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Camouflage is frequently used by animals and humans (usually for mil-

itary purposes) in order to conceal objects from visual surveillance or in-

spection. Most camouflage methods are based on superpositioning multiple

edges on the object that is supposed to be hidden, such that its familiar

contours and texture are masked. In this work, we present an operator,

(Darg), that is applied directly to the intensity image in order to detect 3D

smooth convex (or equivalently: concave) objects. The operator maximally

responds to a local intensity configuration that corresponds to curved 3D

objects, and thus, is used to detect curved objects on a relatively flat back-

ground, regardless of image edges, contours and texture. In that regard,

we show that a typical camouflage found in some animal species, seems to

be a ”counter measure” taken against detection that might be based on our

method. Detection by Darg is shown to be very robust, from both theo-

retic considerations and practical examples of real-life images. As a part of

the camouflage breaking demonstration, Darg, which is non-edge-based, is

compared with a representative edge-based operator. Better performance

is maintained by Darg for both animal and military camouflage breaking.

Key Words: convexity detection, regions of interest, camouflage breaking, counter shad-

ing.
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1. INTRODUCTION

“Camouflage is an attempt to obscure the signature of a target and also to match

its background” [1].

The goal of this paper is to detect 3D convex or concave objects under strong

camouflage. We suggest an operator (“Darg”), which is applied directly to the

intensity function. Darg maximally responds to the typical intensity signatures of

smooth 3D convex or concave patches in the objects. The operator is not limited

to any particular light source or reflectance function, as a large range of examples

demonstrate. Darg implicitly takes advantage of the 3D structure of objects, but

does not attempt to restore the three dimensional scene. Although prior knowledge

or experience may aid one in breaking camouflage (e.g. [2]), our operator is context-

free; its only a priori assumption about the target is its being three dimensional

and convex (or concave). The purpose of Darg is detection of convex or concave

subjects under harsh camouflage conditions or in highly cluttered scenes.

Darg is robust to changes in illumination, scale, and orientation. The invariance

theorem underlying the theoretic explanation for this phenomenon (proof supplied)

is accompanied by real-life images. The theorem states that Darg is invariant under

any derivable and strongly monotonically increasing transformation of the intensity

function. The robustness and invariance characterizing Darg make it suitable for

camouflage breaking, even for camouflages that might mislead a human viewer (an

example of this kind of camouflage is Fig. 1(a)).

The application of the operator to real-life images demands a relatively short

running time, and its robustness leads to reliable results. The reliability of Darg

in detection of camouflaged targets is displayed in a comparison between Darg and

a representative edge-based detection method: radial symmetry (see [3]). Radial

symmetry is a representative edge-based method, as it was proved to generalize

several other methods of interest point detection. The difficulty of camouflage

breaking by edge-based methods is demonstrated in Fig. 1, where edge distribution

of a military camouflage resembles the texture of the surroundings. The large

number of strong edges in the scene and the camouflage clothes distract edge-based

operators from the main subject.

After a short survey of related work (section 2), we define the suggested convexity-

based operator: Darg (section 3). Subsection 3.2 is of particular importance for

understanding the behavior of Darg, as it describes the goal of the operator and

the way to accomplish this goal in an intuitive manner. Section 4 is a rigorous

mathematical characterization of the behavior of Darg. Section 5 demonstrates

the robustness of Darg to illumination, scale and orientation changes in real-life

images; the robustness is based on the theoretic claims of section 4. Section 6

introduces biological evidence for camouflage breaking using convexity detection,

based on Thayer’s principle of counter-shading. Section 7 compares the performance

of the suggested convexity-based operator with that of a representative edge-based

method in camouflage breaking. Several types of camouflage are examined in the

comparison. Conclusions appear in section 8.

2. RELATED WORK
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a. Original image. b. Edge map (‖ ∇I ‖).

c. Radial symmetry (r=30). d. Detection by the peaks of Radial

Symmetry.
FIG. 1. Failure of edge-based methods. A highly textured background and camouflage

clothes (a) leads to a total failure of edge-based methods. The edge map (b) is densely covered
with edges, so an algorithm receiving the edge map as its input (c) fails to discriminate the 3D
object from the background (d).
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The work related to visual camouflage could be roughly divided into two: cam-

ouflage assessment and design, and camouflage breaking.

In the camouflage assessment literature, one may find [1], which assesses the dis-

tinctness of camouflaged patterns in a set of images. The set of images is paired,

and the observer is asked to choose which of the two images possesses a target pat-

tern that is more distinct from the background. The results of these comparative

observations show high correlation with a second order metric of pattern distinct-

ness, which is based on a model of image texture. [4] also assess the strength of

a camouflaged target signature based on human perception. They combine the

results of human quantification of differences in camouflage effectiveness in a semi-

automatic (i.e, a human-in-the-loop) camouflage assessment system. [5] describes a

system for designing camouflage patterns based on natural terrain reflectance data.

[6] designs camouflage patterns based on Fourier techniques and biologically based

techniques. [7] describes aircraft camouflage design research during World War II.

Despite the ongoing research, only little has been said in the computer vision liter-

ature on visual camouflage breaking: [8] considers the issue of camouflage breaking

for moving targets by stereopsis, and reaches the conclusion that stereo does not

greatly enhance motion detection in camouflage. [9] measures motion by interpret-

ing object edges as differential mapping singularities. This allows motion detection

even in the presence of sudden changes of target direction and use of camouflage.

[10] proposes a computational model of visual moving image filtering. [11] suggests

a 3D model-based aircraft recognition scheme, based on low level matching of image

segments and segments of the projection of the 3D model, extracted from one or

more views. The recognition system copes also with aircraft camouflage. [12] take

the spectral feature as the basis for target recognition, attempting to distinguish

color camouflage from green vegetation background. Breaking camouflage using

light polarization has been suggested in [13]; biological evidence for polarization-

based camouflage breaking in the cuttlefish was introduced in [14].

3. Y arg: AN OPERATOR FOR DETECTION OF CONVEX

PATCHES

We next define the operator we propose for detection of three dimensional objects

having smooth convex and/or concave patches.

3.1. Defining the Argument of Gradient

Let us estimate the gradient map of image I(x, y) by:

∇I(x, y) ≈ ([Dσ(x) Gσ(y)] ∗ I(x, y), [Gσ(x) Dσ(y)] ∗ I(x, y))

where Gσ(t) is the one dimensional Gaussian with zero mean and standard de-

viation σ, and Dσ(t) is the derivative of this Gaussian. We turn the Cartesian

representation of the intensity gradient into a polar representation. In contrast

with edge-based methods, which are usually concerned with the gradient magni-

tude, we are more interested in the gradient argument . The argument (usually

marked by θ(x, y)), is defined by:

θ(x, y) = arg(∇I(x, y)) = arctan
(

∂
∂y

I(x, y) ,
∂
∂x

I(x, y)
)
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where the two dimensional arc tangent is defined by:

arctan(y, x) =



















arctan( y
x
), if x ≥ 0

arctan( y
x
) + π, if x < 0 , y ≥ 0

arctan( y
x
) − π, if x < 0 , y < 0

and the one dimensional arctan(t) is the inverse function of tan(t) so that: arctan(t) :

[−∞,∞] 7→
[

−π
2 , π

2

]

. The proposed convexity detector, which we mark by: Yarg ,

is the y-derivative of the argument map:

Yarg =
∂

∂y
θ(x, y) ≈ [Gσ(x) Dσ(y)] ∗ θ(x, y)

.

3.2. Intuition for Yarg

In the next chapter we provide a mathematical description of the operator and

prove its attributes. It might be useful, however, to first examine the intuition

behind it.

• What Does Yarg Detect?

Yarg detects the zero-crossings of the gradient argument. This stems from the

last step of the gradient argument calculation: the two-dimensional arc-tangent

function. The arc-tangent function is discontinuous at the negative part of the

x-axis; therefore its y-derivative approaches infinity there. In other words, Yarg

approaches infinity at the negative part of the x-axis of the arctan, when this axis

is being crossed. This limit reveals the zero-crossings of the gradient argument.

• Why Detect Zero-Crossings of the Gradient Argument?

Yarg detects zero-crossings of the gradient argument of the intensity function I(x, y).

The existence of zero-crossings of the gradient argument enforces a certain range

of values on the gradient argument (trivially, values near zero). Considering the

intensity function I(x, y) as a surface in R
3, the gradient argument is the azimuth

of a normal to the surface. Therefore, a range of values of the gradient argument

means a certain range of azimuths of the normal to the intensity surface. This

enforces a certain structure on the intensity surface itself.

The next section (Sect. 3.3) would characterize the structure of the intensity surface

as either a paraboloidal structure or any derivable strongly monotonically increasing

transformation of a paraboloidal structure (Fig. 2). Since paraboloids are arbitrarily

curved surfaces, they can be used as a local approximation of 3D convex or concave

surfaces (Recall, that our input is discrete, and the continuous functions are only

an approximation!). The detected intensity surface patches are therefore those

exhibiting 3D convex or concave structure. The convexity is three dimensional,

because this is the convexity of the intensity surface I(x, y) (= 2D surface in R
3;

Fig. 3(b)), and not convexity of contours (= 1D surface in R
2; Fig. 3(a)). This 3D

convexity of the intensity surface is characteristic of intensity surfaces emanating

from smooth 3D convex bodies. For example: the image of a smooth 3D convex

Lambertian surface under a point light source is a convex intensity function.
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(a) (b) (c)

(d) (e) (f)

FIG. 2. (a) Paraboloidal intensity function: I(x, y) = 100x2+300y2 . (b) Gradient argument
of (a). Discontinuity ray at the negative x-axis. (c) Yarg of (a) (= ∂

∂y
of (b)). (d) Rotation of

(a) (90◦ c.c.w.), calculation of gradient argument, and inverse rotation. (e) Rotation of (a) (90◦

c.c.w.), calculation of Yarg, and inverse rotation. (f) Response of Darg, the isotropic operator.
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FIG. 3. 3D vs. 2D convexity. (a) 2D convexity: A contour is a 1D surface in R
2. (b) 3D

convexity: A paraboloid is a 2D surface in R
3.
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• Summary

We detect the zero-crossings of the gradient argument by detecting the infinite

response of Yarg at the negative x-axis (of the arctan). These zero-crossings occur

where the intensity surface is 3D convex or concave. Convex smooth 3D objects (e.g,

Lambertian surfaces under point light source) usually produce 3D convex intensity

surfaces. Thus, detection of the infinite responses of Yarg results in detection of

domains of the intensity surface which characterize 3D smooth convex or concave

subjects.

3.3. Yarg Response to Paraboloids

The projection of concave and convex objects can be estimated by paraboloids

(Fig. 2(a)), since paraboloids are arbitrarily curved surfaces (see [15]). Our math-

ematical formulation refers to a general paraboloid of the form:

f(x, y) = a(x − ε)2 + b(y − η)2

where a > 0 , b > 0 are constants, and (ε, η) is the center of the paraboloid

(Fig. 2(a)). The first order derivatives of the paraboloid are: ∂
∂x

f(x, y) = 2a(x− ε)

and ∂
∂y

f(x, y) = 2b(y − η). The gradient argument is therefore:

θ(x, y) = arctan(b(y − η), a(x − ε))

(see Fig. 2(b)). Deriving it with respect to y yields:

∂

∂y
θ(x, y) =

ab(x − ε)

a2(x − ε)2 + b2(y − η)2
(1)

However, this derivative exists in the whole plane except for the ray:

{(x, y) | y = η and x ≤ ε} (2)

Pay attention, that the derivative of the 2D arctan function along this ray is in-

finite, even though the derivative at the rest of the plane (as expressed in (1)) is

continuous. At a first glance, Computer Vision applications tend to “smooth out”

such an infinite derivative by employing the algebraic expression of (1) (which is

continuous at the whole plane except for the origin) instead of the correct math-

ematical derivative. In contrast with this approach, we would follow the rigorous

definition of derivative, and see that the infinite derivative of the discontinuity

ray could be highly advantageous. In fact, this discontinuity ray and its infinite

derivative are the basis for the suggested approach.

At the ray (2), θ(x, y) has a first order discontinuity (in the y-direction), so its

derivative there approaches infinity. The fact that for a paraboloid, ∂
∂y

θ(x, y) → ∞

at the negative ray of the x-axis, while continuous at the rest of the plane can be

clearly seen in Fig. 2(c) (we define our coordinate system at the horizontal and

vertical axes of the paraboloid).

The reader should note, that the argument of the gradient is being used in Com-

puter Vision for a long time. Hough transform [16], for example, uses the argument
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of the gradient to reduce the space of parameters when searching straight lines

or circles in the image. Image improvement by argument-based methods is also

known, and can be found in [17]. Recognition of local symmetries in graylevel im-

ages employs the argument of a convolution kernel which is complex valued [18].

Nonetheless, the novel idea in the suggested operator is not the argument of the

intensity gradient, but rather the usage of the discontinuity ray formed by the

argument of the intensity gradient. The key idea for the detection scheme we de-

scribe lies in this discontinuity ray, which is detected by derivation of the gradient

argument, to receive a strong response to that ray. Looking for zero-crossings in

the argument of the intensity gradient is very stable.

3.4. Darg: The Isotropic Variant

The strong response of Yarg at the negative part of the x-axis appears when

θ(x, y) changes sharply from high values (approx. π) to low values (approx. −π).

This need not happen only on paraboloidal intensity functions: cropping a strip

around the negative part of the x-axis from the parabolic intensity function would

still produce high values, since ∂
∂y

θ(x, y) → ∞ there. The intensity function of the

cropped image exhibit strong convexity in the y-direction, and therefore leads to

the strong Yarg reaction. Similarly, a horizontal cylinder would cause a strong Yarg

reaction. A vertical cylinder, on the other hand, would cause a very weak reaction,

as its horizontal axis is flat. Figures 4(a),(b) demonstrate this dependence of Yarg on

the convexity orientation: Yarg does not detect the vertical cylinder. The reaction

to the oblique cylinder is weaker than to the horizontal cylinder.

In order to avoid Yarg dependence on convexity orientation, we define an isotropic

operator; i.e., an operator that would strongly response to all convexity orientations.

A general way of doing so would be to rotate the original image by π − α degrees

counterclockwise, calculate Yarg for the rotated image, and rotate the result back

to the original angle (by α − π degrees counterclockwise). We refer to this process

as calculating the αarg of the image. Figures 2(d),(e) describe such a rotation of

the argument of the gradient and the Yarg of the paraboloidal intensity function,

respectively. Fig. 2(e) can be referred to as the αarg for α = 90◦. The αarg of the

cylinders image appears in Fig. 4(b)-(e). We approximate the isotropic operator:
360◦

∫

α=0◦

(αarg)dα by: Darg =
∑

α=0◦,90◦,180◦,270◦ αarg . Figure 2(f) shows the Darg of

the paraboloidal intensity function. As expected, a strong response appears in all

axes. The Darg of the cylinders image strongly responds to all cylinders in all

orientations (Fig. 4(f)).

4. PROPERTIES OF Darg

We next consider several properties of Yarg. By definition, the same properties

characterize Darg too.

Planar objects of constant albedo form linear intensity functions, and are usually

of little interest (e.g., walls). It can be easily shown, that:

• Yarg has zero response to planar objects.
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a. Cylinders. b. α = 180◦. c. α = 90◦

d. α = 0◦ e. α = 270◦ f. D2
arg.

FIG. 4. (a) Four cylinders (ray-tracing of a three dimensional model). (b) Y 2
arg of (a). Can

be also referred to as α2
arg for α = 180◦. (c)-(e) The α2

arg of the cylinders image in (a). Below
each image appears the appropriate α. The dependence on the cylinder orientation is obvious.
(f) D2

arg of (a). Darg strongly reacts to all cylinders, independent of their orientation.
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• Theoretically, having a continuous image, edges of planar objects produce a

finite response, while paraboloids, an infinite response. Practically, the response to

edges of planar objects is smaller than the response to paraboloids.

• Linear dependence on scale.

DI(sx,sy)
arg (x, y) = s · DI(x,y)

arg (sx, sy)

The Darg of the scaled image (I(sx, sy)) at point (x, y) is the scaled Darg of the

original image multiplied by the scale factor: s.

The linear dependence on scale holds when one deals either with continuous images

(in theory), or when the subsampling is dense enough to faithfully represent the

original image following scaling. The choice of a particular standard deviation

(σ) for the calculation of derivatives affects the working scale in similar manner.

However, when one examines image locations where Darg → ∞, a change of σ will

only affect the size of the domain where the theoretically-infinite response should

occur, but not the relative strength of the response. Theoretically, this response

would be infinite, regardless of the value of σ. In practice, this response would be

higher than those of theoretically-finite domains, no matter what the value of σ is.

Thus, the infinite response reduces the effect of change in standard deviation σ or

scale, and allows the usage of a constant value of σ for a large range of object sizes

(as later demonstrations will show).

It follows from these properties, that the response of Yarg to 2D-convexity that is,

convexity of contours in the plane, is relatively weak. The stronger response of Yarg

is to 3D-convexity (convexity of surfaces in the 3D space), for example, paraboloids.

We now present an important invariance property of Yarg , followed by a practical

discussion and a demonstration from real-life scenes.

Theorem 4.1.

Let f(x, y) [the original intensity function] be a derivable function at each pixel

(x0, y0) with respect to x and y.

Let T (z) [the transform] be a function derivable at point z0 = f(x0, y0), whose

derivative there is positive in the strong sense. Define the composite function by:

g(x, y) = T (f(x, y)) [the transformed intensity function].

In this case, the y-derivatives of the gradient arguments of f(x, y) and g(x, y) at

point (x0, y0) are identical:

∂θg(x0, y0)

∂y
=

∂θf (x0, y0)

∂y

Proof. By the chain rule, the composite function: g(x, y) = T (f(x, y)) is deriv-

able with respect to both x and y at point (x0, y0), and its derivatives are:

gx(x0, y0) = T ′(f(x0, y0))fx(x0, y0)

gy(x0, y0) = T ′(f(x0, y0))fy(x0, y0)
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Let f0 = f(x0, y0), f0
x = fx(x0, y0), f0

y = fy(x0, y0). The argument of the gradient

at point (x0, y0) can be written as:

θg(x0, y0) = arctan
(

T ′(f0)f0
y , T ′(f0)f0

x

)

Since we have required that T ′(f0) > 0, the point
(

T ′(f0)f0
x , T ′(f0)f0

y

)

lies in

the same quarter of the plane as point (f 0
x , f0

y ). It follows that:

θg(x0, y0) = arctan
(

T ′(f0)f0
y , T ′(f0)f0

x

)

= arctan
(

f0
y , f0

x

)

= θf (x0, y0)

The last equation states that the argument of the intensity gradient is invariant

under the transformation T . Deriving the gradient argument with respect to y

preserves this invariance:

∂θg(x0, y0)

∂y
=

∂θf (x0, y0)

∂y

Let us rephrase theorem 4.1 in the following manner:

Yarg is invariant under any derivable strongly monotonically increasing transfor-

mation of the intensity function.

The practical meaning of the theorem is that Yarg is invariant, for example, under

linear transformations, positive powers (where f(x, y) > 0), logarithm, and expo-

nent. Yarg is also invariant under compositions and linear combinations (with pos-

itive coefficients) of these functions, since such combinations are also derivable and

strongly monotonically increasing. The functions mentioned above and their com-

binations are common in image processing for lighting improvement. This implies

that Yarg is robust to a large variety of lighting conditions. Figure 5 demonstrates

Yarg invariance to log(log(I)) and exp(exp(I)) in a real-life scene.

Taking Yarg invariants into account, the suggested model is not only a paraboloidal

intensity function detector, but also a detector of any derivable strongly monoton-

ically increasing transformation of paraboloids. This stability makes Yarg partic-

ularly attractive for usage in various scenes where the environment is unknown

before hand.

5. Darg ROBUSTNESS DEMONSTRATION

Darg is robust to the following three factors: illumination, scale, and orienta-

tion. The robustness to the last two factors is gained mainly due to the fact that
∂
∂y

θ(x, y) → ∞ at the negative x-axis of paraboloids, which is a very stable feature.

Scale and orientation variations preserve this approach to infinity. Robustness to

illumination changes has been proved in detail in Sect. 4. Further demonstration

of the robustness of the operator can be found in [19].

Robustness to Illumination. We have proved in Sect. 4, that Darg is invariant to

any transformation of the intensity function which is derivable and strongly mono-

tonically increasing. As discussed there, the practical meaning of this invariance
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Original image I log(log(I)) exp(exp(I))

FIG. 5. Invariance to derivable strongly monotonically increasing transformation of the
intensity function. Top row: The original image I(x, y) is compared to log(log(I(x, y))) and
exp(exp(I(x, y))). Darg is invariant under log and exp. Bottom row: Darg. The similarity
between the Darg of the original image and the Darg’s of the transformed images is obvious.

is robustness to illumination variations. Let us examine different directions of il-

luminations in a real-life scene. In Fig. 6, a single point light source illuminates

the scene. The light source is placed in seven positions which are equidistant from

the subject, to form horizontal angles of −90◦, −60◦, −30◦, 0◦, 30◦, 60◦, 90◦, with

respect to the line connecting the subject and the camera. In each of the images,

the regions of the highest Darg values are those of the inverted funnel.

Robustness to Scale. Figure 7 (left) demonstrates Darg robustness to scale. It

should be noted that throughout this article the same dimensions for the convo-

lution windows were used: 2 × 2 pixels window for the first-order derivation, and

14 × 14 pixels window for the derivation of θ(x, y). No a-priori knowledge of the

scale of the detected objects is used. In Fig. 7 (left), a vase is photographed in

6 different scales. Each image is accompanied by its D2
arg. The vase is detected

by Darg in each of the scales. The smallest appearance of the vase takes approxi-

mately: 24×30 pixels, while the largest, approximately: 60×76 pixels. This means

that the image of the vase is zoomed approximately by factor 2.5 (in each axis).

Robustness to Orientation. The Darg operator is isotropic by definition: it has

been generated to answer the problem of Yarg preference of objects with maximal

convexity in certain orientations (see Sect. 3.4). Figure 7 (right) shows the robust-

ness of Darg to the orientation of the maximal convexity of the object. In this

figure, we have taken a threshold of 70% of the maximal squared reaction of Darg.

The biggest blob (in terms of number of pixels) in the thresholded image is used as

our detection. In all orientations the flashlight has been correctly and consistently

detected.

Threshold Sensitivity Analysis. In order to show that a detection scheme is

robust, it is not enough to show that the basic operator itself is robust, but one
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Image: D2
arg:

FIG. 6. Robustness to illumination. Darg strongly reacts to the funnel, and is robust to
changes in lighting direction. Each row corresponds to an illumination direction with an azimuth
of −90◦, −60◦, −30◦, 0◦, 30◦, 60◦, or 90◦, respectively. The detection is performed by 70%
thresholding on D2

arg .
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Image: D2
arg: Image: D2

arg:

FIG. 7. Left: Robustness to scale changes—a vase in 6 different scales. The largest appear-
ance of the vase is 2.5 times larger than its smallest appearance (in each axis). Right: Robustness
to orientation variations. The flashlight changes its orientation from vertical to horizontal. Darg

strongly reacts to the cylindric flashlight. The detection of the flashlight is independent of orien-
tation. The detected region is the biggest blob in the 70% thresholded D2

arg.
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has to consider the thresholding mechanism, too. To show that the method is

indeed robust against noisy background, we conduct a sensitivity analysis of the

threshold. Figure 81 shows that if the threshold changes slightly, the number of

detected objects does not increase or decrease dramatically. Thresholds of 67%

to 80% results in two subjects (the parrot and the branch). One of the subjects

(the branch) disappears when the threshold rises to 81%. The parrot is detected

at the same location for all thresholds from 67% to 100% (i.e., thresholds range

of 33%). The branch is detected consistently from 67% to 80% (i.e., thresholds

range of 13%). Pay attention to the gradual change of the thresholded responses

of D2
arg in Fig. 8 (which appears as a gradual thinning of the blobs). The theoretic

explanation of this robustness is again the fact that Yarg approaches infinity at the

negative x-axis of paraboloids; the infinite response there is by far larger than the

response obtained by non-convex (or non-concave) image domains.

6. CAMOUFLAGE BREAKING

The previous section described the robustness of the operator under various con-

ditions (illumination, scale, orientation, texture). As a result, the smoothness con-

dition of the detected 3D convex objects can be relaxed. We further increase the

robustness demands from the operator by introducing very strong camouflage.

6.1. Biological Evidence for Camouflage Breaking by Convexity

Detection

In this section, we exhibit indirect evidence of biological camouflage breaking

based on detection of the convexity of the intensity function. This matches our

idea of camouflage breaking by direct convexity estimation (using Darg) [20]. We

present further evidence, that not only can intensity convexity be used to break

camouflage, but also there are animals whose coloring is suited to prevent this

specific kind of camouflage breaking.

It is well known that under directional light, a smooth three dimensional convex

object produces a convex intensity function. The biological meaning is that when

the trunk of an animal (the convex subject) is exposed to top lighting (sun), a

viewer sees shades (convex intensity function). As we shall see, these shades may

reveal the animal, especially in surroundings which break up shadows (e.g., woods)

(see [21]). This biological evidence supports Darg approach of camouflage breaking

by detecting the convexity of the intensity function.

The ability to trace an animal based on shadow effects has led, during thousands

of years of evolution, to coloration of animals that dissolves the shadow effects. This

counter-shading coloration was observed at the beginning of the century [22], and is

known as Thayer’s principle of counter-shading. [21] describes Thayer’s principle:

“If we paint a cylinder or sphere in graded tints of gray, the darkest part facing

toward the source light, and the lightest away from it, the body’s own shade so

balances this color scheme that the outlines becomes dissolved. Such graded tints

are typical of vertebrates and of many other animals.”

1Image from: www.freeimages.co.uk
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Original image. D2
arg

70% 80% 90% 95%

FIG. 8. Threshold sensitivity analysis. Top Row: Original image and its D2
arg map.

Middle Row: Thresholded D2
arg maps. Bottom Row: Thresholded D2

arg marked on original
images (respective to middle row). Below each image is its threshold value. The complete analysis
included threshold values from 67% to 100%; only four of them are displayed.
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(a) Constant albedo, top lighting. (b) Counter-shading albedo, ambient lighting.

(c) Counter-shading albedo, top lighting.

FIG. 9. Thayer’s principle of counter-shading. (a) A cylinder of constant albedo under top
lighting. (b) A counter-shaded cylinder under ambient lighting. Counter-shading is produced by
mapping a convex texture to the cylinder. The texture used here is the convex intensity function:
I(x, y) = (y − 50)2 , and original texture image is 200 × 100 pixels. (c) Thayer’s principle:
the combined effect of counter-shading albedo and top lighting breaks up the shadow effect. In
other words, it breaks up the convexity of the intensity function. Animals use this principle to
camouflage themselves against convexity based detection.

Figure 9 uses ray tracing to demonstrate Thayer’s principle of counter-shading

when applied to cylinders. Figure 10 shows some of the animals who use Thayer’s

principle of counter-shading. The sketches in Fig. 10 demonstrate how animal

coloration changes gradually from dark (the upper part) to bright (the lower part).

When the animal is under top lighting (sunlight), the gradual change of albedo

neutralizes the convexity of the intensity function. Had no counter-shading been

used, the intensity function would have been convex (as in Fig. 9(a)), exposing the

animal to convexity based detectors (such as Darg). Using counter-shading protects

the animal from convexity-based detection.

The existence of counter-measures to convexity based detectors implies that there

might exist predators who can use convexity based detectors similar to Darg.

6.2. Thayer’s Counter-Shading Against Darg-based Detection

Let us demonstrate how Thayer’s principle of counter-shading can be used to

camouflage against Darg-based detectors. In Fig. 11 we once again consider a

synthetic cylinder; this time we operate Darg on each of the images of that cylinder.

As can be seen, the counter-shaded cylinder under top lighting (Fig. 11, Column C)

attains much lower Darg values than the smooth cylinder under the same lighting
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FIG. 10. Examples of counter-shaded animals (adopted from [21]). The upper part (towards
the sun) of the animal is the darker one; transition from the dark part to the bright part is gradual.
Here, the animals are under ambient lighting; when the animals come under top lighting (sunlight,
in nature), the gradual change of albedo neutralizes the convexity of the intensity function.

(Fig. 11, Column A). This is because counter-shading turns the intensity function

from convex to (approximately) planar.

To see the transition from a convex intensity function to a planar one due to cam-

ouflage, we draw (Fig. 12-left) the vertical cross-sections of the intensity functions

of Fig. 11. The smooth cylinder under top lighting (Column A) produces a convex

cross-section. The albedo, or the counter-shaded cylinder under ambient lighting

(Column B), consists of graded tints of gray, so its intensity function is also convex.

Finally, the counter-shaded cylinder under top lighting (Column C) produces a flat

intensity function, which means a reduced detection probability by Darg.

Let us verify that the flat intensity function is indeed harder to detect using

Darg than the convex intensity function. In other words, we would like to see that

under top lighting, Darg’s response to the counter-shaded cylinder is weaker than its

response to the smooth cylinder. This can be seen from the vertical cross-sections

of the responses of Darg to the various images of the cylinder (Fig. 12-right).

The above demonstrates that Thayer’s principle of counter-shading is an effec-

tive biological camouflage technique against convexity-based camouflage breakers,

and more specifically, against Darg. One can thus speculate that convexity-based

camouflage breaking might also exist in nature (or else, camouflage against it would

be rendered unnecessary).

The issue of whether or not convexity-based detectors are in fact in use in bio-

logical vision systems needs further exploration; this paper presents only indirect

evidence for such a usage.
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Column: A B C

Texture: Smooth. Convex. Convex.

Lighting: Top. Ambient. Top.

Ray

Tracing:

D2
arg:

FIG. 11. Operation of D2
arg on a counter-shaded cylinder. Column A: A smooth cylinder

under top lighting. Column B: The counter-shaded cylinder under ambient lighting. Column
C: The counter-shaded cylinder under top lighting. The counter-shaded cylinder can barely be
noticed under top lighting, due to the camouflage. Under top lighting, the response of Darg is
much stronger when the cylinder is smooth than when it is counter-shaded, showing this type of
camouflage is effective against Darg.
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FIG. 12. Cross-sections (parallel to the y-axis, at the center of the image) of: Left:
The intensity functions of Fig. 11. Thayer’s counter-shading yields a flat intensity function for
a cylinder. Right: D2

arg of Fig. 11. Under top lighting, the flattened intensity function of the
counter-shaded cylinder has a lower Darg response than that of the convex intensity function of
the smooth cylinder.
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7. CAMOUFLAGE BREAKING DEMONSTRATION

The previous sections have shown both a biological motivation for camouflage

breaking by convexity detection, and the high robustness maintained by Darg under

harsh conditions (illumination, scale, orientation, texture). The combination of the

two makes Darg suitable for usage as a camouflage breaker.

In order to evaluate the performance of the operator in camouflage breaking,

we juxtapose convexity based and edge based detection. We chose to compare

convexity based detection with edge based detection, because camouflage by edge

enhancement is evident in the animal kingdom: [23] (for example) describes camou-

flage of frogs (Limnodynastes tasmaniensis) which superexcites the edge detectors

of the vision system of the grater snake (Thamnophis sirtalis). This implies that

edges are biologically used for camouflage breaking.

In our comparison, Darg is the representative convexity based detector while

radial symmetry is the representative edge-based method. The radial symmetry

operator searches generalized radial symmetry in the edge map of an image (see [3]

for more details). Radial symmetry has been shown to generalize most of the exist-

ing methods for interest points detection, including detection of maximal curvature

points, corner detection, and edge density measures.

The comparison of Darg with radial symmetry in the task of camouflage breaking

deals with several types of camouflage. Each camouflage type is accompanied with

a real-life demonstration.

A Technical Note. The radial symmetry operator is scale-dependent, while the

peaks of Darg are not. Therefore, we have compared Darg with radial symmetry

of radii: 10 and 30 pixels (i.e, 2 radial symmetry transformations performed for

each original image). In the paper, only one radius is introduced per original, but

similar results were obtained for the other radius as well.

7.1. Indoor Scenes

One of the most basic techniques of camouflage is hiding a single-color object

on a background of the same color. Figure 13 shows a white bottle camouflaged

on a background of white walls. Some other objects are present in the scene (a

computer, a book pile, papers on a desk, etc.). The bottle is covered with a cap, to

make it easier for the reader to locate the bottle in the image (the bottle stands on

the book pile). The edge-based radial symmetry operator detects other objects (the

book pile and the papers), because their edges are much stronger than those of the

camouflaged bottle. The edges of the camouflaged bottle are weak and can barely

be seen in the edge map. The inherent problem of edge maps of smooth objects is

their response to the outlines of the smooth 3D object, rather than to the interior

of the object (being smooth). Consequently, the surroundings of the object play an

important role in determining the strength of the edge. The closer the colors of the

subject and the surroundings, the weaker the outline edge. The response of Darg,

on the other hand, is to the intensity surface formed by the interior of the image

of the subject (the bottle, in this case), regardless of the vicinity of the subject in

the scene. The distinction that Darg performs between the subject (white bottle)

and the background (white wall) is based on an internal feature of the subject:
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Original image. Edge map.

D2
arg. Detection by Darg.

Radial symmetry (r=10). Detection by Radial Sym.

FIG. 13. A camouflaged white bottle. The white bottle is photographed against a white
background. Some other objects are also present in the scene. Edge-based detection schemes
disregard the bottle as its edges are very weak (and can hardly be noted in the edge map). Darg,
on the other hand, responds strongly to the smooth 3D convex bottle, despite its camouflage.
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(a) (b)

(c) (d)

FIG. 14. Attempt to conceal a convex object among other convex objects leads to multiple

subject detection. The response of Darg to each convex object is not affected by the presence

of other convex objects in the scene. Objects at various scales have been chosen to further

demonstrate the robustness. (a) A scene containing six smooth 3D convex objects at various

scales: ladle, funnel, tennis ball, cola can, mug, and canteen. (b) The Darg of (a). (c) 70%

binary threshold of Darg. (d) Detection by 70% threshold of Darg is marked over (a). All convex

objects are detected by Darg concurrently.

convexity. Thus, Darg has a strong response to the smooth 3D convex bottle (see

D2
arg map in Fig. 13).

In the above example, the subject assimilates to the environment by mimicking

the environment color, which misleads edge-based detection. However, what would

happen if one attempts to mislead Darg by mimicking the feature to which Darg

responds (convexity)? To test this, we let a convex subject assimilate to a convex

environment. As can be seen in Fig. 14, when the scene consists of several convex

objects, Darg is able to detect them all. In this example, Darg is not distracted by

the presence of other convex objects, as its response is to the internal intensity sur-

face formed by each object. The processing of the local intensity function induced

by the object and referred to as a 3D surface along with the use of a robust opera-
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a. Rocky Mountain Sheep.

b. D2
arg. c. Detection by Darg.

d. Edge map. e. Edge-based detection.
FIG. 15. Rocky mountain sheep in a rocky environment. Apatetic coloration does not

distract Darg. (b),(c): Darg detects the sheep, since they are 3D, smooth, and convex. (d),(e):

Failure of edge-based methods to detect the sheep: edge-based methods fail, since the edges

introduced by the sheep, being convex and using apatetic coloring, are weaker than the edges of

the rocky mountain.

tor reduces the environmental effect on the located points, and enables camouflage

breaking by Darg.

7.2. Animal Camouflage

Animals use various types of camouflage to hide themselves. One type of cam-

ouflage is apatetic coloration. Figure 15 shows two Rocky Mountain sheep (Ovis
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Canadensis) in their natural rocky environment. The coloration of the Rocky

Mountain sheep fits their habitat (pay attention in particular to the upper sheep

in Fig. 15(a)). Darg detects the sheep as the main subject (using 70% threshold on

D2
arg), since they appear smooth (from the photographic distance), they are three

dimensional and convex. Due to the apatetic coloring, the edges of the sheep are

weaker than these of the rocky background (Fig. 15(d)), so edge-based methods

are doomed to fail on this image. Even the radial symmetry transform — a more

sophisticated edge-based transform searching generalized symmetry — fails due to

the weakness of the edges of the sheep. As can be seen in Fig. 15(e), radial symme-

try detects many background locations. Radial symmetry specifies no single target

in the image: 7 different locations were detected by 90% (!) thresholding, spread

on a large area of the image.

The habitat of a squirrel demands a more complex camouflage. The squirrel

lives in a bushy environment, where colors are not uniform. Leaves, bushes and the

ground form a texture which has to be mimicked by the fur of the squirrel. Fig. 16

exhibits a natural camouflage of a squirrel in a leafy environment under the shades

of a nearby tree. There are many edges of the squirrel and the environment mixing

together, and preventing the radial symmetry operator from isolating any specific

target. Darg, however, produces a single strong peak, exactly on the squirrel. The

convexity of the squirrel (and in particular, its belly) is the reason for its detection

by Darg. The only smooth 3D convex domain in the image is the belly of the

squirrel. Though some of the shades might look similar to the belly of the squirrel

(even to a human viewer), they do not possess the property of being a projection

of a 3D convex object, and thus their intensity function introduce no 3D convexity.

7.3. Military Camouflage
7.3.1. Personnel Camouflage

Spotted uniforms, usually used by military forces, attempt to imitate the distri-

bution of edges and colors in the visual environment of trees, grass, rocks etc. of

the arena. This kind of camouflage is exactly the one which deceives edge-based

detection. For these cases, edge-based detection is not enough, because the input

to the detector is almost identical for background and subject domains.

Although camouflage interferes with the smooth convex intensity function that

would otherwise be generated by the subject, in many cases Darg is robust enough

to relax the smoothness constraint.

In Fig. 17, a camouflaged hunter is detectable by Darg. The usage of stripes in

the uniform does not conceal the convexity of the hunter. Note, that the hunter in

Fig. 17 is wearing a very sophisticated disguise which easily misleads human beings

(this is the image from the introduction, Fig. 1). Human beings find it difficult to

locate the hunter in that image, and nevertheless, Darg detects the hunter (all but

a single detection are on the image of the hunter).

In Fig. 18, edge-based methods are able to detect neither the buck nor the hunter.

The buck is not detected by these methods, as it is a smooth convex 3D object, and

its edges are very weak. The hunter is not detected by edge based methods due to

a different reason: he is wearing a camouflage whose colors and edge distribution

mimic the colors and edge distribution of the forest. Darg is able to answer both

problems simultaneously: The buck is a smooth convex three dimensional object,
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Radial symmetry (r=30). Edge-based detection.

D2
arg. Detection by Darg.

FIG. 16. A hidden squirrel. The squirrel is on a leafy ground shaded by a tree. The shades

and leaves form many edges “deluding” the edge-based methods. Even human viewers find it

difficult to locate the squirrel in the image. Darg detects the squirrel, breaking the camouflage.



CONVEXITY-BASED VISUAL CAMOUFLAGE BREAKING 27

Original image. D2
arg. Detection by Darg.

Gradient modulus. Radial symmetry (r=30). Detection by radial symme-

try.
FIG. 17. Visual human camouflage. The camouflage mimics the texture and the color of

the natural environment. As a result, the domains of the subject and the background woods in
the edge map unite and disable edge-based detection. Radial symmetry fails to detect the subject.
Convexity based detection distinguishes between the surroundings and subject, since the subject
is 3D and convex. Most of the points detected by Darg are of the subject (except for a single
outlier).
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and is therefore detected by Darg. Taking a threshold of 50% of the maximal D2
arg

detects the buck. If one reduces the threshold, one finds out that at a threshold

of 15% of the maximal D2
arg, the hunter is detected. The hunter is detected since

it is also a 3D convex object. Although the convexity of the intensity function of

the hunter is disturbed by the presence of camouflage, the hunter convexity is still

more dominant in the image than that of the surrounding woods.

Another way to refer to the multiple subject detection of Fig. 18: If we detect

the buck and cut its image out of the original image, we remain with an image of

a camouflaged hunter. In this image, the hunter can be detected by Darg, but not

by edge-based methods (Fig. 19).

Another example of breaking military personnel camouflage appears in Fig. 20.

A camouflaged soldier on the background of dense bushes is very hard to detect.

Edge based detection misses the soldier. 95%(!) threshold on the output of Darg is

necessary in this case to isolate the camouflaged soldier, and still one outlier (out

of three locations) occurs.

Another way of concealment is covering most of the body or equipment under

branches of trees common in the area of operation. By definition, this ensures the

camouflage fits the surroundings. Detecting this camouflage by edge-based means

is doomed to fail, as the camouflage consists of many strong edges (tree branches)

identical to those of the background. An example for this type of camouflage

can be seen in Fig. 21: two soldiers are camouflaged by branches of trees. Edge-

based techniques detect background domains. Darg detects the soldiers, as their

(uncovered) faces are 3D and convex. See [24, 25] for details on face detection using

Darg.

7.3.2. Military Camouflage

Camouflage and concealment of equipment is of particular interest. This sec-

tion continues the comparison of detection by Darg and by radial symmetry for

camouflaged artifacts.

Figure 22 present a tank in camouflage paints in front of a tree. The tree produces

edges distracting the radial symmetry operator. The convexity of the intensity

function near the wheels of the tank exposes the tank to the Darg detector.

Figure 23 presents tanks in a highly cluttered scene. The edges of the urban area

distract edge-based detectors. The convexity of the tanks leads to detection of 2

out of 3 tanks by Darg (the third tank is too small to detect).

8. CONCLUSIONS

We have defined a convexity-based operator, Darg, for detection of image do-

mains emanating from smooth convex (or concave) three dimensional objects. Darg

is not based on edge maps, and is thus free of their flaws (e.g., it is robust in

dominant textures and camouflage). Darg is proved invariant under any derivable

strongly monotonically increasing transformation of the image intensity function,

which practically means robustness to illumination changes. Robustness to orienta-

tion and scale is also explained. We have shown that Darg is suitable for camouflage

breaking, and that in practice the smoothness assumption can be relaxed.

Having Darg defined, we have illustrated how Thayer’s principle of counter-

shading prevents detection based on the convexity of the intensity function of the
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a. Original image. b. D2
arg. c. Detection by Darg

(50% thresh).

d. 15% threshold of D2
arg. e. Detection by Darg

(15% thresh).

f. Edge map.

g. Radial symmetry

(r=10).

h. Detection by 90%

thresh of Radial Sym.

i. Detection by 80%

thresh of Radial Sym.
FIG. 18. A camouflaged hunter and a buck in the woods. Darg detects both the buck (by

50% of D2
arg) and the hunter (by 15% of D2

arg).
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Original image. Edge map.

D2
arg. Detection by Darg.

Radial symmetry (r=10). Detection by Radial Sym.

FIG. 19. A camouflaged hunter. The buck’s image was cut out of Fig. 18, so that only
the camouflaged hunter and the background remains. The natural environment and the hunter’s
camouflage unite and form a uniform-looking edge map. Detection techniques which use this edge
map do not receive enough information to be able to distinguish the subject from the background.
Darg detects the subject based on convexity information: the hunter is a convex 3D object.
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a. Original image. d. Edge map.

b. D2
arg. c. Detection by Darg (95% thresh).

e. Radial symmetry (r=10). f. Detection by 95% thresh of Radial

Sym.
FIG. 20. A camouflaged soldier on the bank of a river near dense bushes. Edge distribution

unites with camouflage (especially the helmet). In spite of the strong camouflage, Darg detects

the soldier in 2 out of 3 locations it isolates. The incorrect detection is of clouds reflecting in the

water.



32 ARIEL TANKUS AND YEHEZKEL YESHURUN

Original image. Edge map.

D2
arg. Detection by Darg.

Radial symmetry (r=10). Detection by Radial Sym.

FIG. 21. Camouflaged soldiers. The camouflage trees produce many strong edges, disguising
edge-based detection schemes from the soldiers. 80% thresholding of the radial symmetry map
does not detect any specific region of interest. Nevertheless, the soldiers faces are 3D and convex,
and thus lead to their detection by Darg.
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Original image. Edge map.

D2
arg. Detection by Darg.

FIG. 22. A tank in camouflage paints near a tree. Convexity-based Darg is not distracted

by the background (tree, grass).
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Radial symmetry (r=10). Detection by Radial Sym.

Radial symmetry (r=30). Detection by Radial Sym.

FIG. 22—Continued

A tank in camouflage paint near a tree. The tree distracts edge-based detection,

regardless of the scale.
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Radial symmetry (r=10). Detection by Radial Sym.

D2
arg. Detection by Darg.

FIG. 23. Tanks in an urban zone (i.e., high clutter). Edge-based detection is distracted by

the background. Convexity-based Darg detects 2 of the 3 tanks.

subject (using Darg). This gives further support to the speculative conclusion, that

Darg might be used in a biological vision system of a predator whose detection

ability is based on convexity detection, and the apatetic coloration of its prey is

based on Thayer’s principle of counter-shading.

Camouflage breaking by Darg has been demonstrated to be highly effective. This

has been shown in a comparison between a convexity-based camouflage breaker

(Darg) and a representative edge-based operator (radial symmetry). The com-

parison included various types of camouflage: indoor scenes, animal and human

camouflage and military camouflage. Convexity-based camouflage breaking has

been found to be highly robust and in most of the cases much more effective than

edge-based techniques.

Despite the better results obtained by Darg in the comparison, one must bare in

mind that there still exists a camouflage technique which overcomes Darg: Thayer’s

principle of counter shading. Consequently, Darg is suggested as a complementary

method to edge-based techniques, so that each discipline benefits from the advan-

tages of the other.
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