why it might be necessary to use different norms under
different circumstances. Notice that while the convergence
is nonmonotonic for Norm-B, it is much smoother and
more monolonic for Norm-C. Keeping in mind that
Norm-C actually takes into account those areas that hu-
mans consider important, it would seem to make sense to
use this particular norm to ultimately evaluate the perfor-
mance of the operators.

Three different gaze control strategies were tested using
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FIG. 8. Scan path for a multiple-object scenc.

the strategy described in Section 2.3.2 (the scan paths and
convergence graphs with symmetry detection are shown
in Figs. 100 and 11, respectively): (i) Ignore any knowledge
regarding the location of previous fixation points and select
the locations with the highest current interest values (Fig.
10a). (ii) Use all knowledge regarding previous fixation
points, thus avoiding a return to a previously selected point
(Fig. 10b). (iii) Partially use previously obtained knowledge
by avoiding the use of recently sampled fixation points by
including a forgetting factor, as defined in Section 2.3.2
{Fig. 10c). From the experiments we have done, it is evident
that the intermediate updating policy, (iii), performs better
than the other two. If one were to only use the currently
available data and ignore all knowledge pertaining to previ-
ous fixation points, this might lead to a situation where the
system essentially becomes stuck and does not converge.
However, il one saves previous fixation points, the system
will not be able to find a new gaze position afier several
gaze movements. It is well known that human scan paths
tend to repeat unless the scene changes. Therefore, updat-
ing policy (iii) permits us to simulate such a gaze move-
ment pattern.

2000
—@— Norm-A
—+— Morm-B
—11— HMorm-C
E':Uﬂﬂ"‘
=
o I R e L
o 2 a4 ] 8 0 12 1a

Fixation Mumber

FIG. 2. Convergence graph for a multiple-object scene 1.

34. Natural Scene

The first image we used is a binary image that depicis
a drawing by Paul Klee and was extensively employed for
human psychophysical experiments. We have employed
the symmetry operator to scan this image, and though we
know that the psychophysical scan path is not very stable
and might vary from person to person, the similarity be-
tween the human scan path and the symmeiry operator
scan path is quite striking (see Fig. 1). In another example,
shown in Fig. 12, we explore a gray-level image of Einstein.

Applying the symmetry and corner attentional operators
to a live natural 3D scene (our laboratory), we have found
that the two methods yield similar results, with practically
every updating method, and converged within 8-10 fixa-
tions. It should be noted in this regard that the natural
scene we have used consisted mainly of low spatial frequen-
cies. In order to more compleiely assess atientional opera-
tors on natural scenes, it would be necessary to experiment
with scenes containing various spectral characteristics,
since attentional operators are prone to fixate on textured
areas with high spatial frequencies.

4. CONCLUSIONS AND DISCUSSION

In this paper, we have presented a testbed implementa-
tion of an active, foveated vision system. The system is
highly modular and consists of processes that asynchro-
neously update multiple maps that represent various as-
pects of visual data. This design facilitates incorporation
and testing of existing and emerging computer vision algo-
rithms in a single environment.

In order to demonstrate the modularity of the system
and its potential as a testbed for active vision, we have
implemented three of its crucial modules, gaze control,
image integration, and robot control. We have tested two
attentional algorithms and carried out a benchmark study
using this environment. Such a study requires a quantita-
tive evaluation of the performance of the tested system.
Thus we have developed specific measurement norms that
attempl to incorporate human knowledge regarding the
relative importance of miterest points on the image.

The experiments we have carried out show that the sys-
tem is stable and that the integrated image it acquires
indeed converges. We have tested two specific attentional
mechanisms and found that, in general, the strategy of
choice might be a hybrid one that consisis of applying the
symmetry operator for the first fixations (for the early
detection of targets) and then the corner operator. An
interesting unresolved question is how to combine the two
operators so that they at all times function in concerl. This
is a very important question since it is well known that there
are several context-independent cues for gaze control. The
convergence graphs show that while the straightforward
norms of image distance (A and B) are somewhat oscilla-
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FIG. 10. Scan paths for a multiple-object scene 2. (a) No memory. (b} Infinite memaory. (c) Forgetting factor 3.

tory, the human-based norm (C) was usually monotonic,
We have also demonstrated the advantage of using an
intermediate rate of forgetting over two other approaches,
namely, a no-memory and an infinite-memory system. It
remains to study how related this forgetting rate is to the
contents of the scene.

In addition to the unresolved questions mentioned
above, we are also studying several gaze control mecha-
nisms and the applicability of visually guided foveated gaze
control for machine vision using this system.

APPENDIX

System calibration is essential for all vision systems, es-
pecially an active vision system. Though many calibration
methods have been studied for machine vision systems,
they are usually rather specific to the experimental situa-
tion [45]. We require a calibration method that is suitable
for our particular system. We need to know the relative
position and orientation (i) between the hand (end ef-
fector) and the robot base and (ii) between the camera
and the end effector. The calibration of parameters (i) is
incorporated in RCCL [46], which we use to control the
PUMA. robot. We need to calibrate parameters (ii) to
direct the camera mounted on the robot to the target di-
reclion.

A characteristic of our system is that we cannot use the
exact positional information of targets on the image, except

300
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FIG. 11. Convergence graph for a multiple-object scene 2.

for the fovea, because the resolution changes in the periph-
ery. However, since we are employing an active vision
system, we can intentionally move the sensor to achieve
calibration. This is not the case with conventional calibrat-
ing scheme. With this in mind, we have developed the
following active calibration method, with which we can
automatically calibrate the system before each experiment.
This methodology is used to calibrale the six geometric
parameters (eye-to-hand calibration) which represent the
three rotational and three translational parameters (R and
{x;. ¥es 2.}, respectively) that relate the end effector of the
six joints of the PUMA 560 to the CID camera coordinate
system. By intentionally moving the camera, the method
calculates these parameters using the available estimated
rotational parameters R, and translational parameters (x,,,

Yeis Tai)

Calibration of Rotation Elements

In the following steps, we assume that estimates of the
optical calibration and geometric parameters are already
available. We can use the previously calibrated parameters
or manually measured parameters as these estimates, Ac-
cordingly, we obtain

X X\ e
Ve R Yar ¥r
= > : (A-1)
Lee ZH -z.r
1 0 0 0 1 1

where (X.. Ve Z..) i5 a three-dimensional position vector
relative to the camera coordinate system (“‘virtual camera
coordinate™). (x, y, z,) is a position vector of that point
relative to the end effector coordinate system. (X, Vo o)
is an estimated transitional vector of the focal point of the
camera relative to the end effector. R, is a 3 % 3 matrix
composed of rotational parameter estimates. Because of
error, this (x.. ¥. Z..) is not the actual camera coordinate,
We call this coordinate system the “virtual camera coordi-
nate” (VCC). We use the notation (x_ y. z.) for the “actual
camera coordinate” (ACC) system. In Step 1.1 (below),
we calculate the yaw and pitch parameters, and the roll
element is calculated in Step 1.2. Tn these steps, R’ is used
to express the pitch and yaw errors in R, R. 15 used to
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FIG. 12. Scan path for a 2D image. (a) Initial fixation. (b) Sixth fixation. (c) Tenth fixation. (d) Thirteen fixation.

represent the rotational parameters after Step 1.1. When
the rotational parameters are calibrated, the translational
parameters also need Lo be updated because they are de-
pendent on the rotational parameters. (x., Yo, £ 15 used
for the estimated translational parameters after Step 1.1
and (x, V&, zo) after Step 1.2,

Step 1.1, Calibration of pitch and vaw angles.  First,
the operator moves the camera so that a mark placed in
the scene is at the center of the image, that is, along the view
direction. Then the system translates the camera along the
estimated view direction (Z,. direction) by 4, = 0 and
dy < 0. If the available parameters are correct, the mark
stays at the center of the image and we need not proceed
further. Otherwise, the mark does move in the image. Let
us define f (k = 1, 2} as the mark position in the image
and f(k = 1, 2) as the angle between the direction of the
mark and the direction of the image center. I) and [, are
obtained by simple image processing. Since we employ a
small white mark on a black background for the calibration,
simple binarization will permit us to calculate its center of
gravity. If the mark does move in the image, we can calcu-
late the ¢ and & from I, and /;, respectively. From these
observations, we can obtain the angle (A#.) between the
2. axis and the Z,. axis as follows:

Af. = —tan™! (

(d, — d,) sin(8,) sin( &) )
dy cos(6,) sin(f) — d» sin{#,) cos(6:)/

(A-2)

Let Af, be the angle between the X axis and the direction
the mark moves. From A#, and A#,, the direction of £,
relative to ACC is

(cos (g = &Ei,,) cos(A8, — ),

L ' o
CDS(2 J'i'hl!i":)Slnl[fi'uﬁI ), .*.m(2 ﬂﬁt)),

That is,

(—sin(A6,) cos(AB,), —sin(A6,) sin(Ad,), cos(Ad,)).

(A-3)

The pitch (Afp) and vaw (A#y) to match the Z,. axis to
the Z. axis are calculated by solving the equations

—sin(Ad. ) cos(Ad,) 0
R'| —sin(A8)sin{Ag) |=]0 (A-4)
cos(A#.) 1
where
cos(Af,) sin(Ag,)sin(Ad,) sin(A6,) cos(Ad,)
R = 1] cos(A#,) —sin(A#,)
—sin(Ad,) cos(Ad,)sin(Af,) cos(Ad,)cos(Ad,)
(A-5)

is the rotational matrix needed to compensate for the error
in the available parameters, assuming the roll error is 0.
Under the assumption (0 = Af, < 7/2, we obtain

Al = t: I( sin(A@;) cos(Af) ) e

P \Veosl(AR,) + sin’(AB) sin’(A8,) (4:6)
in{Ag.)sin(Af,

A#, = —tan™! (Sm{msi:;i% }). {A-T)
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Step 1.2, Calibration of roll angle.  As a result of Step
1.1. we have estimated parameters that relate the end ef-
fector coordinate to the camera coordinate as

Ko 0 Xk 5
¥ee R’ 0 R, Ve )| ¥
2 B 0 za N =
o o 0o 1/\e 0o 0o 1/\1
! (A-8)
Xen\ fx,
R, Ya il ¥
zh i =
0o o o 1/\

where R, is the matrix defining the calibrated rotational
parameters in Step 1.1.

These estimated parameters provide us with the infor-
mation to rotate the end effector coordinate system so that
the Z, axis matches the Z_ axis. We still need a roll angle
to match the X, axis to the X, axis and the ¥, axis to the
¥, axis. To calculate the roll angle, the camera needs to
be moved so that we can see a mark at the center of image.
Then the system translates the camera along the estimated
horizontal direction in the image (X, direction). If the
current parameters are correct, the mark will move along
a horizontal line and we do not need this procedure. If the
mark moves in another way, we can calculate the A#, from

the direction of movement A#, as follows:
Afg. =7 — AB.. (A-9)

The final rotational parameters (R) are calculated as
tollows:

e cos(AB) —sin(Af) 0 0
¥, sin(A#,) cos(Ad) 0 0
.| 0 0 1 0
| ] ] 0 1
Ko X,
R. Yer t] ¥
' (A-10)
b | B
g o o 2F%t
'ti'f 'Tl'
B R Yer || ¥-
o |
0 o o 1/ 2\

The following procedure calculates the calibrated transi-
tional vector of the camera focal point relative to the end
effector (x,, v,. z,) based on the translational parameters
(Xt ¥ews Ter)

Calibration of Translation Elements

Just as the rotational parameters can be determined by
translating the camera, the translation parameters can be
calculated by rotating it. For example, by making pan rota-
tions of a," and a-°, and observing the target position errors
(e," and e,", respectively), we can compute the x and z
elements of the translation parameters as functions of the
distance between the target and the estimated pivot posi-
tion. If we can obtain this distance with a rangefinder or
some stereo method, we can then determine all of the
translation parameters by making pan and tilt rotations of
the camera. However, this approach is not robust because
we cannot accurately compute ¢, and e, especially with a
foveated sensor. Here we adopt another approach. which
is more direct, as shown below.

Step2.1.  Calibration of the x element.  First the camera
is moved so that a mark placed in the scene is located at
the center of the image. Then system rotates the camera
around the ¥, direction by a," and —a,". Let I; and I, be
the corresponding X coordinates of the target made with
pan rotations of @, and —a,. If the current estimate x7, is
correct, the mark will move by the same distance but in
the opposite direction (on the X, axis); that is, =/, = L.
If the mark does not move by the same amount, we update
the current x element (x7) of the translation parameter
and iterate this procedure until the target moves by the
same distance. If the absolute value of /; is bigger than the
absolute value of [, we set 1, to 1, — Ar. Otherwise, we
set xp, to x3, + Ar. Arcan be taken as the maximum accuracy
of PUMA movement, or some other predefined accuracy
associated with the system. The updated value of x7, is the
calibrated x element x,.

In this approach, if the current x element of the transla-
tion parameter is far from the correct value, it would take
considerable time to complete the procedure. But since
we normally use this calibration procedure only to tune
the existing parameters, it usually does noi take a long time.

Step 2.2.  Calibration of the y element. We can cali-
brate the y element y, of the translation vector by making
tilt rotations along the X_ axis as in Step 2.1.

Step 2.3, Calibration of the z element.  First, the cam-
era is moved so that a mark is at the center ol the image.
Then the system rotates the camera around one of the X.
or Y, directions by a;°. Let /5 be the distance of the target
movement on the image. We can oblain the correct value
for /5 (L;) from the mapping parameter. If /5 is equal to
L. the current parameter z7, is correct. If /5 is bigger than
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Ls, we set zi to 2 — Ar. Otherwise, we set z7, to zi, —
Ar. We iterate this procedure until /; is equal to L;. The
final value is the calibrated z,.

Finally we replace (x7,, v%, z&) in (A-10) by (x, y. 2,)
and obtain the calibrated eye-to-hand parameter. As indi-
cated above, the required image processing and arithmetic
operations needed for this calibration method are very
simple and fast.
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