
Abstract. The size of a pair of cortical ocular domi-
nance columns determines a basic anatomical module of
V-1 which Hubel and Wiesel have termed the hypercol-
umn. Does this correspond to a basic functional, or
psychophysically measurable, module as well? This is the
basic question addressed in the present paper. Since the
ocular dominance column architecture is presumed to be
related to stereo vision, it is natural to assume that
hypercolumn size should provide a modular basis for
basic phenomena of stereopsis. In previous work, we
have suggested that local nonlinear ®ltering via the
cepstral transform, operating on a local window of
cortical tissue scaled by hypercolumn size, provides such
a modular model of stereopsis. In the present paper, we
review this model and then discuss a number of issues
related to the biological plausibility and implementation
of this algorithm. Then, we present the main result of
this paper: we have analyzed a number of experiments
related to stereo fusion limits (Panum's area) and to
disparity gradient and disparity scaling, and demon-
strate that there is a simple unifying explanation for
these phenomena in terms of a constant cortical module
whose size is determined by a pair of ocular dominance
columns. As a corollary, Panum's area must increase
according to (inverse) cortical magni®cation factor. We
show that this is supported by all existing experimental
data.

1 Introduction

In his classical study of stereopsis, K. Ogle (1952)
commented: ``The fact that a de®ned range of disparities
exists within which the perception of stereoscopic depth
occurs is evidence of neuroanatomic limitations ... These
[limitations] could be accounted for by the extent to
which the neural paths that arise at the retinas of the two
eyes ... overlap at the occipital cortex ...''

In modern terms, the question raised by Ogle's
remarks may be addressed in terms of the functional
architecture of the primary visual cortex. What are the
joint e�ects of cortical topography and columnar
architecture on the psychophysical phenomena of ste-
reopsis? If, following the original suggestion of Hubel
and Wiesel (1974), we take the basic module of the
striate cortical architecture to be a ``hypercolumn'',
which was de®ned to be equal to the size of a left-right
pair of ocular dominance columns, then we seek to in-
vestigate the role of this basic constant, together with the
e�ects of cortical topography, on stereo vision.

Schwartz (1977a) suggested that Panum's area is de-
termined by the size of cortical hypercolumns, and that
it should then scale with the cortical magni®cation fac-
tor. This hypothesis provides a tentative answer to
Ogle's original suggestion, quoted at the beginning of
this paper.

Many psychophysical phenomena have been ob-
served to scale, at least approximately, as a linear
function of visual ®eld eccentricity (Virsu and Rovamo
1979). The slope and intercept of such a linear function
might be related to the parameters of other scaling laws,
such as retinal cell density, or cortical magni®cation. If
so, this type of observation provides a possible insight
into the anatomical correlates of the given psychophys-
ical phenomena.

In the present paper, we examine the relationship of
cortical scaling, and more speci®cally, the role of
hypercolumn size, to stereo fusion and disparity repre-
sentation. A major problem in this area is related to the
range of estimated magni®cation functions in monkey
and human. At least two major issues cloud this area.
The ®rst is that aside from some recent coarse estimates
based on positron emission tomography (PET) and
functional magnetic resonance imaging (fMRI), there is
no reliable direct measurement of human magni®cation
factor available. Rather, monkey data, based on mi-
croelectrode recording and 2DG imaging studies, pro-
vides a data source, but one which is still clouded by
measurement uncertainties. The di�culty in this area is
underlined by the lack of ``error bars'' or error analysis
in the primate topography literature, making it di�cult

Biol. Cybern. 80, 117±129 (1999)

Cortical hypercolumn size determines stereo fusion limits

Yehezkel Yeshurun1, Eric L. Schwartz2

1Department of Computer Science, School of Mathematics, Tel Aviv University, Ramat Aviv, Israel 69978
2Department of Cognitive and Neural Systems, Boston University, Boston, Mass., 02146, USA

Received: 2 December 1991 /Accepted in revised form: 18 September 1998

Correspondence to: E.L. Schwartz



to provide a con®dence limit on any statements in this
area. This situation is now improving, and recently it has
been possible to obtain an estimate of the two-dimen-
sional (2D) conformal map structure of macaque visual
topography, using 2DG imaging and computer brain
¯attening methods. This ®t appears to be accurate to
within roughly 20% (Schwartz 1994). We will return to
the discussion of the current level of understanding of
monkey and human visual topography later in this
paper.

There are at least two basic spatial scales associated
with early vision, which we call kH (about 5 arc-s,
hyperacuity) and kR (.5±1 arc-min, maximal visual acu-
ity). To these, we suggest adding a third basic scale,
which we call kC, determined by the size of hypercol-
umns in V-1 and cortical magni®cation factor. We show
in this paper that kC is associated with the scaling of
Panum's area for stereo fusion and several recent results
in motion perception. We estimate it to be roughly 8±16
arc-min in the central fovea, scaling linearly with inverse
cortical magni®cation factor.

We present the motivation for the current paper by
brie¯y discussing the biological plausibility of a com-
putational model of stereopsis (Yeshurun and Schwartz
1989). This model is based on the idea of using a local,
nonlinear correlational operator (cepstrum), on ®xed
``windows'' whose size is determined by the ocular
dominance column scale. We then discuss various psy-
chophysical ®ndings pertaining to stereopsis, including
the scaling of Panum's area (Schor et al. 1989) and the
disparity gradient experiment of (Burt and Julesz 1980).
We show that these experiments are consistent with the
notion of a ®xed size cortical processing module. One
side e�ect of this analysis is to re-instate the concept of
Panum's area as a valid one, despite these latter two
experiments, which have been interpreted as con-
tradicting the signi®cance, or even the existence, of a
speci®c Panum's area.

2 Computational and biological background
of cepstral correlation

In this section, we

� Review the basic statement of the cepstral stereo
algorithm.

� State the features of cepstral stereo in the context of
biological stereo vision.

� Provide a brief intuitive explanation of both the
cepstral operator and the related phase-only ®lter
algorithm.

� Brie¯y discuss the neural plausibility of algorithms
based on power spectral estimation.

� Indicate a generic problem, and solution, to the bio-
logical plausibility of any algorithm which is based on
``square-law'' or correlation ``energy''.

Following this section, we then present the main point of
this paper, which is that local correlation on a ®xed
window size, which is determined by the ocular domi-
nance column size in V-1 and the magnitude of cortical

magni®cation factor, is consistent with known psycho-
physical, physiological, and anatomical estimates. This
observation is supported with a clari®cation and reso-
lution of some con¯icting experimental work on
Panum's fusional area and recent experimental work
on motion perception.

2.1 The cepstral operator

Consider the following statement of the stereo problem:
two slightly di�erent images are spatially organized side
by side, in the form of small ``patches'' of left eye and
right eye input. This pattern of interlacing of stereo
images is similar to that which is found in layer IV of
primate visual cortex. We would like to apply a spatial
®lter to the ``combined'' left-right image, such that its
output is the relative shift, or disparity, between the
projection of an object in the two half-images.

To illustrate this idea, consider an interlaced image
f �x; y� that is composed of a single columnar (left-right)
pair. Also, assume that the data consist of an image
patch s�x; y� (the ``right image'') and a shifted patch
``butted'' against it (the left image) as shown in Fig. 1.
The interlaced image can be represented as follows. (The

 operator represents 2D convolution.)

f �x; y� � s�x; y� 
 �d�x; y� � d�xÿ D; y�� �1�
The Fourier transform of such an image pair is

F �u; v� � S�u; v� � �1� eÿip�D�u�� �2�

Fig. 1. Top A pair of image patches. There is both horizontal and
vertical disparity. Middle The cepstrum of the image. Bottom The
cepstrum image intensities are thresholded for demonstration pur-
poses. The origin of the frequency plane has been shifted to the center
of the frame. The disparity terms occur as bright spots in the cepstrum
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By forming the logarithm of F �u; v�, the product
structure becomes a sum:

log F �u; v� � log S�u; v� � log�1� eÿipD�u� �3�
The power spectrum of (3) (see Figure 1) will have a
prominent term located at the magnitude of the shift
�D; 0�. The operator derived from this description,
namely, the power spectrum of the log of the power
spectrum (denoted ``cepstrum''), was originally analyzed
by Bogert et al. (1963) and has since been widely used in
1D signal processing. Recently, interest has been grow-
ing in the application of the 2D generalization of the
cepstrum to both stereo and motion correlation appli-
cations (Lee et al. 1989; Ludwig et al. 1994; Yeshurun
and Schwartz 1989). One common application of
cepstral ®ltering is for echo detection. An echo is a
shifted version of a signal, and since the cepstrum
provides the echo's delay, it is possible to remove the
echo by means of the inverse transform. With reference
to Fig. 1, the quantity of interest is the delay (i.e., the
disparity) and not the signal per se. Note that the
cepstral transform of (3), which is the result of two
successive power spectral transforms, is expressed in
spatial units. Thus, the shift (D,0), which shows up as a
bright peak in the cepstral domain (actually two peaks,
due to symmetry), has units of angular (i.e., spatial)
disparity. A simple peak detection algorithm can
measure the binocular disparity directly from the
cepstrum of the columnar image pair, in the same
spatial (i.e. angular) units as the underlying visual map.
In other words, the cepstrum provides a spatial map of
disparity.

2.2 Computational properties of the cepstrum
and the phase-only ®lter

The phase-only ®lter (POF) has been suggested as a
computational basis for stereo (Jenkin and Jepson 1989),
and the POF has also been considered by Olson and
Potter (1988) in the context of computer vision appli-
cations and directly compared by them to cepstral
stereo. In the context of computer vision, Olson and
Potter found the cepstral approach to be more e�cient.

To clarify this issue and its relation to possible bio-
logical implementation, we feel that it is useful to present
here some intuitive insights into the nature of both
cepstral and POF stereo algorithms which may be useful
in understanding how these two approaches related, and
why they work well in the ®rst place.

The POF is a correlational or template matching al-
gorithm which performs frequency domain matching by
the multiplication of the modi®ed Fourier trans-
form of two images. As is well known, the Fourier
transform of the correlation of two images is given by
the product of the Fourier transforms of each image
(Bracewell 1978). The POF method sets all amplitudes in
both Fourier transforms to unity, prior to multiplying
the transforms. The empirical justi®cation for this is the
observation that the POF provides very good localiza-

tion of stereo peaks. The POF has seen a wide area of
application in optical computing in general and follow-
ing Jenkin and Jepson (1989), has been suggested for
stereo matching.

We address three issues in regard to the POF and the
cepstrum:

1. What is the intuitive basis of the POF?
By setting the amplitude of all frequency compo-

nents to unity, the POF e�ectively performs a high-
pass ®lter. This is because the natural spectrum of
images usually follows a 1=f amplitude structure:
high frequencies tend to have small amplitudes. By
equating all amplitudes, the POF tends to boost the
amplitude of the high frequency part of the spectrum.
This yields good positional estimates since the low
frequency components are de-emphasized.

2. What is the relationship of the POF to the cepstrum?
The cepstrum di�ers from conventional cross-cor-

relation by the use of a logarithmic transformation of
the image power spectrum. The logarithmic trans-
formation is ``compressive'': the large amplitude
components of the spectrum, which tend to be in the
low-frequency component of the spectrum, are de-
emphasized. In a sense, the cepstrum, like the POF,
can be seen as a nonlinear high-pass ®lter based on
the compressive nature of the logarithm.
Although by no means identical, the cepstral and
POF approaches share the common property of
boosting the high-frequency relative to the low-
frequency components of the spectrum, under the
assumption, as is often the case, that the spectrum
scales like 1=f .

3. What are the computational and biological plausi-
bility of both approaches?

In computational terms, Olson and Potter (1988)
have provided a detailed analysis of the POF versus
the cepstrum in a stereo matching application. They
concluded that the cepstrum is more e�cient to
compute via the use of the fast Fourier transform
(FFT) and claim that both give similar practical
performance.

The cepstrum requires access only to the power
spectrum (of the binocular interlaced image) and not
to the phase spectrum. The POF requires access only
to the phase spectrum and not to the power spectrum.
The question of whether cortical neurons provide a
representation of the phase spectrum is, at present,
unclear. However, the question of whether cortical
neurons provide power-spectral estimates is certain
and a�rmative. Cortical neurons are widely recog-
nized as medium band width power spectral ®lters. In
this sense, the cepstral ®ltering approach is better
justi®ed than the POF, in the context of the current
understanding of the central nervous system.

Finally, the cepstral method, in addition to the
requirement of power-spectral estimates, requires a
logarithmic (compressive) nonlinearity. In our earlier
work, we suggested that a logarithmic transfer func-
tion is a widely observed property of sensory neurons
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(Yeshurun and Schwartz 1989). Recently, it has be-
come clear that a compressive nonlinearity similar to
the logarithm is provided generically by the integrate-
and-®re model of neuronal transduction (Tal and
Schwartz 1997). Thus, both the power spectral esti-
mating and compressive logarithmic transfer func-
tions required by the cepstrum are basic, ®rmly
established properties of neurons. Phase representa-
tion and manipulation of the type required by the
POF are not well established as neuronal properties
at the present time.

2.3 Performance issues of cepstral ®ltering

In addition to a favorable signal-to-noise ratio, the
cepstral operator has good ``robustness'' to image
degradation, which is similar to psychophysical studies
of human stereopsis (see (Julesz 1971) demonstrating a
remarkable resistance to various image degradations,
rotations, and expansions. It is possible to di�erentially
expand (up to 15%), to rotate (up to 6 deg), to blur (with
a Gaussian), to add random noise, and to change image
intensity (e.g., by histogram equalization) of one half-
image with respect to the other, without disrupting the
cepstral disparity estimation (Yeshurun and Schwartz
1989). For these distortions, the disparity peak is no
longer concentrated in a single point, but rather
``smeared'' over a small region. Yet its centroid is easily
detected and provides an estimate of disparity which is
accurate to sub-pixel precision (Yeshurun and Schwartz
1989), and hence provides a stereo-acuity threshold
which can be one or two orders of magnitude smaller
than the window size. These robustness properties are
not shared by typical ``pixel-matching'' computational
algorithms, which tend to fail ungracefully when the
stereo-pairs depart from a simple shifted copy of one
another. In fact, it is often stated that there is a
fundamental di�culty with scene matching algorithms,
in that false localization of targets can occur (Julesz
1971). This problem disappears when a locally win-
dowed cepstral (or other correlational) approach is used:
peak detection applied to a windowed algorithm quite
naturally provides a single disparity value for the entire
window. However, if multiple peaks are sought
(Weinshall 1989), then it could be carried out by a
variety of signal processing techniques.

2.4 Power spectral estimation by medium band width
neuronal ®lters and the square-law detectors in biological
correlation applications

Since the behavior of the windowed cepstral stereo
algorithm is in good agreement, both qualitatively and
quantitatively, with a wide range of properties of human
stereo, we now focus our attention on the details of
biological implementation of a windowed cepstral ®lter.
The two questions that we address in this section are:
� Is it feasible for medium band-width spatial ®lters, of

the type associated with V-1 receptive ®elds, to form

the basis of a cepstral ®lter with su�cient precision to
support the details of stereo-acuity?

� Correlational algorithms have identical performance
if one of the stereo images is inverted in contrast. But
humans cannot fuse positive-negative random dot
stereograms. On the other hand, they can fuse posi-
tive-negative line drawings (Julesz 1971). Are these
properties of human stereopsis consistent with a
cepstral, or other, correlational operator?

2.5 Neural power spectral density estimation

The power spectral and cepstral ®gures in our previous
work were produced using a conventional digital FFT.
This is not a particularly biological computation, to say
the least. It initially seemed to us and to others (e.g.
Blake and Wilson 1991) that the medium band width
spatial-®ltering properties of cortical neurons are too
coarse to support a cepstral stereo estimation. This issue
is of some signi®cance because of the important role of
spatial frequency processing in psychophysics and visual
physiology. However, with the exception of the work of
Okajima (1986), there has been relatively little compu-
tational use made of neural spatial ®lters for correlation.
Therefore, the ®rst question that we address is whether
the use of the medium band width spatial-®ltering
properties of cortical neurons, rather than a digital FFT,
would be su�cient to produce a usable cepstral peak in
the stereo scenes which we have analyzed.

Estimation of power spectrum by Gabor-type ``re-
ceptive ®elds'' is known to be achievable. Turner (1986)
showed that it is possible to estimate power spectra with
su�cient accuracy to carry out texture segmentation.
We are currently investigating the plausibility of a full-
scale estimation of the cepstrum by a receptive ®eld
model, and preliminary results show that it is possible to
estimate it with su�cient resolution, using a set of me-
dium bandwidth ®lters (simulating cortical receptive
®elds). Thus, at the present time, we have reason to
believe that the medium band-width tuning properties of
cortical neurons are consistent with useful power-spec-
tral estimation, both for cepstral and for conventional
textural applications.

3. ``Square law'' stereo detectors and ``positive-negative''
stereogram

Windowed correlational mechanisms for stereo are
robust and do not su�er from the so-called correspon-
dence problem (Julesz 1971; Marr 1982) since a win-
dowed operator, together with ``peak detection'', can
naturally provide only a single value per window1.How-
ever, these methods are generally based on a ``square

1As noted earlier, by generalizing the peak detection algorithm, a
small number of peaks could be accommodated. However, the huge
number of false correspondences described by Julesz (1971) and
Marr (1982) is avoided by any windowed stereo algorithm.
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law'', or energy-based detection. The cross-correlation,
or the cepstrum, of two adjacent scene patches is
computed from a ``magnitude'', or energy, and so is
unchanged if one of the two scenes becomes negated in
contrast. In psychophysical terms, humans can fuse
positive-negative line stereograms, with a rivalrous
percept (Julesz, 1971), but cannot fuse positive-negative
random dot stereograms. It would seem that ``square-
law'', or energy-based measures would have to be
excluded for human vision, due to this basic asymmetry
in the nature of the correlation between left and right
scenes (for random dot stereograms), because, as
depicted in Fig. 2, a random dot stereogram would be
equally well solved by the cepstrum if one of the half-
images was inverted in contrast. However, a symmetry-
breaking mechanism exists in primate visual systems
which is based on the segregation of the ON-OFF and
OFF-ON mechanisms in the retina, lateral geniculate
nucleus (LGN) and visual cortex (Schiller 1983).

A simple rationale for the existence of separate OFF-
ON and ON-OFF channels is based on the single-ended
nature of the neural response: for neurons to signify
both positive and negative contrast, there would need to
be a high resting spontaneous discharge rate, to allow a
bipolar swing about zero contrast. The low spontaneous
discharge rate typical of the visual cortex, which is ob-
viously advantageous in metabolic terms, if not in

computational terms, requires two separate systems of
recti®ed signals to represent a bipolar contrast range (see
Schiller, 1983). In order to explore the symmetry-
breaking aspects of separate ON-OFF and OFF-ON
systems, we simulated a cepstral-®ltered stereo algorithm
on such separate inputs. Instead of using the intensity
image as the input, we have used directional edge in-
formation that represents the ON-OFF image and the
OFF-ON image. This is simulated as follows: the (reti-
nal) image is passed through a directional edge detector,
and this ®ltered image is then used as the input for the
cepstrum. The results indicated that the cepstrum is not
sensitive to intensity reversal. As expected, the cepstrum
is a ``square-law'' based detector.

However, if the image is ®ltered by an ON-OFF (and
OFF-ON) layer then not only the intensity is changed
but also the spatial location of the patterns. Suppose
that the grey level image consists of a vertical light bar
on a dark background: the OFF-ON layer will be active
in the left border of the bar, while the ON-OFF layer
will be active on the right border of the bar. For the
reversed intensity image (i.e., dark vertical bar on a light
background), the OFF-ON layer will be active on the
right border of the bar and the ON-OFF layer on the
left. Thus, if the correlational operator is applied to
distinct ON-OFF and OFF-ON layers, the cortical col-
umnar image produced by a positive-negative RDS pair

Fig. 2. Detection of disparity for
positive-negative random dot pairs.
Top: The left-right image patch
(left) is a small section from a
positive-negative random dot
stereogram. On the right is the
cepstrum of this image patch. The
disparity can be easily detected by
the position of the bright dots.
Middle: The same image as above,
but image patch preprocessed by a
directional edge ®lter (e.g., OFF-
ON) before applying the cepstrum.
It can be seen that the disparity is
no longer evident in the cepstrum.
The transitions in the positive half
of the stereogram do not match the
transitions in the negative half when
viewed after application of the
OFF-ON ®lter. A similar result
holds for an ON-OFF ®lter (not
shown). Bottom: A line stereogram,
viewed after the same OFF-ON
®lter applied above. Because of the
coherent linear structure, the
di�erence between the positive and
negative halves of the stereogram is
a coherent linear shift. For this case,
the cepstrum clearly detects the
stereo match, which the cepstrum
failed to detect when the stereo pair
was composed of random dots
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di�ers in the spatial location of the edges, and the cor-
relation (or cepstral) peak will be rather weak.

For line stereograms, this e�ect will not be su�cient to
interfere with the correlational operator, since the line
elements in the image are of considerable extent, yielding
a constant ``o�set'' that is correlated over the (long)
length of the line elements. However, for random dot
stereograms, which consist of many (short) line elements,
the ``o�set'' will be locally random and will interfere with
the correlational operator. This e�ect is clearly evident in
simulation, and in Fig. 2B the cepstral peak is not de-
tectable due to the local randomization caused by the
RDS line elements processed by an ON-OFF ®lter. We
conclude that the separate processing of the ON-OFF
and OFF-ON channels in primate vision is su�cient to
allow a ``square-law'' type of stereo algorithm (auto/
cross correlation or cepstral ®lter) to be consistent with
existing experimental data on stereo vision.

4 Functional architecture in primate V-1

4.1 Magni®cation factor and the cortical map

In primates (and other higher vertebrates), the visual
system is space-variant. Visual resolution, as well as
many other functional aspects of vision, change in an
orderly, monotonic fashion with increasing visual angle
(measured from the fovea or direction of gaze). In turn,
these phenomena depend on the underlying anatomical
fact that the map of cortical position, as a function of
retinal position, is strongly nonlinear. As the magnitude
of the derivative of this map, which is called the cortical
magni®cation factor (Daniel and Whitteridge 1961), is
approximately inverse linear (Schwartz 1977b; Drasdo
1977), a two parameter ®t to a 2D approximation of the
cortical map is given by the complex logarithm function
of the following form (Schwartz 1980):

w � K log�z� a�
with w (cortical position) measured in millimeters,
z (complex variable representing azimuth and eccentric-
ity in the visual ®eld in units of degrees), and a an
experimental constant, which has been estimated to be
around 0:3� (Dow et al. 1981; Schwartz 1985) to 1:0�
(Tootell et al. 1982). The constant K in (1) may be
determined from the (peak) cortical magni®cation at
z � 0�, K=a � peak magni®cation.

In macaques, the parameter a [in (1)] has been esti-
mated to be 0:3� by Dow et al. (1981). Other studies
have generally obtained larger values, such as Van Essen
et al. (1984), who calculated roughly 0:7�, and Tootell
et al. (1982, 1988), who estimated about 1�, although
these same data were re-analyzed (Schwartz 1985) and a
value of 0:3� obtained, in agreement with Dow et al.
(1981). The precise magnitude of this constant a is not of
great importance in the present context since we include
several recent estimates of magni®cation factor, pro-
viding a band which brackets the psychophysical data of
interest.

The value of peak magni®cation (K=a) in the central
fovea, formacaques, has been estimated at 13mm � degÿ1
(Tootell et al. 1982), 16 mm � degÿ1 (Van Essen et al.
1984), and 30mm � degÿ1 (Dow et al. 1981). The mean of
these measurements is 20mm � degÿ1. Obviously, there is
an extremely large spread here, and it is di�cult to weight
these measurements since none of the papers cited above
provide any quantitative error analysis.

Experimental work in this area began in the 1940s
with Talbot and Marshall (1941). The observation that
the inverse magni®cation factor was roughly linear, and
hence that 2D cortical topography was approximately
complex logarithmic, began in the late 1970s (Schwartz
1976, 1977b). Slightly later, a large number of papers
began to appear linking psychophysical measurements
to ``cortical scaling'' (see Wilson et al. 1990, for review).
However, only very recently have there been attempts to
account for the in¯uence of the curvature of the cortical
surface and the use of conformal mapping models which
generalize the complex logarithm models (see Schwartz
1994, for review). This latter work has succeeded in
placing error bounds on the two-dimensional conformal
model, which are in the range of 10%±20%. Thus, by
careful brain ¯attening and modeling techniques, it is
possible to obtain quite precise models of cortical to-
pography. Nevertheless, the range of estimates that exist
in the ®eld are quite wide, and as noted, usually unac-
companied by error analysis. Despite several human
PET and fMRI studies (Schwartz et al. 1984; Fox et al.
1987; Sereno et al. 1995), we still do not have any precise
direct measurement of human topography available and
shall simply use an average of recent attempts to esti-
mate the human magni®cation factor.

In this spirit, we will now summarize recent estimates
for the human magni®cation factor. The value of peak
magni®cation in the central fovea, for humans, has been
estimated at 15mm � degÿ1 (Cowey and Rolls 1974),
11:5mm � degÿ1 (Drasdo 1977), 8mm � degÿ1 (Rovamo
and Virsu 1979), and most recently, 20±25mm � degÿ1
(Tolshurst and Ling 1988). The mean is
14:3mm � degÿ1. We will now use this estimate, together
with measurements of human ocular dominance column
spacing, to estimate kC.

4.2 Estimate of ocular dominance column
and hypercolumn size in human V-1

In humans (Horton and Hedley-White 1984) and
macaque monkeys (LeVay et al. 1975), the a�erent
input (layer IV) to the primary visual cortex is in the
form of strips of left and right eye terminations (see
Fig. 3). Human ocular dominance columns are about
1 mm wide (Horton and Hedley-White 1984) and
monkey ocular dominance columns are both 0:5mm
wide. Within each strip (ocular dominance column),
there is a topographic organization of a small region of
the left or right eye (LeVay et al. 1975). The functional
reason for the existence of these strips is at present
unknown. Figure 3 shows a reproduction of the overall
pattern of macaque ocular dominance strips, recon-
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structed from a cytochrome oxidase study of layer IV
a�erents following the enucleation of one eye of a
macaque monkey, with subsequent computer brain
¯attening and reconstruction (Schwartz 1994).

We can estimate the angular extent of a pair of ocular
dominance columns (one hypercolumn) in the human,
corresponding to what Hubel and Wiesel (1974) have
termed a ``hypercolumn'', or basic cortical processing
module. This is

kC � 2mm � �14:3mm= deg�ÿ1 � 0:14�

or about 8 min of arc, using the above average estimate
for human topographic mapping and estimates for
human ocular dominance column size (Horton and
Hedley-White 1984). Other workers (Schein and
de Monasterio 1987; Wilson et al. 1990) have obtained
similar estimates.

For purpose of comparison to psychophysical mea-
surement, we will interpret this result in a ``one-sided''
sense, i.e., this is the maximum range to ``one side'' of a
hypercolumn (see Fig. 4). The two-sided result is twice

this, and we thus take an estimate of about 15 min of arc
(foveal) to represent the ``two-sided'' kC .

It is evident from Fig. 3 that the pattern of cortical
ocular dominance columns is roughly constant over
nearly the entire cortex [although we note that Van
Essen et al. (1984) have stated that column width de-
creases in the far periphery of the visual ®eld]. Therefore,
the angular extent of a pair of ocular dominance col-
umns increases linearly with inverse cortical magni®ca-
tion. Clearly, if the ocular dominance column pattern
has any simple relationship to stereopsis, the corre-
sponding psychophysical quantities should scale linearly
with cortical eccentricity. This is a corollary of the
original hypercolumn concept of Hubel and Wiesel
(1974), which de®ned a hypercolumn in terms of a pair
of ocular dominance columns, and the associated length
of a full set of 180 deg of orientation tuning, to provide a
basic cortical module whose scale was invariant across
the cortex and whose retinal size, therefore, increased
linearly with eccentricity.

We will begin by establishing that a range of phe-
nomena, including Panum's area (as measured by Ogle
1952), the variance of binocular vergence control
reported by Motter and Poggio (1984) and Tyler's (Tyler
1974, 1977) observations on the limiting ability to
resolve rapid changes in disparity are all consistent with
a foveal limit provided by kC. Then, we will consider the
evidence for the scaling of stereopis with cortical
eccentricity, and use these discussions to provide a
simple explanation for several related psychophysical
phenomena.

5 Psychophysical correlates

5.1 Panum's fusional limit

Panum's area is classically de®ned as a small region of
the visual ®eld, over which stereo fusion is possible. Its
magnitude is usually estimated at about 6±8 min of arc
(foveal). It should be noted that this number represents
the single-sided fusional area only, while the full
(double-sided) area is therefore 12±16 min of arc
(foveal). The concept of Panum's area has been called
into question by several experiments. Fender and Julesz
(1967) describe a hysteresis phenomenon in which there
is a slow ``pulling'' apart of a fused stereo frame.
Subjects can tolerate disparities of several degrees when
the stimulus is slowly manipulated in this manner. Since
hysteresis does not occur under normal viewing condi-
tions, we do not discuss it further in this paper.

A more fundamental challenge to the notion of
Panum's area comes from other experiments in which
Panum's area has been found to be a function of the
stimuli used rather than having a ®xed (foveal) size.
One term associated with this apparent negotiability of
Panum's area is ``disparity scaling'' (Tyler 1974, 1977;
Schor et al. 1989). In these experiments, it has been
shown that larger stimuli have larger fusion ranges. In
another experiment, Burt and Julesz (1980) introduced
the term ``disparity gradient'' to describe apparent

Fig. 3. Computer-¯attened V-1 cortex of the macaque monkey: the
data were obtained from a one-eyed monkey whose brain was
subsequently stained with a metabolic marker (from Schwartz 1994).
The periodic pattern of the ocular dominance column system is clearly
visible. Dark strips represents image input from the left eye, bright
strips input from the right eye. The strips are about 0:5mm wide

Fig. 4. Schematic representation of ocular dominance columns. The
single-sided distance is depicted by arrows, representing 6±8 min of
arc. The double-sided distance is twice as that
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complexities of fusion arising from the interaction of
two nearby stereo stimuli. Put brie¯y, there are inter-
actions between pairs of stereo targets when the ratio
of their disparity to angular separation exceeds a cer-
tain amount. This quantity, and the phenomena asso-
ciated with it, have been interpreted by Burt and Julesz
(1980) to challenge the validity of the concept of Pa-
num's area.

These apparent complexities of phenomenology of
Panum's area have called into question the utility of the
concept itself. If the area of fusion is a complex function
of the stimulus used, then it is not clear that there is a
well-de®ned angular size for Panum's area, much less
whether it scales with cortical eccentricity! However, one
of the principal results of the present paper is that both
disparity scaling and the disparity gradient discussions
of Julesz and Burt can be reconciled with a simple notion
of a ®xed Panum's area, of size kC in the foveal cortex.
After presenting support for this statement, we will then
present evidence that kC is a constant across the cortical
surface, hence scales with cortical eccentricity in the
same way as the inverse cortical magni®cation factor.
The logic of this paper is to ®rst present evidence that kC
provides an estimate of several foveal phenomena of
stereopsis. Then we will present evidence that the para-
foveal and peripheral cortex is scaled in terms of the
same constant kC.

5.2 A lower bound on the stereopsis window

Tyler (1977) quotes Wheatstone's (1838) observation
that ``stereopsis is reduced when the ®gures become too
complex''. In an important series of experiments, Tyler
has quanti®ed this observation by presenting human
subjects with disparity gratings, which are stimuli whose
binocular disparity varies sinusoidally. Using these
stimuli, he has demonstrated that humans cannot
process rapid changes in stereopsis. Tyler found this
limit to be about 4±5 cycles/deg, which corresponds to a
window of size 12±15 min of arc, within which disparity
variation cannot be processed. We interpret these
®ndings to indicate that a lower bound on the stereopsis
window or quantization is roughly 10±15 min of arc
(foveal) for the double-sided fusional area.

Tyler interpreted his ®ndings in a similar manner to
that of the present paper, since he states (Tyler, 1977):
``[because] columns or strips of cells responding to sim-
ilar orientations [are] very narrow compared to those
responding to depth..''one would therefore expect the
spatial integration across the cortex to be coarser for
depth than for form processing.''

Using our estimate for a single foveal hypercolumn,
we can quantify Tyler's observations as being consistent
with kC.

5.3 Binocular vergence error

Motter and Poggio (1984) have provided data showing
that the accuracy of the binocular vergence system

(macaque) is not better than 10±15 min of arc. The
vergence pointing error is comparable to kC . Just as
monocular micronystagmus adds a random error of
about 1 min of arc, which is comparable to the
monocular quantization size (i.e., to maximum visual
acuity), the binocular ®xation error is comparable to the
binocular quantization size estimated from the present
analysis.

5.4 Foveal and parafoveal magnitude of Panum's area

Ogle performed a classic series of experiments on the
nature of stereopsis, and also provided a series of
measurements on the dependence of stereopsis on
angular distance from the fovea (Ogle 1952). In the
fovea, the classical range over which stereo fusion
occurs, called Panum's area, is in the range of 6±8 min
of arc-disparity. Note that this measurement is the
single-sided Panum's area, meaning that its full extent is
12±16 min of arc. Ogle's measurements indicate that
Panum's fusional area scales linearly with eccentricity.
Moreover, like many other visual parameters, Panum's
area scales with eccentricity in a manner that ®ts the
cortical magni®cation factor (Hampton and Kertesz
1983).

Combining Ogle's data and the observations of
Hampton and Kertesz (1983), it is clear that the data for
Panum's area are consistent with a basic cortical mod-
ule, of size kC, independent of eccentricity. In other
words, Ogle's data indicate that the range of fusion ex-
tends over a single cortical hypercolumn, and that this is
true regardless of position in the visual ®eld.

Hampton and Kertez's ®nding as well as Ogle's
measurements of Panum's area and its dependence on
visual eccentricity seem to be directly contradicted by a
more recent experiment of Schor et al. (1986), which
used stimuli of de®ned spatial frequency content to
study the dependence of Panum's area on visual eccen-
tricity. These apparently contradictory experimental re-
ports may be resolved by a careful analysis of the
di�erences in experimental design between Ogle (1952)
and Schor et al. (1986). When these latter workers pre-
sented stimuli to their subjects at parafoveal visual ec-
centricities, they did not change the scale of the stimulus
itself. They presented the same stereo stimuli, consisting
of stereo pairs of a di�erence-of-Gaussian pro®le of
frequency 0.3 c/deg and 6 c/deg, and a broad vertical bar
of width 1.5 deg stimulus at eccentricities 0, 1.5, 3 and
5 deg. They found that Panum's area was a constant at
all four eccentricities.

This experiment did not properly scale the stimulus
elements, since the same DOG-shaped stimulus was used
at all eccentricities, changing only the stereo separation.
Thus, in cortical coordinates, the stimulus was com-
posed of elements which were consistently decreasing in
cortical spatial size as the same stimulus was shown at
increasingly larger retinal eccentricities!

The problem outlined above, which may be summa-
rized as the failure to properly scale the stimulus element
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size when presenting nonfoveal stimuli, is common to
several other experiments in this area. For example,
Fendick (1983) studied the eccentricity dependence of
stereoacuity, and Westheimer (1982) studied the eccen-
tricity dependence of vernier acuity. In both of these
experiments, stimulus elements making up the vernier
and stereo targets (composed, for example, of a pair of
1 min of arc boxes) were not scaled to match local
cortical spatial frequency tuning. Clearly, if one wishes
to measure the eccentricity dependence of a stereo sep-
aration or vernier o�set, then it is mandatory to scale the
elements from which these stimuli are constructed.
Otherwise, one is confounding two e�ects: the potential
scaling of stereo or vernier separation, and the de-
creasing detectability of a constant-sized stimulus ele-
ment as it is shifted into the periphery.

Finally, we cite a very recent result, published after
submission of this paper, which indicates that peak de-
tection frequency for ``disparity corrugations'' is
0.8 mm, after correction for the cortical magni®cation
factor (Prince and Rogers 1998). In other words, sensi-
tivity for disparity corrugation scales with the cortical
magni®cation factor, and the basic ``modular'' spatial
frequency corresponds to roughly 1 mm of cortex
independent of position in the visual ®eld.

5.5 Disparity gradient and disparity scaling explained
by cortical scaling of fusion limits

We now brie¯y discuss two additional phenomena of
human stereovision: disparity scaling and the disparity
gradient experiment of Burt and Julesz (1980). We will
demonstrate that if the range of fusion of human
vision (Panum's area) is determined by a constant kC
in the cortex, as we have suggested, then a simple
explanation of these phenomena is possible, which re-
instates the simple notion of Panum's area as a
constant region independent of stimulus and experi-
mental details.

5.6 Disparity scaling

The fusion of large stimuli unavoidably involves the
nonfoveal cortex. The larger the stimulus, the larger are
the visual eccentricities of the boundaries of the stimuli.
If, as Ogle has shown, more peripheral regions of the
cortex have a larger Panum's area, then it is not
surprising that larger stimuli have larger Panum's areas.
In fact, Schor et al. (1989, p. 833) suggest this same
possibility to explain disparity scaling, but reject it
because their earlier experimental results (Schor et al.
1986) indicated that Panum's area is a constant,
independent of eccentricity. But we have shown that
this observation is likely due to the lack of appropriate
scaling of their stimuli. In other words, both the data
and the analysis of Schor et al. (1986, 1989) are
consistent with the possibility that disparity scaling is a
phenomenon caused by the cortical magni®cation
factor.

In order to make this more precise, it is necessary to
have a detailed computational model of stereo fusion,
which would allow predictions of the expected range of
the relationship of stimulus structure to fusion. Though
some computational considerations have been proposed
(Koenderink and van Doorn 1976; Ludwig et al. 1994),
such a complete model has not yet been constructed to
our knowledge. In the absence of such a model, we point
out, following the suggestion of Schor et al. (1986), that
if Panum's area scales with cortical eccentricity, then this
might well be the origin of disparity scaling. More in-
sight into this idea is presented by the following cortical
simulation of the Burt-Julesz disparity gradient experi-
ment.

5.7 The Burt-Julesz disparity gradient experiment

Burt and Julesz (1980) performed an important exper-
iment that has been in¯uential in the modern interpr-
etation of Panum's area. In this experiment, subjects
were shown pairs of dots. Each pair of dots was

Fig. 5. Retinal (left) and cortical (right)
representation of a pair of dots, illustrating
the stimulus presentation of the disparity
gradient experiment of Burt and Julesz
(1980). Left: The retinal stimulus consists of
four dots: l1, r1, and either pair of lk , rk , for
k � 2; 3; 4. When fusion occurs, li is fused
with the corresponding ri. The retinal distance
between l1 and r1 in this simulation is 10 min
of arc. Right: Cortical representation of the
input pattern on the left. Notice that the
cortical distance between the two dots of all
the pairs is almost constant
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parameterized by a disparity for each dot and an angular
separation between the two dots (see Fig. 5A). It was
found that the limiting disparity (i.e., Panum's limit) was
not constant, but varied linearly with the distance
between the pairs. In the actual experiment, only two
pairs were presented in each trial, and in each consec-
utive trial the distance between pairs was reduced, until
fusion was not possible.

Burt and Julesz (1980) de®ned the disparity gradient
as the ratio of disparity di�erence to separation in visual
space. They found that this disparity gradient measure
was a good predictor of the ability of subjects to fuse the
stimulus, independent of the classical notion of Panum's
area. They concluded: ``We have found that fusion is
never obtained when the disparity gradient exceeds a
critical value of approximately 1 (deg disparity)/(deg of
dot separation). Thus, diplopia occurs even for dots with
disparities well within the classical Panum's fusional
area whenever the gradient limit is exceeded. It is this
failure of fusion under normally favorable conditions
that most clearly demonstrates the critical role of object
interactions in fusion. It seems that nearby objects warp
the fusional space, creating forbidden zones in which
changes in disparity are too steep for fusion.''

The results of the experiment deviate from the clas-
sical notion of Panum's limit in two ways:

1. The fusion limit increases with the distance between
the pairs.

2. The fusion limit decreases below the classical value
when the distance between the pair decreases below
some threshold value.

However, both of these e�ects can be explained in terms
of the cortical con®guration of the stimuli used in this
experiment, and using the classical concept of Panum's
area. In order to explain (1) above, consider Figs. 5 and

6, where we show the schematic retinal and cortical
con®guration of the experiment. In order to show the
cortical representation of the dots, we have used the
model of cortical topography mentioned in (1). The two
®gures depict a simulation of the retinal-cortical map-
ping that we use in order to clarify our position. We
show the central 1.2 deg of retinal and cortical
representation of the pattern used by Burt and Julesz.
The retinal distance between the two dots depicted as l1
and r1 in Fig. 5A is 10 min. The cortical patch size that
represents about 12 min is depicted by the circles in Fig.
6. The precise details of the cortical map function are
not critical to this discussion, merely the fact that
cortical magni®cation is an approximately inverse-linear
function of eccentricity whose magnitude is in the range
estimated in this paper.

It is evident (see Fig. 5) that while the retinal dis-
parity between the points increases, the cortical dis-
tance remains almost ®xed. Thus, while the disparity
limit is indeed changed in retinal coordinates, it
remains ®xed in cortical coordinates and stays below
kC . In other words, an explanation of the disparity
gradient phenomena does not require the assumption
of a warping of binocular space, but merely an ex-
amination of the stimuli in their cortical representa-
tion. With two (stereo) stimuli, the set which is
unavoidably further from the foveal representation will
have a fusion limit which is somewhat larger (in reti-
nal coordinates) than its pair.

The other limiting case of the disparity gradient ex-
periment, (2) above, is explained by observing that when
the two dots both have small disparities (compared to
Panum's area), it is still possible for them to fail to be
fused, provided that they are nearby in visual space. This
is seen with reference to Fig. 6, where the cortical rep-
resentations of the points in the Burt-Julesz disparity

Fig. 6. Cortical representation (1 and 2) of the stimuli in
the Julesz-Burt `gradient disparity' experiment. The
graph depicts areas of fusion (where spatial dot
separation exceeds dot disparity) and areas of diplopia.
In the original experiment, spatial separation between
fusable two pairs of dots is reduced up to the point of
diplopia. The circles represent a cortical `patch' whose
size is 12 min of arc (foveal). The cortical con®guration
of a fusable pair is depicted in 1: the two pairs exceeds kC
(the width of the circles). When the spatial dot separation
is reduced (cortical con®guration depicted in 2), the two
pairs fall within the same area of size kC , where only one
disparity value can be perceived, therefore causing
diplopia
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gradient experiment are illustrated. Whenever the cor-
tical representations of the two points are closer together
than kC the binocular targets are NOT separated by a
cortical window size of kC. But in this case, we expect
there to be a failure of fusion based on Tyler's (1974,
1977) observations, as outlined in this paper. There is a
minimum cortical separation which must be preserved to
avoid interference with stereopsis. This amount is kC in
Fig. 6, and it is capable of predicting the entire curve of
the disparity gradient experiment, as shown in Fig. 5.

An earlier explanation of the Burt-Julesz experiment
was suggested in a note added in proof to Schor and
Tyler (1980): ``[Burt and Julesz] have recently veri®ed
that disparity scaling of fusion limit applies to non-
periodic stimuli in the form of a ®xed gradient limit''.
This remark seems to be suggesting that the larger extent
of the Julesz-Burt stimuli is expected to have a larger
fusion range, and our explanation is based on a similar
notion. However, we have explicitly related this to a
quantitative model of the cortex, and also show that
both phenomena of disparity scaling and disparity gra-
dient may be explained on this single basis.

When the stimulus pairs are far apart, they are both
capable of fusion by virtue of the increase in Panum's
area with eccentricity. When the stimulus pairs are too
close together, fusion fails by virtue of Tyler's observa-
tions on the limiting region over which disparity changes
can be processed. Thus, the concept of a fusional area,
whose size is about kC, and which scales with eccen-
tricity, is su�cient to explain the results of the disparity
gradient experiment.

6. Discussion

Two of the most prominent anatomical features of the
primate visual cortex are the topographic mapping and
interlacing of the left and right retina into a single
binocular representation in layer IV of V-1. However,
the relationship of these anatomical data and current
psychophysical measurements of human stereopsis are
much less explored. The original suggestion by Hubel
and Wiesel (1974) that the size of a pair of ocular
dominance columns determines a modular (hypercol-
umn) unit of striate cortex whose angular size in the
retina would thus increase roughly linearly with eccen-
tricity has resulted in a large amount of research aimed
at determining the ``cortical scaling'' of various psycho-
physical phenomena. Curiously, it would seem that the
origin of this idea, which lies in the constant width of
ocular dominance columns across most of the surface of
V-1, would have stimulated an analysis of cortical
scaling and stereopsis. In particular, it would seem that
stereo fusion, which has a classic modular structure in
terms of Panum's area, would be a prime candidate for
this analysis.

This has not been the case, and the reason can be
traced to the series of experiments reviewed in this pa-
per. In the ®rst place, the very existence of Panum's area,
and even of the concept of stereo fusion itself (Kaufman
and Arditi 1976), has been called into question. Sec-

ondly, of the various experiments performed to study the
variation of fusion limits with visual eccentricity, two are
in agreement with cortical scaling (Ogle 1952; Hampton
and Kertesz 1983), while Schor et al. (1986) explicitly
contradicts it. However, we feel that we have presented a
convincing argument that the data presented in Schor
et al. (1986), when re-interpreted, suggest that Panum's
area should in fact increase with visual eccentricity.
Thus, we conclude that Panum's area is scaled by the
size of a foveal hypercolumn, and increases in a linear
fashion whose slope is comparable to most recent mea-
surements of the cortical magni®cation factor.

Secondly, some of the puzzling phenomena of stereo
fusion, such as disparity scaling and the Burt-Julesz
disparity gradient experiment, can be interpreted by
considering the stimulus con®gurations as they appear in
V-1, together with the scaling of Panum's fusional limit
with visual eccentricity.

Direct support for the existence of a modular basis
for stereopsis greater than 8 min of arc has recently been
described by Schlesinger and Yeshurun (1998). Analo-
gous ``modular'' phenomena, also with a size in the
range of kC , have been reported for monocular visual
function. For example, the visual perception of texture
(and probably motion) is an area, rather than point,
process. This area must have a lower spatial limit (e.g.,
texture can be perceived on an area that is larger than
the visual acuity). It is intriguing, in that regard, to
mention that there are some preliminary indications that
areas of size 8±12 min of arc determine a basic modular
size for human texture analysis (Gagalowicz 1980; Or
and Zucker 1989). It has also recently been found
(Hermush and Yeshurun 1995) that a size limit exists on
a human's ability to perceive more than a single motion
vector, and it turns out that this limit is, again, about
10±12 min of arc.

Suggesting a mechanism of contour curvature detec-
tion, Wilson and Richards (1989) conclude that ``at low
curvature the visual system estimates curvature from
contour orientation at sample points separated by 8.2
minutes of arc.'' Discussing interpolation of stereoscopic
matches, Mitchison and McKee (1987) suggest that ``the
internal structure of grids of 5±70 spacing must be
available to the stereo matching system even for short
durations''.

While visual acuity is in the range of 10, it seems that
these experimental results, although varying from 50±70
to 100±120 (probably due to di�erent experimental con-
ditions), support our prediction (Yeshurun and
Schwartz 1989) that visual data (and binocular visual
data in particular) is processed, at least in an initial
stage, on a coarser grid that has been shown to ®t the
size of a pair of ocular dominance columns, i.e., corre-
sponds to the classical de®nition of a cortical hypercol-
umn (Hubel and Wiesel 1974).

The observations outlined in this work are signi®cant
for our understanding of the basic neural mechanisms of
stereovision and also for computational approaches to
machine vision. In fact, it appears that there are complex
heuristic trade-o�s in biological stereoscopic vision, such
that extremely high stereoacuity is maintained, but that
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the spatial complexity of stereo stimuli is compromised
in terms of a fairly coarse quantization. At the present
time, we do not know much about the detailed neural
mechanisms responsible for stereopsis. However, a close
study of the anatomical and psychophysical correlates of
stereopsis represents a potentially important insight into
both biological and computational stereovision.
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