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The reliability, speed, and complexity of virtually any face recog-
nition system are substantially improved if the location and the scale
of the faces are known. We propose a method for automatic and
robust detection of the eyes and mouth using the context free gen-
eralized symmetry transform and knowledge of faces. The features
are extracted from the image of the intensities gradients and are
then used to normalize the face images. We show that a normaliza-
tion procedure based on affine transformations whose anchor points
are the locations of the eyes and mouth substantially increases the
effectiveness of general purpose classification techniques in face
recognition.

Other normalization procedures for avoiding the effect of back-
ground and varying light conditions are proved to be instrumental
as well. @ 1998 Academic Press

1. INTRODUCTION

Construction of automatic face processing systems is valu-
able for many applications in computer vision and computer
graphics, as well as for understanding the principles underlying
biological face recognition mechanisms. Surveys of face recog-
nition systems are found in [2, 28, 35].

Some researchers have tried to extract facial features based on
general low-level vision mechanisms or even directly from the
unprocessed pixels. These include the use of principle compo-
nent analysis [19, 41] or connectionist approaches with pixels
as features [3, 36, 38] or with edges [25]. These methods are
sensitive to changes in the background and of the viewpoint
which give rise to the curse of dimensionality [8]. We show that
the performance of standard classifiers markedly improves if an
appropriate preprocessing procedure is applied.

An alternative is to use facial models [10, 20, 23, 27, 40,
42]. Locating facial features is indispensable in order to find
the model parameters. Finding features is done by correlation
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[1] (possibly in multiscale [4]} or by using Gabor or Gaussian
derivative filters combined with graph matching algorithms [21,
24] or other global consideration [3, 17, 20]. Semantic con-
straints are sometimes used too [6, 13]. The search space of
these techniques is drastically reduced if the faces are normal-
ized as described in the following.

Leaming techniques for locating facial features include con-
nectionist methods [22] and principle component analysis [26].
These processes are similar to the recognition of a whole face
but are done in smaller scales. Again, having normalized faces
simplifies the task of locating the features dramatically.

lterative methods for locating facial features such as by de-
formable templates [44] depend on the initial value of the pa-
rameters. Once again, an estimate of the features location may
facilitate the robustness and speed of these iterative methods.
These procedures as well as the learning ones can be used to
improve the resulis obtained by the procedure described below.

There is a biological motivation for locating the eyes and
mouth and for doing that simultaneously. Of the internal fea-
tures, eyes are most accurately remembered, mouths are better
remembered than noses, and ears are particularly poorly per-
ceived [7, 11, 14]. All these features are perceived much better
when they are part of the whole face [39].

We proposed a method for automatic and robust detection of
the eyes and mouth using the context free generalized symme-
try transform [31, 32], followed by using plausible geometrical
constrains.

These features are then used to normalize the face images.
We show that a normalization procedure based on affine trans-
formations whose anchor points are the locations of the eyes
and mouth substantially increases the effectiveness of general
purpose classification technigues in face recognition.

Other normalization procedures for avoiding the effect of
background and varying light conditions are proved to be in-
strumental as well.

We presented preliminary results for localization of facial
features and face normalization in [33]. We demonstrated its
effectiveness for classification in [9, 15].
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2. LOCATING FACIAL FEATURES

The generalized symmetry transform [31, 32] is an interest
operator which is motivated by the biological mechanisms of
aitention and fivarion. We suggest using it as the first stage in
tace recognition as well as in other vision tasks. The transtorm
is inspired by the ituitive notion of symmetry. It assigns a sym-
metry maghitide and a symmetry orientation to every pixel. The
input to the transform is an edge map—the gradients of intensity
at each pixel—and its output is symmerry map, which is a new
kind of an edge map, where the magnitude and orientation of an
edge depend on the symmetry associated with the pixel. Strong
symmetry edges are natural interest points, while linked lines
are symmetry aves. The symmetry transform eflectively locates
an interest point of an image in real time and can be incorporated
in passive, as well as active, visual systems. The resulis of its op-
eration are consistent with psychophysical evidence concerning
symmetry as well as evidence concerning fixation points.

Although the symmetry transform is a general purpose low
level transform, it effectively locates interest points in images
without using a priori knowledge of the world. This may seem
a contradiction in terms since interest is context dependent al-
most by definition. This criticism is further supported by the
fact that the distribution of fixation points on an object changes
depending on the purpose of the observer [43]. In particular, a
face recognition system should take advaniage of the [act that it
is usually confronted with face images and the symmetry map
can be further processed to locate faces and facial features. It
scems that humans are highly sensitive to face stimuli and they
tend 1o see faces in many objects that possess some elementary
geometrical relations typical to faces. We will show how o turn
the context independent generalized symmetry transform into a
facial feature detector using some knowledge of faces.

2.1. The Generalized Symmetry Transform

The input of the svmmetry transtorm is an edge map. Edge
detectors are one of the most studied issues in computer vision,
a fact that stems from their poor performance relative 1o edges
that artists draw. There are many possibilities for edge detec-
tions suitable for producing the symmetry transform input. We
use a very simple edge detector which is practically a gradient
map of the original image. Therefore, a better edge detector may
only increase the effectiveness of the symmetry transform and
the results we obtained are due Lo the propertics of the sym-
metry transform rather than being hidden in the edge detector.
Moreover, it produces redundant edges rather than misses true
edges. Thus, the robustness of the symmetry transform is en-
hanced. We briefly outline the details ol the edge detector o
enable reproduction of our results.

The continuous one dimensional Gaussian function is defined
as
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In practice we sample these functions and make them compact
by neglecting their values for || = 3o. We shall omit the sub-
script o and we use the gradient of a blurred image with blurring
parameter o,

e
Viix,y)= (EGU)GU‘} +I(x, ¥} G':'“.% Giy)# Ix, _v)).

where = denotes convolution.
We now consider the outpul of the edge detector, E(p) for
each p = (x, ¥), as a pair of maps

_ L[ R(pYY  (log(1 4 VI(p)])
E(;J}—E{.r._u—(ﬂm)—( g (p) )

Given two points, p, g suchthat p — g = (Ax, Ay), we define
the phase of the gradient at p with respect to g as with respect
to point g = (M, v):

#,(p) = 8(p) — arg(Ax, Ay).
We define a phase weight function for each two points p, g:
@(p, q) = (1 — cos(Pg(p) + #,(g)N1 — cos(dy(p) — ?,(g))).

The phase weight function is composed of two terms. The first
terin of a, (1 — cos(d,(p) + & ,(q))), peaks when the gradients
at p and g are oriented in the same direction toward each other
(#y(p) = m — #p(g)). This is consistent with the intuitive no-
tion of symmetry, This expression decreases continuously as
the situation deviates from the ideal one. The second term of o,
(1 — cos cos(&,(p) — cos #,(g)), s introduced since the first
term attains its maximum whenever ¢, (p) + #,(g) = m. This
includes the case #,(p) = ¥,lg) = = /2, which occurs on a
straight edge, which we do not regard as interesting. The current
expression compensates for this situation.

We define a distance weight function using the general two
dimensional Gaussian, G, 4:

Dy, 0,8(p. q) = ’Gngn_.u{"P —qll).
To simplify the notation we shall use
D(p. q) = Doo0(p. q).

The distance weight function reflects the local nature of the op-
erations we define below. Different values for o imply ditferent
scales, thus enabling convenient implementation of multiresolu-
tion schemes. Gaussians with elliptic level lines are useful when
the transform is applied as a featre detector of elliptic regions
such as eves in human faces.

The contribution of the poinls p and g to the symmetry mea-
sure is defined as

Cip.q)= Dip.qle(p. g)R(p)R(g).
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The term R{p)R(q) is large when there is a large correlation
between two large gradients. We use gradienis rather than in-
tensities since we are mainly inierested in edges that relate to
object borders. For instance, a uniform intensity wall is highly
symmetric but probably not very interesting. In natural scenes
we prefer to use the logarithm of the magnitude instead of the
magnitude itself, since it reduces the differences between high
gradients, and therefore the correlation measure is less sensitive
to very strong cdges.

Recall that we cut a Gaussian after 3. The set of pairs of
points that contribute to the symmetry at a point o is

_|..
alo) = {{p.ql ‘ pz—q =0Alla - pll = 3:7]_

As usual we omit the o subscript and simply use '(e).
The symmetry magnitude or isotropic symmelry at each point
is defined as

M@)= ) Cip.q).

Lo el

Note that the same measure is achieved when the gradients are
oriented toward each other or against each other. The first situ-
ation corresponds o symmetry within a dark object on a light
background, and the second corresponds to symmetry within a
light object on a dark background. For this purpose we define a
partial ordering between points as

(x,y}c{u.v}Hxc:uv.r=u,}\y«::u.

g and p = g contributes to the dark symmetry at %{ P+ g)only
if their gradients are orented toward each other:

MNe) =

[(2.9) € T@1p <q /\cosd,(p) = 0 ]\ cos 1,(q) = 0} .

We can define the dark symmetry magnitude or dark isotropic
symmetry by substituting I with I". Similarly, the bright sym-
mtetry can be defined for symmetry within a bright object. Note
that the dark symmetry has a faster implementation than the full
Sy mumetry.

Let Plo) and Q(o) be the two points such that

C(P,Q0)= max C(p,q)

(pq)el (o}

Then, we define the symmetry direction at point o as

_ 8P +0(0)
e,

w(o)
The symmetry at point p is now defined as

Slo) = (M{o), a(o)).
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MNote that the transform that we have defined detects reflec-
tional symmetry. [t is invariant under two dimensional rotation
and translation. The transform is robust also in respect to scal-
ing as discussed later. Moreover, it is quite effective in detecting
skewed symmetry [18] as well. Since skewed symmetry results
in an affine transformation of the two dimensional picture, the
midpoint of a segment and parallelism are preserved. Thus the
location of the symmetry edge is preserved under skewed sym-
metry; however, the direction of the symmetry edge should not
be the average of the two directions as discussed in [32].

Sometimes it is necessary to detect points that are highly sym-
metric in multiple distinct orientations rather than in a principle
one. We define such a symmetry as radial symmetry, RS(e), and
its value can be evaluated nsing the formula:

[/ (¢
ES(o) = Z Cip.m sin® (M - D’[G}).
(g el o) 2

This expression emphasizes contribution in the directions
which are perpendicular to the main symmetry direction and
attains its maximum in a point that is surrounded by edges. No-
tice that due to the continuous nature of the transform, the radial
symmetry is not sensitive o gaps in the contour that surround
the point o and does not require this contour to be uninterrupted.

The basic symmetry maps, the dark isotropic symmetry, and
the dark radial symmetry, are demonstrated in Fig. 1. Both maps
were computed with Gaussian distance weight function with
oy=land oy = % These numbers are typical. We show in the
following that the sensitivity to these numbers is small. The
symmetry orientation map is not shown in a figure, but it is vsed
for the secondary symmetry operations.

2.2, Secondary Symmetry Operations

Applying the symmetry transforms results in a triplet of maps:
isotropic symmetry, M; radial symmetry, BS; and symmetry
phase, «. Each triplet corresponds to a certain resolution and
to a type of symmetry—Ifull, dark, or bright. These maps can be
further processed to produce more maps that are descrnibed in
the following.

2.2.1. Projection. The projection of a map, X (isotropic
symmeiry, radial symmetry, or any other map that is described
in this section} in a certain direction, 1, is aimed to enhance the
activity along this direction:

Proj( X, ¥)e) = X(o)cos{ol(a) — ).

The eyes and mouth orientation 15 usually horizontal. Figure 2
demonsirates that the projection of the symmetry along the hori-
zon enhances the activity along the eves and mouth. If faces are
expected to be tilted, it is useful to repeat this operation along
other axes as well.
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FIG. 1.

by crosses on the origingl image. The face image is from [41].

2.2.2.

Nenmaximal suppression.  We denote the neighbor
ing points of o whose symmetry orientations are perpendicular
Lo g by Ao, i),

The nonmaximal suppression of a map, X, is namely the sup
pression of the activities of points which are nol maximal in the
direction perpendicular to their gradient;

Xian)
] otherwise

. ifvp e N, w(o)), X(o) = X(p)
NMS(X o) =

This process result in thin symmetry lines,

REISFELD AND YESHURUN

The basic symmetry maps, (Top) Dak isotropic symmetry (efty and dark radial symmetry (right). (Botom) The highest peaks of each map are marked

Nonmaximal suppression of the symmetry and its projection
result in fine symmetry lines as demonstrated in Fig, 3.

223 Linking. Symmetry points can be grouped into sym-
metry lings by various methods. Staight symmetry lines can
be found using the Hough transtorm, Symmetry clusters can be
found and characterized by various technigues such as principle
component analysis. We successfully vsed the following edge
linking technique

First we describe the link left procedure using a dynamic pro-
gramming procedure, This procedure involves three parameters:
a global threshold, T e |0, 1], a local threshold, ¢ < [, 1], and a
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4
FIG. 2. Projection of the dark isstropic symmetry on the horizon (left) and its highest peaks marked on the original image (right}
neighbor weight, w € [0, 1]. Let m be the maximal value in an Xio if X{(o) = Tm\/ X{o)tm = [{O)
input map X . Going from left to right, for each pixel, 0 = (x, y1. Eha)= X(0)+ wi(o) otherwise
let

Typically, L is applied on the logarithm of the dark symmetry
ith the parameters set as
lx,v)=max(lix -1, y—=1), Lix—1,9), Lix—1,y4+ 1)), IR PSS e T

T=00lr=07,w=009

where L, the output of the link left procedure, is defined as Other values were tested with equal success.

FIG. 3. Nonmaximal suppression of the dark iseiropic symmetry (left) and of the projection of the dark isotropic symmetry Cright).
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FIG. 4.

Linking

It is convenient o demonstrate the operation of the link
procedure on the nonmaximal suppression map as shown in
Fiz. 4. However, lor the purpose of finding the center of the
mouth we empirically found that an application on the loga
rithm of the projection of the dark symmetry is better (see Fig. 5)
Points with high symmetry edge from both sides are enhanced.
The local maxima are searched in a neighborhood to radius
which is about 1/10 the image width. Other radii are equally
valid.

2.2.4. Saliency. Our main purpose is to locate interesting
IeZIons 1 a scene. MNevertheless, the symmetry transform can
also help in sczmenting them. The saliency operation enhance
edges that contribute to high symmetry values and thus are natu

he result of the nonmaximal suppression on the projected dark isotropic symmetry {left of Fig. 33 (Left to right} Link left, link right, link.

ral candidates for being boundaries of interesting regions. Given
an edge map with magnitude R and a symmetry map (X, o), we

denote by influencel p) the points

Ap.g) € I'lo) \"-\',-"fl Pt e ]'l:-'E

influcncei p) = (o 3,
A possible way to define the saliency of a point P is

Salientip) = R(p)  max  Xio)
mfluencel v

We demonstrate the usc of the saliency transform for segmen

tation using Fig. 6. The top left is the logarithm of a nonmaximal

| maxima
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FIG. 6. Saliency used for segmentation (see textl

suppression of gradient magnitude. The use of nonmaximal gra-
dient values are suppressed since we would like thin edges as
the contours of features. Next, on the top right, the projection
of the dark isotropic symmetry of the previous image is shown.
In the middle left the saliency as defined above is presented. This
is a considerable improvement over the original edge map, but
it is not the best that can be achieved. The next image (middle
right) is obtained by considering only the peaks in the projection
map and the points with high values which are neighbors of the
points already considered. Such a hysteresis algorithm is used
in edge detectors such as the Canny one. The saliency induced
by this map is now much better as can be seen at the bottom left.

Finally a thresholded map superimposed on the original image
is shown on the bottom right.

2.3. Midline

The face is symmetric in a generalized way. The symmelry
transform is formalized in such a way that preference is given
to gradients that are directed toward each other (or against each
other) as previously discussed in length. Thus, regarding the face
as a blurred bulb, the symmetry transform can be used to located
a face in a picture (see [32]). However, in a fine resolution, the
gradients around the midline of the face are parallel to each
other, thus giving rise to low symmetry values. It is possible
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B

FI1G. 7.

to formulate another symmetry transform that gives preference
to parallel gradients. An alternative is 10 use cross-correlation
between a candidate to the left side of a face and the reflection
of the candidate for the right side.

There are few formulation for cross-correlation, where the
simplest is

CoviX, ¥)

Ty

MX,. ¥ =

For the purpose of finding the midline a face can be regarded as
arectangle, as an ellipse (as in the cut operation in the following),
or as any other figure,

To reduce shift of the midline due to illumination problems it
is vital to apply the correlation on a derivative of the image in a
vertical direction:

i d
Alx, ¥) = Galx)—Ga(v) # [(x, ¥
dv

Typically, if the average height of a face is i, we use a derivative
of Gaussian with o = (L.054.

If ome deals with faces that fill most of the picture and which
are taken with homogeneous background, then taking Cov( X, ¥')
without dividing by o, a, is sufficient since the variance varies
a lintle.

AX. Y= 1 when X =Y (actually whenever ¥ =aX 4 b for
a positive constant @ and any constant ). Thus high correlation
values are induced by homogeneous objects such as a white
background. To avoid this, we require that the multiplication of

REISFELD AND YESHURUN

The best midline marked on the gradient image and the original image.

X and ¥ exceed a certain threshold (usually 1):

(X, ¥) if Var(X Var(Y) = |

X, ¥i= y
0 otherwise

The maximum of (X, ¥) is demonstrated in Fig. 7.
We have found that the madline 15 not sensitive to the size of
the window. See further discussion below.

2.4. Basic Geometrical Properties

The result of each of the symmetry operations described above
is a list of points ranked by their magnitude. Typically, the eyes
and mouth are in the first five points. In addition, candidates for
the midline are ranked too. This enables an efficient choice pro-
cess based on the geometrical constraint. A triplet of candidates
can be generated in order to be checked by the classification
process (or any special facial feature detector described in the
Iniroduction). In the data base we used the correct triplet always
came first. Since the number of points is small a simple back-
tracking algorithm is more effective than a learning process such
as [21].

Faces are usually presented in an upright position, the facial
features are rarely jumbled, and the triangles whose vertices are
the eyes and mouth are usually quite similar 1o each other. We
also used some simple geometrical preconceptions as a means
to reduce the face processing time. The eyes are expected to
be above the mouth, and both eyes are expected to be on a
horizontal line whose angle is limited. Our method can be used
for tilted faces also, as is demonstrated in Fig. 8, but in order
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FIG. 8. Detection of eyes in tilted images. Face images of various tilt angles (left). and the response of the symmetry transform (right). The same parameters are
used in all three images.

to avoid false matches as much as possible, and assuming that
under most normal conditions faces are not greatly tlted, we
have limited this angle, which is the maximal tlt tolerance, to
415°, If the features are not found, the image can be rotated in
this amount of tilt, and the features can be searched for again,
Another constraint is that the eyes should be on both sides of a
peak in the midline as defined above.

The eyes and mouth constitute approximately an isoscale
triangle, normalizing the coordinates such that the left eve is
in (0, 0) and the right eye is in (0, 1); the mouth has to be in a
neighborhood of (0.5, d), where 4 and the size of the neighbor-
hood is dependent on the type of faces the system expects.

There is only a single false match caused by the symmelry
transform and that is its high response to the eyebrow area. How-
ever, since the geometrical relations beiween the eye-induced
peaks and the eyebrow-induced peaks are clear, it is rather triv-
ial to eliminate this artifact.

Integrating all these constraints can be performed using elab-
orated methods such as relaxation labeling [34). Our experience
shows that simple checks of all these constraints is sufficient
since the search space is small. FIG. 2. Peaks after applying geometric constrainis
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Figure 9 demonstrates how these geometrical constraints en
able the locating on the eyes and mouth: the highest peaks in the

projection of the isotropic symmetry at the possible locations of

eves and the highest peak in the link of that projection in the
possible region for the mouth.

2.5, Robusiness

Combining the peaks of the symmetry transform with geo-
metrical considerations is quite robust, as will be exemplified in
this section. However, this robustness could be further increased
if we use simple classifiers. By applying classifiers that differ-

REISFELD AND YESHURUN

entiate between a “face” image and a “nonface™ image [37], it
15 possible to automatically examine the possible configurations
suggested by the preprocessing step and select only the one with
the highest “face™ marks.

This paper was written with en face pictures in mind. Slight
rotations, however, are tolerated. Figure 10 shows a face which
is almost in profile. In this example we are still able to find the
leatures.

Glasses introduce specularities and cause drastic modifica-
tion of the edges of the eyes. Figure |1 shows that no special
treatment 15 needed provided that the glasses are transparent.

FI1Gs. 1.

link of the

applying geomctrnical constraints.

[he same parameters as before for 304 view. (Top) Original image, midline, and isoropic symmetry. (Middle) Projection of the isotropic symmetry

projection, and radial symmetry. (Bottom) Highest two peaks of the link. highest two peaks of the radial symmetry, and output after
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FIG. 11.
symmetry and the final results after applying geometric constrin:

This picture also has noisy background which is handled cor-
rectly. Notice that the eyvebrows cause high peaks of symmetry.
This is typical to many faces and should be taken care of by the
geometrical constraints module,

Beards distort the edges in the region of the mouth. Neverthe-
less, the mouth still cavses high symmetry values at the mouth
as shown in Fig. 12,

The face is an extremely plastic object. Figure 13 demon-
strates that the detector can deal with various facial expres-
s10Ms.

Glasses and noisy background. (Top) Midline and peaks of the link of the projection of the isolropic symmetry on the hortzon. (Botom) Peaks in radial

Next we consider the sensitivity o scale. Though the size
of the faces in this paper vary considerably, exactly the same
parameters of the operator are used in all cases. These figures
demonstrated that the symmetry transforms can tolerate variance
in scale and that a multiscale scheme can be applied along with
the generalized symmetry transforms. This is also demonstrated
in Fig. 14. A more complete solution which is currently tested is
to use the constrained phase congruency transform [29] which
enables the simultaneous detection of interest points and their
scale.
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FIG. 12, A system manager with a beard, (Top) Original image and midline. (Middle) Projection of the isotropic symmetry on the horizon (lefih and peaks of
link of logarithm of the projection (right). {Bottom) Peaks of radial symmetry (left) and location of features after applying geomen ical constraints (right).

3, NORMALIZATION

The use of the eye's location for facial image normalization
dates back to 1878 [12]. The vuse of affine normalization sub-
stantially increases the effectiveness ol general purpose pattern
recognition technigques as well as face processing tasks, The first
demonstration is given in Fig. 15 where principle component
analysis is used as a tool for associative memory. The images
on the top demonstrate the use of principle component analy-

sis withour a prior normalization, The top left picture is a new
image introduced Lo the system. The black rectangle is a noise
which is expected to be eliminated by the associative memory.
The 432 images in the data base are taken from the Turk and
Pentland data base [41]. The projection of the test image over
the first 25 eigenvectors (center) and the first 40 eigenvectors
{right) results in a very poor reconstruction, at least for human
interpretation. The reconstruction improves dramatically (bot-
tom ) when the test image as well as the images in the data base
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FIG. 13.

are normalized such that the eyes and mouth are warped to a
standard location using an affine transformation. It is now evi-
dent that the projection on the first 25 eigenvectors is sufficient
for a human to recognize the person. Notice that mild affine
transformations, as demonstrated in this figure and in numerous
informal experiments which we have conducted do not change
the identity of the face for a human observer.

Unconventional facial expression. (Top) Original image, midline, and radial symmetry. (Bottom) Peaks of links of logarithm of the projection, peaks of
radial symmetry, and location of features after applying geometrical constraints

3.1. The Normalization Procedure

We have implemented the ideas of normalization for face
recognition in a system which is described in [9]. The system
integrates the ideas of face normalization based on the location
of the eyes and mouth, dimensionality reduction using receptive
fields, and radial basis functions neural networks. The success of
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S e
FIG. 14. Detection of eyes in various scales. Face images of various size (defih and the response of the svmmetry transform {nighth. The same parameters are used

in all three imaees

FIG. 15. Projection of a new face on a principle component space, (Top) A new image (left). projection on 235 eigenvectors (center), and on 40 eigenvectors

(right}. (Bottom} The same as the top but applied to normalized im: by the location of the eyes and the mouth.
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l_- o Cut Warp | Gradient success ralio Cut Warp | Gradient ‘ success ralio
[ no l no no 157/416 | 37.74% no no nao ! 165,384 | 42.97%
[ remove background | no no 55/416 | 13.22% remove background | no no 20/384 | 7.55%
remove face no no 112/416 | 26.92% remove face no no 119/384 | 30.99%
remove background | yes yes 240/416 | 57.69% remove background | yes yes 253/384 | 65.80%

FIG. 16, Mearest neighbor using one leamed image for a person.

that system triggered the systemaric test of the effect of normal-
ization. In this study simpler classification schemes were used
with improved results.

We define three transformations that facilitate normalization.
A two dimensional affine transformation is uniquely determined
by three points. In this section we call the affine mapping of a face
image determined by the location of the eyes and mouth in the
given image and standard locations warp. (Actually the reverse
transform is evaluated.) The output image size is 40 x 6. The
standard eye locations were chosen as (13, 27) and (27, 27), and
the mouth location was set to (2, 44). All the results reported
in this section were reproduced when all these numbers were
doubled.

The second transformation we call cur: Let Py, P, and P,
denote the locations of the left eve, right eye, and mouth in a
given image. We define a function, € : R* > R, connected
with an ellipse around the face as

0 cos@  sind
——u-l-——-)(—sinﬂ msﬁ'){x_{}}‘

1
CiP) = LOY Py —0)
( 0 LA =Rl
where O = (P + F.)/2 and @ = arg(F, — ).

Setting to zero each pixel, X, outside the ellipse, C(X) =1, 1is
considered removing the background, while setting to zero each
pixel inside the ellipse, C(X) = 1, is considered removing the
face.

Warp | Gradient success ratio
no no 55/416 | 12.22%
no yes 44/416 | 10.58%
yes no 142 /416 | 34.13%
yes yes 240/416 | 57.69%

FIG. 17. Nearest neighbor using one leamed image for a person without back-
ground.

FIG. 18. Nearest neighbor using three learned images for a person.

The last transformation we call gradient and 15 convolving an
image with a directional derivative of a Gaussian with o =3.
Using other ¢'s yields similar results. It is useful for reducing
the effect of lighting variations.

3.2, Classification Results

We checked the importance of the various normalization
procedures—warp, cut, and gradient, using the Turk and Pent-
land database [41]. The database contains 27 face images of
each of 16 different persons. Turk and Pentland used the prin-
ciple component analysis procedure applied on the raw pixels
to reduce the dimensionality of the images. The images differ
mainly by the lighting conditions and rotation. The test images
were randomly chosen. The rest were used for testing.

The background of the faces in the data base is noisy. Thus,
using any general purpose feature extraction and classification
techniques without eliminating the background may result in
poor classification performances. Another outcome is that the
system will show good results that stem from its capability to
recognize the background rather the faces. In our experiments we
have used the pixels as the classifier’s features and thus without
the cur operation the pixels in the background are as important
as the pixels in the face.

Figures 16and | 7 present the results of applying the | -nearest-
neighbor procedure using one image of each person in the leamn-
ing phase and 26 images of each person as a test. Leaving the
warp and gradient aside, it shows that cutting the background as
well as cutting the foreground results in a substantial decrease

Warp | Gradient stuceess ratio
no no 29/384 | 7.55% ]
no yes 24/384 | 6.25%
yes no 168/384 | 43.75%
yes yes 253/384 | 65.89%

FIG. 19, Mearest neighbor using three learned images for & person without
background
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Cut Warp | Gradient success ratio Classifier success ratio
no no no 156,160 | 97.50% 1 NN 147 /160 | 91.88%
remove background | no no 115/160 | T1.B8% 3 NN | B3/160 | 51.88%
remove face o Tk 154160 | 96.25% RBF 147/180 | 01.88%
remove background | yes 2R =] 147/160 | 91.88% FIG. 22. Various classification techniques using 17 random learned images

FIG. 20. Nearest neighbor using 17 random learned images for a persan,

in performances and that cutting the background is more dam-
aging than cutting the foreground. This figure also demonstrates
that using warp and gradient on the foreground image substan-
tially increases performances. Notice that the chance level is
1/16 = 6.25% and the results with the normalization are way
above chance level although not satisfactory. The effect of the
background removal is further shown in Fig. 17. The advantages
of both warp and gradient can be seen clearly.

In the next experiment the number of images of the same
person in the learning phase was increased to three leaving 24
images of each person in the test phase. The resulls are reported
in Fig. 18, As can be expected the results of the full normaliza-
tion (cut, warp, and gradient) are improved. It may come as a
surprise that the results of the classifier on the raw images with-
out the background is reduced 1o almost chance level, This is due
to the fact that for each person, the images taken differ mainly
in lighting conditions. Two of these images were used as tests in
the previous experiment and they are the reason for the better re-
sults there, The effect of the various normalization procedures is
shown in Fig, 19, The importance of the combination is evident.

Now we turn to randomly using 17 images of each person
in the learning phase leaving 10 for the test. Recall that these
were the conditions in the pilot system reported in the previous
section. As could be expected, the results (Figs. 20 and 21) are
much hetter than those obtained using the smaller learning set.
Motice that the effect of the normalization procedure is equally
important,

Warp | Crradient | success ratio
no no 1156/160 | 71.88%
no yes | 118/160 | 73.75%
yes no 131/160 | 81.88%
yes yes 147/160 | 91.88%

FIG. 21.  Nearest neighbor using 17 random leamed images for a person with-
ant backgraund.

[wr a person without background and with warping and gradient,

Now we use the same learning and test images as in the previ-
ous experiment and check the effect of the classifier by compar-
ing the perlormance of [-nearest-neighbor, 3-nearest-neighbor,
and a radial basis function classifier. As can be seen in Fig. 22
the performances are not improved by changing of the classifier.

Can we improve the classification results using principle com-
ponent analysis? Figure 23 indicates a positive answer. Using
l-nearest-neighbor, optimal results are achieved for 44 eigen-
vectors,

MNext we compare |-nearest-neighbor, 3-nearest-nei ghhaor, and
radial basis function classification result using the optimal num-
ber of eigenvectors found for [-nearest-neighbor (Fig. 24).

The final results presented above show a success ratio of 939%.
An ongoing work using projection pursuit combined with back
propagation shows a success ratio of over 99% [ 16], Larger scale
experiments are now needed to further explore the importance
of normalization as well as classification technigues.

Neo. af eigenvectors success ratio
1 29/160 | 18.13% |
5 115/160 | 71.88%
10 | 132/160 | 82.50%
20 142/160 | 88.75%
J0-40 150/160 | 93.75%
41-43 151/160 | 94.38%
44-61 162/160 | 95.00%
2 151/160 | 94.38%

FIG. 23. Nearest neighbor using varving numbers of principle components
of 17 random learned images for each person without background and with
warping and gradient.
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i Classifier success ratio
1 NN | 152/160 | 95.00%
3NN | 99/160 | 61.88%
REF 152/160 | 95.00%

FIG. 24,  Various classification techniques using 17 random leamad images for
a person withowt background and with warping and gradient for 44 eigenvectors.

4. CONCLUSIONS

Recognition of facial images is one of the earliest applications
that has been suggested in the framework of computer vision
and pattern recognition. However, practical applications have
emerged only recently, due to the complexity of the problem.
In this paper we have separated the problem of preprocessing
from the classification and proposed a method for the automatic
detection of facial features. Based on the generalized symmetry
transform, we showed that the eyes and mouth in facial images
can be robustly detected. Then we have used these points to
normalize the images, assuming affine transformation, which
can compensate for various viewing positions.

In order to estimate the efficiency of our method, we have
used images taken from a public data base of face images ap-
plying standard classification methods 1-WNN, 3-NN, and RBE,
with and without normalization. The results obtained demon-
strate the need for spatial normalization procedures. Combining
the proposed method with additional normalizations of facial
expression [30] can thus ensure more robust and efficient face
recognition methods.

In this work the first candidates for eyes and mouth were al-
wiys the right ones. In more complex data bases, however, other
candidates should be considered if the normalized image is not
classified as a face. Combining a simple classifier that distin-
guishes between a normalized face and anything else guarantees
an extremely robust facial feature detector,

The results obtained here can be refined by using them to
initialize the parameters of special purpose facial feature de-
tectors and by restricting their search space as discussed in the
Introduction.

Further work includes the improvement of scale flexibility by
using the constrained phase congruency |29], integrating better
classifiers [16], and testing on a larger data base.
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