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Fishbach, Alon, Israel Nelken, and Yehezkel Yeshurun.Audi-
tory edge detection: a neural model for physiological and psy-
choacoustical responses to amplitude transients.J Neurophysiol
85: 2303–2323, 2001. Primary segmentation of visual scenes is
based on spatiotemporal edges that are presumably detected by
neurons throughout the visual system. In contrast, the way in which
the auditory system decomposes complex auditory scenes is sub-
stantially less clear. There is diverse physiological and psycho-
physical evidence for the sensitivity of the auditory system to
amplitude transients, which can be considered as a partial analogue
to visual spatiotemporal edges. However, there is currently no
theoretical framework in which these phenomena can be associated
or related to the perceptual task of auditory source segregation. We
propose a neural model for an auditory temporal edge detector,
whose underlying principles are similar to classical visual edge
detector models. Our main result is that this model reproduces
published physiological responses to amplitude transients collected
at multiple levels of the auditory pathways using a variety of
experimental procedures. Moreover, the model successfully pre-
dicts physiological responses to a new set of amplitude transients,
collected in cat primary auditory cortex and medial geniculate
body. Additionally, the model reproduces several published psy-
choacoustical responses to amplitude transients as well as the
psychoacoustical data for amplitude edge detection reported here
for the first time. These results support the hypothesis that the
response of auditory neurons to amplitude transients is the corre-
late of psychoacoustical edge detection.

I N T R O D U C T I O N

The sensitivity of the auditory system to amplitude transients
is well documented, both physiologically and psychoacousti-
cally. Psychoacoustical studies have demonstrated the impor-
tance of the temporal structure of amplitude envelope to audi-
tory perception in general (e.g., Drullman 1995; Drullman et al.
1994a,b; Shannon et al. 1995; Turner et al. 1994), and to the
segregation process of complex auditory scenes in particular
(Bregman et al. 1994a,b). These studies demonstrate that both
the magnitude and duration of amplitude transients affect au-
ditory perception. However, it is still unclear which physical
parameters of the amplitude transients most affect auditory
perception of the transient.

Animal studies have shown that temporal changes in ampli-
tude envelope in general, and amplitude onset in particular,

generate strong neural responses throughout the auditory path-
ways (Eggermont 1993; Kitzes et al. 1978; Phillips 1988; Rees
and Møller 1983; Schreiner and Langner 1988a; Suga 1971).
Several studies of the dependence of neuronal responses on the
shape of an onset ramp (Barth and Burkard 1993; Heil 1997a,b;
Heil and Irvine 1996, 1997; Phillips 1988, 1998; Phillips and
Burkard 1999; Phillips et al. 1995) have shown that neural
response characteristics can neither be ascribed to a simple
function of onset plateau level nor to onset duration per se.
Rather, the dynamics of the onset, such as the rate or acceler-
ation of peak pressure, shape the neural response. These phe-
nomena are evident across multiple levels of the auditory
pathways. Furthermore, they have been demonstrated using a
variety of experimental procedures, such as single-cell record-
ings from the cat primary auditory cortex and posterior field
(Heil 1997a,b; Heil and Irvine 1996, 1998b; Phillips 1988,
1998), inferior colliculus potential of the awake chinchilla
(Phillips and Burkard 1999), and human brain stem–evoked
response (Barth and Burkard 1993).

The dependence of neural responses on the dynamics of the
amplitude envelope raises the possibility that these responses
reflect the computation of temporal auditory edges. Following this
assumption, we suggest a neural model for the detection of am-
plitude transients (auditory temporal edges), which is inspired by
visual edge detector models. The model responses are compared
to published physiological responses to amplitude transients, and
its predictions regarding the responses to amplitude transients that
have not been examined before are verified experimentally. In
addition, we attempt to define the physical parameters of ampli-
tude transient that affect human perception of amplitude discon-
tinuity, in order to characterize the psychophysical properties of
perceived auditory temporal edge.

Our results suggest that the same physical parameters may
govern both physiological and psychophysical responses to
amplitude transients. Moreover, we show that both physiolog-
ical and psychoacoustical responses can be explained by our
simple neural model for auditory temporal edge detection.
These results suggest that the sensitivity of the auditory system
to amplitude transients is a realization of auditory temporal
edge calculation that may have a primary role in neural audi-
tory processing.
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M E T H O D S

Neural model principles

In line with the auditory-visual edge detection analogy, we adapted
a model of visual edge detection to the auditory modality. The
fundamental principle of the operation of visual edge detector is the
calculation of a local brightness gradient. This is accomplished by
differentiating the brightness function along some spatial direction or
directions, using a combination of inhibitory and excitatory connec-
tions. The spatial organization of these connections in terms of the
retinal image induces a receptive field that might be functionally
described as an edge detector. Although there are recent and more
elaborated visual receptive fields models, the simplest edge detecting
receptive field model (Marr 1982; Rodieck 1965), which has an
on-center off-surround (or vice versa) response pattern, suffices for
our purpose. This receptive field describes the responses of edge
detector neurons that can be found mostly in sub-cortical visual
centers. The spatial properties of an idealized receptive field can be
approximated by the second derivative of a gaussian or a difference of
two gaussians (DOG), one wider than the other.

To adapt such a mechanism to auditory temporal edge detection, we
hypothesize the existence of a temporal delay dimension, analogous to

the visual spatial dimensions. The stimulus is progressively delayed
along this delay dimension. Information related to the temporal dy-
namics of the amplitude envelope (e.g., its rate of change) can be
made explicit by differentiating the stimulus along this dimension, as
the visual brightness gradient is made explicit by differentiating the
stimulus along a spatial dimension.

We construct the delay dimension by using the well-known tem-
poral characteristics of a standard version of the integrate-and-fire
model (I&F). Our I&F makes use of a kernel function in the form

K~x! 5
1

tm
2 xe2x/tm x $ 0 (1)

The kernel function, when convolved with the neuron’s presynap-
tic input, determines its postsynaptic potential (Gerstner 1999a).tm

is the membrane time constant that may range from 3 to 25 ms
(McCormick et al. 1985). Highertm values induce greater delay in
the neuron’s response (Agmon-Snir and Segev 1993). Inducing a
receptive field in the delay dimension can be done by connecting
the neurons with increasingtms to an edge detector neuron using
inhibitory and excitatory connections with various efficacies that
reflect the receptive field shape. Differentiation of the stimuli is

FIG. 1. Schematic diagram of the model. See detailed explanation inMETHODS.
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obtained by using a receptive field shape of a first-order derivative
of a gaussian.

Figure 1 presents a schematic diagram of the model and the flow of
data along the different model components. Each model component is
annotated with an approximate expression for its operation on its
input. These formulations will be used in the analysis of the model.
Exact implementation details are given inAPPENDIX A. The inputs
tested consisted of tone bursts shaped withON and OFF ramps of
various shapes. An example of a tone burst with linear ramps is
displayed in Fig. 1A.

NEURAL REPRESENTATION. The neural representation (Fig. 1B) is
roughly the expected peripheral representation of sound by the inner
hair cell DC potential. This representation is generated using a simple
preprocessing that includes demodulation to extract the temporal
envelope, non-linear compression and low-pass filtering. In our anal-
ysis we formulate the demodulation and the non-linear compression
using the amplitude envelope of the input converted to dB SPL scale
(the constants in Fig. 1B are set toA 5 20/ln (10) andP0 5 2 z 1025

Pa). The form of the argument to the log transformation eases the
analysis for near-zero values oft and has negligible effect fort @ 0.
The low-pass filtering is formulated by convolving the log-envelope
with an alpha kernel function (Eq. 1) with a time constant oft1, which
is in the millisecond range (Hewitt and Meddis 1990; Smith 1988).
This preprocessing stage can be replaced by a more realistic inner hair
cell model (which produces simulation of auditory nerve firing prob-
abilities) (Hewitt and Meddis 1990; as implemented by Slaney 1998)
without any qualitative change in the response characteristics of the
model.

DELAY LAYER. The preprocessed input is fed to the delay layer of
the model, which consists of standard integrate & fire (I&F) neurons
with ascending membrane time decay constants. Each unitU(t, t2) in
the delay layer represents a population of neurons with identical
characteristics. The population response is modeled as an analogue
variable, by convolving the neuronal representationN(t), with a kernel
(Gerstner 1999b) whose time constant ist2. I&F kernel functions and
membrane time-constant values are shown for several units (Fig. 1C).
The membrane potential of each neuron in the delay layer is then
saturated using a sigmoidal function

S~x! 5 Fmax$2/@1 1 e2~x/C!# 2 1% (2)

where Fmax is the maximal instantaneous output firing rate (225
spikes/s) andC is a scaling factor, which determines the dynamic
range of the transformation. In Fig. 3, the outputs of the delay layer
neurons (including various amounts of saturation) are shown for
stimuli, similar to the stimulus presented in Fig. 1.

RECEPTIVE FIELD. The delay layer neurons are connected to an edge
detector neuron using inhibitory and excitatory connections with
various efficacies (Fig. 1D) that reflect the receptive field shape,
which is a first derivative of a gaussian. The output of the receptive
field, R(t), is shown in Fig. 3 for stimuli similar to the stimulus
presented in Fig. 1 and is approximately a smoothed first derivative of
the outputs of the delay neurons along thet2 dimension.

EDGE DETECTOR NEURON. The edge detector neuron (Fig. 1E) is a
single I&F neuron with a membrane time constantt3. The output of
the edge detector neuron is also the output of the model. In the
numerical implementation of the model, a noisy integration was used
(Gerstner 1999a). For the analytical treatment presented here, the
membrane potential of the edge detection neuron,M(t), is modeled as
a low-pass filter operating on the output of the receptive field operator,
R(t).

PARAMETERS OF THE MODEL. The responses of the model are
adjusted to fit the response of a specific neuron by adjusting two
parameters. The first parameter isC, the scaling factor of the delay
layer saturation transformation (Eq. 2), and the second parameter ist3,
the membrane time constant of the edge detector neuron. In addition,

the threshold of the edge detector neuron was varied. However, the
threshold was not manipulated independently; instead, its value was
always set to best approximate the threshold of the neuron that was
fitted. There are six additional fixed parameters of the model; three of
them are parameters of the I&F model. These parameters and their
values are listed in full inAPPENDIX A. Their specific values have only
minor or redundant effect on the responses of the model. For example,
changing the value oft1 or the range oft2 that are used in the delay
layer can be in large extent be compensated by adjusting the value
of t3.

Physiological methods
ANIMALS AND PREPARATION. Neurons have been recorded in pri-
mary auditory cortex (AI) and medial geniculate body (MGB) of two
halothane-anesthetized adult cats. The methods have been described
in details elsewhere (Nelken et al. 1999). In short, the cats were
premedicated with xylazine (0.1 ml im), and anesthesia was induced
by ketamine (30 mg/kg im). The radial vein, the femoral artery, and
the trachea were cannulated. Blood pressure and CO2 levels in the
trachea were continuously monitored. The cat was respirated with a
mixture of O2/N2O (30%/70%) and halothane (0.2–1.5%, as needed).
Halothane level was set so that arterial blood pressure was kept
around 100 mmHg on the average. Under these conditions, the cat
usually could be respirated without the use of muscle relaxants. In
case muscle relaxants were required, the depth of anesthesia was
evaluated by testing paw withdrawal reflexes before administering
low levels (pancuronium bromide, 0.05–0.1 mg iv, typically once
every 2–3 h). Lactated ringer was continuously given through the
venous catheter (10 ml/h). Every 8–12 h a chemical analysis of
arterial blood was performed. When the cat developed acidosis, bi-
carbonate was given (typically 5 ml iv, every 8 h).

AI was accessed using standard methods. To reach the MGB,
electrodes were introduced at the appropriate stereotactic coordinates.
Physiological characteristics of the neuronal activity were used to
position the electrode at the ventral division of the MGB. The elec-
trodes were stained with DiI, and the localization was verified after the
experiments using histological reconstruction of the electrode tracks.
The animal protocol was approved by the local animal care commit-
tee.

DATA ACQUISITION. Glass-coated tungsten electrodes (locally
made) were used for recording neuronal activity. The activity from the
electrodes was amplified (MCP8 Plus, Alpha-Omega), and spikes
were detected on-line by a spike sorter (MSD, Alpha-Omega). The
times of the spikes were recorded (ET1, TDT) and written into a file
for off-line analysis.

ACOUSTIC STIMULATION. Stimuli were generated digitally con-
verted to analog waveforms and attenuated using TDT equipment. All
stimuli were tone bursts, 230 ms long including the symmetrical onset
and offset ramps. Six types of onset/offset window shapes were used,
cos2 (t), cos4 (t), t, t2, t4, and squared exponential. By denoting the
plateau peak pressure in Pascal units withP, and the onset rise time
in milliseconds withD, the peak pressure (in Pa) during the onset is
given by

El~t! 5 PS t

D
Dn

for 0 # t # D n 5 $1, 2, 4% (3)

for the t, t2, andt4 windows, and is given by

Ec~t! 5 P cosn S tp

2D
1

p

2
D for 0 # t # D n 5 $2, 4% (4)

for the cos2 (t) and cos4 (t) windows. For the squared exponential
window, the peak level (in dB instead of in Pa) is given byEq. 3with
n 5 2, except thatP is given in dB. To accommodate the peak
pressure close to 0 Pa (at the beginning of the onset and the end of the
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offset), where the dB scale is singular, a short linear ramp was used up
to peak sound levels of about 0 dB SPL.

Onset window shapes were generated either using an electronic
switch (SW2, TDT) or in the digital domain (for the squared expo-
nential windows). The sound was presented to the animal through
electrostatic earphones (Sokolich) whose frequency response varied
by less than 10 dB in the frequency range used here. In situ calibration
of the earphones was performed in each ear.

For the data presented here, neurons were presented with tone
bursts at their best frequency. Tone levels were chosen from about 10
dB below neuronal threshold and up to about 100 dB SPL, in 10 dB
steps. Tone rise times covered the range of 1.7–100 ms and were
measured between 10 and 90% amplitude points when generated
using the electronic switch, or between 0 and 100% amplitude points
when generated in the digital domain. Data were taken in blocks,
within which the window shape was kept constant, but the tone level
varied randomly under the constraint that each level was presented 20
times. Stimuli were presented at a rate of 1/s. After a block was
finished, another window shape (or a different rise time) was selected,
and the process was repeated. In total, 19 neurons in AI and 9 neurons
in MGB were tested with these stimuli. Of these, data from 11 neurons
in AI and 4 neurons in MGB, whose responses were strong and stable
during the recording session, were analyzed for this paper.

Psychoacoustical methods

The main goal of our psychoacoustical experiments was to test
whether the perception of amplitude changes is determined by the
gradient of the change, or by some other combination of its duration
and magnitude. A secondary goal was to rule out the possibility that
the sensitivity of the auditory system to amplitude changes is due to
a spectral splatter that may be induced by the sudden amplitude
change. In order to accomplish these goals we used a direct measure
of the way in which the amplitude change is being perceived, rather
than measuring amplitude change effect on higher perceptual tasks.
This enabled us to isolate the perception of the amplitude transient
from the context of more elaborate auditory phenomena such as
auditory source segregation, in order to avoid high-level cognitive
influences. Two sets of experiments were conducted; the first mea-
sured the discontinuity perception of ramped sinusoids (experiment 1),
while the second measured the perception of ramped noise bursts
(experiment 2).

PARTICIPANTS. All participants were normal hearing volunteer
adults, who participated with full informed consent. Data forexperi-
ment 1were obtained from 10 participants. All except for one, who is
one of the authors (YY), had no previous listening experience in
psychoacoustical experiments. Data forexperiment 2were obtained
from five participants. None had participated inexperiment 1,and
none had previous listening experience in psychoacoustic experi-
ments.

STIMULI. Experiment 1stimuli are pure tones with an amplitude
envelope as illustrated in Fig. 2 (solid line). Onset and offset times are
150 ms, and both plateau amplitude periods are 1 s. The first plateau
level (A1), the amplitude ramp size (DA) and duration (DT), and the
frequency of the tone were manipulated. The values used appear in
Table 1. The set of stimuli is a full combination of the variable’s
values, thus forming a set of 224 unique stimuli, each of which was
presented once. The stimuli were generated digitally and played over
a Silicon-Graphics Indigo workstation at sampling rate of 16,000 Hz
at 16-bit resolution.

The stimuli used inexperiment 2were prepared by Olsen (1994).
All stimuli were broadband noise bursts, 700 ms in duration, 0–22
kHz bandwidth, uniform random, digitally generated using a PC
computer and signal processing software (Signal, Engineering De-
sign). The amplitude envelope of the noise burst was shaped by

multiplying the signal with a trapezoidal function, which is illustrated
in Fig. 2 (dashed line) and contained 96-ms onset/offset time and 104
ms of plateau level before and after the pedestal. The values of the
variables used in this experiment can be found in Table 2. The set of
stimuli is a full combination of the variable’s values, thus forming a
set of 36 unique stimuli, each of which was presented 5 times.
Stimulus levels for both experiments were calibrated using General-
Audio 1562-Z audiometer calibration set.

PROCEDURE. An identical procedure was used in both experiments.
The stimuli were presented binaurally through Yamaha HP-2 ear-
phones to the participants who were seated in a soundproof room. The
psychophysical task was to judge whether the transition between the
two plateau amplitude levels was a continuous or discontinuous one.
The participants were asked to indicate their choice for each of the
stimuli using a two-alternative forced choice procedure. A random
training subset of 40 trials was presented to the listeners, followed by
the entire set presented in random order. The listeners were unaware
of the fact that the first trials were training trials. Participants had
unlimited time to respond after each trial and were presented with the
next trial 2 s after their response.

R E S U L T S

Neural model: general observations

The model was capable of reproducing all the physiological
characteristics of onset responses in AI neurons. In particular,
the model was capable to produce the shortening of latencies
with increase in tone level, and was capable of generating both
monotonic and non-monotonic rate-level functions.

Figure 3 illustrates the way the model responds to ampli-
tude transients and the effect of the delay layer’s saturation
on the timing and strength of the responses. The log-com-
pressed envelopes of linearly shaped 30-dB SPL and 90-dB
SPL tone bursts are shown in Fig. 3A. The response of the
model components to these stimuli is considered in two
different saturation conditions. A model with a highly sat-
urated delay layer, which yields non-monotonic responses,
is described in Fig. 3,B, D, andF, while a model with only
weakly saturated delay layer is described in Fig. 3,C, E,and
G. For clarity, we consider a simplified delay layer that
consists of only two neurons with time constants of 3 and 6
ms. Figure 3,B andC, demonstrates the different delays of
the stimulus envelope that are being induced by the two
neurons. The outputs of the two neurons are subtracted by
connecting them to the edge detector neuron with weights of

FIG. 2. Illustration of the amplitude envelopes of the stimuli that were used
in experiments 1(solid line) and2 (dashed line). In both experimentsDA, DT,
andA1 were manipulated. Note that the time scales for the 2 experiments are
different. The total duration of the tone stimuli used inexperiment 1is
2,3001 DT ms, while the duration of the noise bursts used inexperiment 2is
700 ms.
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equal magnitude and opposite signs (Fig. 3,D andE). The
prominent effect of the amount of saturation on the model
responses emerges at this stage. For example, the total
current (the integrated presynaptic input) that is being in-
jected to the edge detector neuron in the highly saturated
model (Fig. 3D) is higher in response to the 30-dB tone than
to the 90-dB tone (155 vs. 89.7 in arbitrary units, respec-
tively). In the weakly saturated model (Fig. 3E), the inte-
grated presynaptic input is lower in response to the 30-dB
tone that the 90-dB tone (81.9 vs. 246.8, respectively). The
non-monotonicity of the highly saturated model is enhanced
by the low-pass properties of the membrane potential of the
edge detector neuron (Fig. 3F). The effect of the delay
layer’s saturation on the non-monotonicity of the model is
being mathematically analyzed inAPPENDIX B. Another effect
of the saturation is decreasing the first-spike latency and
shortening the period of neural activity. For the purpose of
mathematical treatment, it can be reasonably assumed that a
neuron starts to fire when its membrane potential hits a fixed
threshold and that its spike count is proportional to the area
enclosed by this threshold and the neuron’s membrane po-
tential (Fig. 3G).

Evaluation of the neural model: single-neuron data

We evaluated the adequacy of the model to match reported
neural response to sound bursts by feeding the model with the
amplitude envelope of the stimuli and comparing several as-
pects of the model output with those of the reported responses.
The properties of the output examined were the first spike
latency of the response, the response strength measured by the
number of spikes that followed a stimulus, and the relation-
ships between the two.

LATENCY. Heil and his co-workers (Heil 1997a; Heil and
Irvine 1996) studied the latency of primary auditory cortex
neurons (AI) as a function of the shape, amplitude, and dura-
tion of the rise time of a best frequency tone. Two kinds of
onset envelope functions were used, linear and cosine-squared.
The peak amplitude during a linear onset is described by a
power function as described inEq. 3 with n 5 1. The peak
amplitude during a cosine-squared onset is described byEq. 4,
with n 5 2.

As was stated earlier, the main finding of Heil and his
co-workers is that mean latency is not solely a function of one
parameter of the onset envelope, but rather a function of the
dynamics of the envelope. The latency of response appears to
be a function of the rate of rise of the onset when a linear
shaped onset is used, and a function of maximal acceleration of
the envelope for cosine-squared onsets. Moreover, Heil pro-
posed a functional expression for the relationships between the
response latency and rate of rise (for linear onsets) or maximal

acceleration of peak pressure (for cosine-squared onsets). The
function for the linear case is given by

Ll 5 Lmin 1 Al p Flog SP

D
D1 SG24

(5)

whereAl is a global scaling factor, andLmin andS are neuron
specific parameters that determine the minimal latency of the
neuron and its sensitivity to onset rate of rise, respectively.

The function for cosine squared onsets is given by

Lc 5 Lmin 1 Ac p Flog Sp2P

2D2D1 SG24

(6)

Note that the termp2P/2D2 stands for the maximal accelera-
tion of the envelope, which occurs at the beginning of the
onset. Heil fit global scaling factorsAl andAc over the entire
neural population that was recorded and set them to 1,277 and
12,719 ms, respectively.

We fitted the model parameters to match the responses of 13
AI neurons for which both latency and spike-count data are
fully reported by Heil (1997a,b). For all of these neurons we
found that the model reproduced the latency phenomena that
were measured by Heil. The latency data for two of these
neurons is shown in Fig. 4.

Figure 4,A and B, shows the experimental vs. simulated
iso-rise-time curves of first-spike latency as a function of
amplitude peak pressure of a cosine-squared onset. Figure 4,C
and D, demonstrates that plotting both the experimental and
simulated latency as a function of maximal acceleration of the
cosine-squared onset brings the iso-rise-time curves to close
congruence along a single curve that can be fitted byEq. 6.
Figure 4,E andF, shows the congruence of the iso-rise-time
curves as a function of rate of linear rise onset.

Phillips (1998) and Heil and Irvine (1998b) reported the
responses of single neurons in the cat primary auditory cortex
and the posterior field to characteristic frequency (CF) tones
with cosine-squared–shaped onsets. These data confirmed the
initial observations of Heil and his co-workers in AI and
extended them to a secondary cortical field. Figure 5,A andC,
replots the first-spike latency of two neurons from the posterior
field as reported by Phillips, and Fig. 5,B andD, plots the fit
of the model to this data. Plotting Phillips’ latency data as a
function of maximal acceleration of the cosine-squared onset
demonstrates again the close congruence of the latency data
along a single curve, which can be fitted byEq. 6.

FIXED-THRESHOLD MODEL DOES NOT FIT THE DATA. A possible
explanation for the latency phenomena is that the neuron first
spike occurs when the input stimuli level hits a fixed threshold
(Kitzes et al. 1978; Phillips 1988; Suga 1971). Indeed, it is easy
to show that such a simple model predicts a reciprocal relation
between the first-spike latency of a neuron and the rate (P/D)
of linear onsets and maximum acceleration (p2P/2D2) of co-
sine-squared onsets. While these predictions roughly approxi-
mate the experimental results, the later systematically deviate
from the predictions. On these grounds, Heil and Irvine (1996)

TABLE 1. Values of variables used in experiment 1

DT, ms 6 12 18 24 40 96 120
DA, dB 6 12 18 24
f, Hz 250 400 650 950
A1, dB SPL 60 73

TABLE 2. Values of variables used in experiment 2

DT, ms 3 6 12 24 40 96
DA, dB 12 18
A1, dB SPL 59 65 71
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argue against the simple threshold model. Their claims can be
summarized by two main points that are illustrated in Fig. 6.

First, the threshold model predicts that the first-spike latency
should be a linear function of rise time (see dashed lines in Fig.
6A). The experimental data of Heil and Irvine (1996; Heil

1997a) show a systematically deviation from this prediction.
Notably, the relation between the latency and the rise time is
compressive, which rules out the possibility that adaptive pro-
cesses are the cause for this deviation.

The second argument relates to the slopes of the quasi-linear

FIG. 3. The output of several of the model
components as response to sound bursts of 2
amplitude levels (A). Two model settings are
shown, the 1st includes highly saturated delay
layer (B, D, andF), while the 2nd is only mod-
erately saturated (C, E,andG). The figure dem-
onstrates how the input is being progressively
delayed along a simplified delay layer (B andC)
and differentiated using the receptive field (D
and E) that is formed by the connections from
the delay layer neurons to the edge detector
neuron (F andG). For mathematical analysis of
the model we define the 1st-spike latency of the
model as the time from stimulus onset to the 1st
time the edge detector membrane potential hits a
fixed threshold level (L30 and L90 in G). The
spike count is assumed to be proportional to the
area enclosed by the membrane potential and the
threshold level (striped area inG).
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iso-step-size curves, which should decrease, according to the
fixed threshold model, as the inverse ratio of the step sizes.
Heil and Irvine demonstrate that the slopes of the curves
decrease by a factor that is smaller than expected. Similar
deviation from the threshold model predictions have been
observed in the first-spike latency of cortical neurons as re-
sponse to cosine-squared onsets (see Heil 1998 for reanalysis
of the data of Phillips 1998); in the response latency of inferior
colliculus potential in unanesthetized chinchillas to cosine-
squared onsets (Phillips and Burkard 1999) and in the response
latency of evoked cortical potentials in humans as response to
linear onsets (Onishi and Davis 1968). Since our model repro-
duces very accurately the reported latency phenomena, it also
shows deviations from the predictions of the fixed threshold
model (Fig. 6B).
MATHEMATICAL ANALYSIS OF LATENCY PHENOMENA. In our
analysis we use the formulations given in Fig. 1, and we
assume that the amplitude envelope of the input stimulus,E(t),

can be approximated during the onset (fort # D) by a power
function such as described inEq. 3 for any n . 0. For
simplicity sake we will restrict our analysis tot # D; this
assumption is equivalent to the statement that the first spike
occurred during the onset ramp (after taking into account
constant latency components that are independent of the sound
level).

As illustrated in Fig. 3G, we assume that the edge detector
neuron starts firing when its membrane potential,M(t), hits a
fixed threshold level,T. Thus the time of the first spike,t*,
satisfies the condition:M(t*) 5 T. Although t* can be calcu-
lated numerically using the implicit functional formM(t*) 5 T
(as it is actually done in the process of fitting the model free
parameters to match the experimental data), we are unable to
extract an explicit expression fort* that can replace Heil’s
functional forms (Eqs. 5and 6). However, the implicit func-
tional form is useful in order to prove several characteristics of
experimental and simulated latency phenomena, and to predict

FIG. 4. Experimental (replotted from Heil
1997a) vs. model simulated data for 1st-spike la-
tency of the onset response.A andB: the latency
as a function of the amplitude level.C andD: the
latency as a function of maximal acceleration of
the cosine-squared onset and the curve fitted by
Eq. 6.Our fit for the neuron inC yieldedS5 4.53
andLmin 5 10.87 ms, and for the simulated data in
D the best fit yieldedS5 5.12 andLmin 5 8.1 ms.
E and F: the latency as a function of the rate of
linearly shaped onset and the curve fitted byEq. 5.
The fit for the neuron inE yielded S 5 4.9 and
Lmin 5 11.55 ms and for the model (F) S 5 5.09
andLmin 5 6.7 ms. Neuron identity, neuron char-
acteristic frequency (CF), and the model parame-
ters that were used are shown above each plot. The
difference between experimental and simulated
Lmin values reflects constant delays (acoustic, co-
chlear, and neural delays), which are not included
in the model. ModelS values are consistently
somewhat higher than those estimated from the
data, as explained inDISCUSSION.
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latency behavior as response to stimuli that were not examined
experimentally.

SinceM(t) includes only non-linear compression and linear
time-invariant filtering ofE(t), it is clear thatt*, as a function
of P and D, is being determined uniquely by the termP/Dn.
This explains Heil’s findings regarding the latency being a
function of the rate of linear onsets (n 5 1) while being a
function of the maximum acceleration of cosine-squared onset
(n 5 2, up to a 1st-order approximation). In addition, this
conclusion predicts that for a large family of functions that can
be approximated by a power function, the first-spike latency
for tone bursts that are shaped using these functions should be
determined by the termP/Dn. Moreover, we predict that for
exponential power functions, such that the envelope is a power
function whenP is given in dB units,t* is determined by the
term P/Dn, whenP is given in dB units.

Note that the analysis in the previous paragraphs is limited
to t* # D (1st spike generation occurring during the onset

ramp). For near-threshold levels ofP, t* may exceedD, which
results in longer latencies than predicted. This presumably is
the cause of the departures from the invariant relationship
between first spike latency andP/Dn at low levels ofP in both
experimental and simulated data (e.g., Figs. 4C and 5).

Another phenomenon that can be explained by the im-
plicit form of t* is of Heil and Irvine (1996) regarding the
deviations of the latency from the predictions of a fixed
threshold model. InAPPENDIX B we explore the dependence
of t* on the duration of the onset,D, and prove the com-
pressive nature oft*(D) as evident in both experimental and
simulated data (Fig. 6).

It should be noted that the latency of any fixed-threshold
system, which includes only monotonic transformations and
linear time-invariant filtering ofE(t), as a function ofP, D, and
n, is being uniquely determined by the termP/Dn. This obser-
vation can account for the latency phenomena of auditory
nerve fibers, reported by Heil and Irvine (1997).

FIG. 5. Latency data from the cat posterior field
(replotted from Phillips 1998) vs. model simulated
data. The latency is plotted as a function of maxi-
mum acceleration of peak pressure and is fitted
using Heil’s functional form. Our estimatedSvalue
for neuron 93K010.24(A) is 3.99, and the estimated
value for the corresponding simulated latency (B) is
4.62. EstimatedSfor neuron 93K013.12(C) is 4.42
and for the corresponding model setting (D) the
estimation is 4.57.

FIG. 6. A: mean 1st-spike latency of a neuron
from cat primary auditory cortex (solid lines) as a
function of rise time of a CF tone of 22 kHz (replotted
from Heil and Irvine 1996). The dashed lines plot the
best fit of the data according to a fixed-threshold
model. Note that the latency is not a linear function of
rise time and that the slope ratio of any two quasi-
linear iso-step-size curves does not match the inverse
ratio of the step sizes. The model reproduces these
phenomena (B). Note that the latency axis is trans-
lated with respect toA for greater clarity.
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COMPARING MODEL PREDICTIONS WITH LATENCY RESULTS OF

PHYSIOLOGICAL EXPERIMENTS. Figure 7 shows the latency data
of one AI unit in response to three types of onset windows,
linear (Fig. 7A), cosine squared (Fig. 7C), and squared expo-
nential (Fig. 7E). The latency for each window is plotted as a
function of the predicted invariant measure, and the alignment
of the latency data along a single curve for each rise function
validates our predictions. Numerical simulations reproduce
these phenomena (Fig. 7,B, D, andF). Figure 8A shows the
latency of a MGB neuron in response to four types of ampli-
tude rise function, cos2 (t), cos4 (t), t2, and t4. The latency of
each rise function is plotted as a function of the predicted
invariant measure, which isP/Dn for the tn rise functions and
pnP/2nDn for the cosn (t) rise functions {Taylor’s series ap-
proximation of cosn [(p/2)t 1 (p/2)] is (pn/2n)tn 1 o(tn12) for
evenn}. This way the latency data collected with thet2 and the
cos2 (t) rise function aligns along a single curve, and the
latency data collected with thet4 and the cos4 (t) rise function

aligns along another curve. The model predictions also hold for
the responses of a neuron in primary auditory cortex (Fig. 8C)
and are being reproduced by the numerical simulations of the
model (Fig. 8,B andD).

SPIKE COUNT. Neurons in AI of anesthetized cat show a low
spontaneous rate of fire, and their typical response to sound
bursts is a single spike or a short burst of a few spikes
immediately following the onset of the stimulus (e.g., Heil
1997b). Examining the spike count as a function of plateau
peak pressure alone reveals a non-monotonic pattern that is
shared by many AI neurons to various degrees (e.g., Heil
1997b; Heil and Irvine 1998a; Phillips 1988; Schreiner and
Mendelson 1990). Furthermore, the non-monotonicity is
enhanced at the shorter rise times. Figure 9 demonstrates the
typical response patterns of two types of neurons, as replot-
ted from Heil’s (1997b) data. Figure 9A shows a highly
non-monotonic neuron, whereas Fig. 9C shows a more

FIG. 7. First-spike latency of a single unit of a
cat [primary auditory cortex (AI)] as response to 3
rise functions, linear (A, experimental;B, simu-
lated), cosine squared (C, experimental;D, simu-
lated), and squared exponential (E, experimental;
F, simulated). Latency is plotted as a function of
the predicted invariant measure of each rise func-
tion.
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monotonic neuron. The spike-count data are plotted as a
function of plateau peak pressure and are organized along
iso-rise-time curves. The model reproduces these phenom-
ena over a wide range of degrees of monotonicity. Figure 9,
B and D, demonstrates a good correspondence between

experimental and simulated results. The correspondence is
apparent for curve shapes as well as for order of displace-
ment of the iso-rise-time curves, although the displacement
of the model curves along the abscissa are much larger than
those of the neural curves.

FIG. 8. First-spike latency measured using
cos2 (t), cos4 (t), t2, andt4 rise functions from
a single unit of a cat medial geniculate body
(MGB; A andB, simulated) and AI (C andD,
simulated). Latency data are plotted as a func-
tion of the predicted invariant measure [P/Dn

for the tn rise functions andpnP/2nDn for the
cosn (t) rise functions].

FIG. 9. Experimental vs. simulated spike-
count data. Iso-rise-time curves of spike counts
are plotted as a function of amplitude level of a
cosine-squared onset, for a non-monotonic
neuron (A, experimental;B, simulated), and a
monotonic neuron (C, experimental;D, simu-
lated). Experimental data are replotted from
Heil (1997b). Simulated data for both neurons
were obtained using the same sets of parame-
ters that were used to match their latency data
(see Fig. 4).
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The monotonicity of the model can be controlled by chang-
ing the value of the two adjustable parameters, as already
illustrated in Fig. 3. Increasing the dynamic range of the delay
layer’s saturation and decreasing the membrane time constant
increase the monotonicity of the neuron. The relation between
the degree of the saturation and the monotonicity of the neuron
spike count is being formally proved inAPPENDIX B. It is
noteworthy that raising the sigmoidal scaling factor of the
saturation transformation both raises the threshold and in-
creases the monotonicity of the neuron. This relation between
the threshold and monotonicity of the neuron is consistent with
previously reported findings (Heil et al. 1994; Sutter and
Schreiner 1995).

Heil (1997b) found an interesting relationship between the
spike count and the latency of the response. This relation links
the dynamics of the onset and the number of spikes that follow
it. Heil demonstrated that plotting the spike count as a function
of the stimuli’s peak pressure at the moment of first-spike
generation brings the iso-rise-time curves to close congruence.
The moment of first-spike generation is defined as the mean
latency (for the given rise time and plateau peak pressure)
minus the minimal latency of the neuron (as defined by the
termLmin in Eqs. 5and6). The congruence of the iso-rise-time
curves holds for both linear and cosine-squared onsets and for
both monotonic and non-monotonic neurons. Figure 10 dem-
onstrates this phenomenon using the data of Heil (1997b),
Phillips (1998), and the original data reported here, and shows
that the model reproduces this phenomenon for variety sets of
model parameters. InAPPENDIX B we analyze this special rela-
tionship between the latency and the spike count of the model
and of auditory cortical neurons.

Evaluation of the neural model: evoked auditory brain stem
responses

The ability of the model to match reported evoked auditory
brain stem responses in humans (Barth and Burkard 1993) and
inferior colliculus potential (ICP) in the awake chinchilla (Phil-
lips and Burkard 1999) in response to sound bursts, was tested
by feeding the model with the amplitude envelope of the
stimuli and comparing the model output to the reported re-
sponses. The membrane potential of our modeled edge detector
neuron (Fig. 1E) was used as an estimate of the combined
activity of a large population of brain stem neurons (Gerstner
1999b). The model activity was then differentiated to mimic
the analogue highpass filter (with a slope of 6 dB/oct) used in
these experiments.

Figure 11A shows a typical measure of the inferior colliculus
potential in response to a tone burst as replotted from Barth and
Burkard (1993). Figure 11B shows the differentiated mem-
brane potential of the edge detector neuron of the model. This
figure also illustrates the definitions of the latency and ampli-
tude of the response. The two adjustable parameters that shape
the model’s response to amplitude transients (C andt3) were
adjusted to fit the latency and amplitude of the experimental
responses.

In contrast to the stimuli that were used in single-cell re-
cordings, whose total durations were 50–100 ms (Phillips
1998) or 400 ms (Heil 1997a,b), the stimuli that were used by
Barth and Burkard (1993) and by Phillips and Burkard (1999)

were much shorter and included plateau-level durations of 2–5
ms. For the model to accurately reproduce the experimental
responses to these very short bursts, we had to reduce the time
constant of the delay layer units from a range of 3–5 ms to a
range of 0.5–1 ms, since higher time constants oversmoothed
the envelope. The problem of using very short time constants
when modeling mammalian inferior colliculus neurons has also
been encountered in other modeling studies (Hewitt and Med-
dis 1994).

LATENCY. Phillips and Burkard (1999) measured the latency
of the ICP in the awake chinchilla in response to cosine-
squared onsets of various rise times and amplitude levels.
Although Phillips and Burkard reported that there were strong
similarities between the latency behavior of the ICP and that of
cortical single cells, they did not use Heil’s functional expres-
sion (seeEq. 6) to match the latency data according to the
maximum acceleration of the onset envelope. Figure 12A
shows that replotting the ICP latency data as a function of
maximum acceleration of the envelope brings the iso-rise-time
curves to converge along a single curve that can be fitted using
Eq. 6 and by using the same value of the constant parameter
(Ac) that was used by Heil (1997a). Figure 12B shows that the
model reproduces the ICP latency data.

Barth and Burkard (1993) measured the latency of wave V
of brain stem auditory evoked responses (BAER) in response
to linear shaped onsets. Although Barth and Burkard reported
that both the onset rise time and amplitude affect the response
latency, they did not analyze the latency as a function of the
envelope rate of change. Figure 12C shows that replotting the
BAER latency as a function of the envelope rate brings the
iso-rise-time curves to close congruence. Using Heil’s func-
tional form (Eq. 5) and the same value of Heil’s constant (Al)
to match this curve yields a moderate fit. The model latency
data is shown in Fig. 12D.

RESPONSE AMPLITUDE. The effect of onset rise time and am-
plitude level on the ICP and on wave V of BAER response
amplitude are similar to their effect on the spike count of
monotonic cortical single cells. The response amplitude in-
creased with ascending amplitude levels and with descending
onset rise times. Figure 13 replots Phillips and Burkard’s
(1999) ICP amplitude response (Fig. 13A) and Barth and
Burkard’s (1993) BAER wave V response amplitude (Fig.
13C); both are plotted as a function of the plateau peak level.
The simulated response amplitudes are presented in Fig. 13,B
and D, and are scaled in order to match the experimental
measurements.

Results of the psychoacoustic experiments

The results of the two experiments were analyzed using a
stepwise logistic regression. The dependent variable was set to
be the probability of eliciting a discontinuous response, and the
independent variables included the stimuli parameters used in
each experiment (as detailed in Tables 1 and 2, respectively).
In addition, motivated by our model, we added to the two sets
of independent variables: the logarithm of the normalized rate
of change of the ramp peak pressure re the base peak pressure
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FIG. 10. Experimental and simulated spike-
count iso-rise-time curves are closely aligned
when plotted as a function of stimulus peak pres-
sure at 1st-spike generation. Experimental data of
Heil (1997a,b) (A, C,andE) and of Phillips (1998)
(G) are recorded from single units of the cat AI.
Original data from a single unit of the cat MGB
are shown inI. Note that the model (B, D, F, H,
andJ) reproduces this phenomenon over a broad
range of parameters.
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(this is the invariant measure for the stimuli used here, see next
section).

EXPERIMENT 1. The regression results show that the variable
that accounts for most of the variance is the normalized rate of
the ramp peak pressure [F(1,2238)5 1,948.6,P , 10215]. Other
significant variables are the duration of the change, [F(1,2237)5
60.8, P , 10212]; and the tone frequency [F(1,2236) 5 32.5,
P , 1027].

EXPERIMENT 2. The results of the second experiment also
found the normalized rate of peak pressure to be the variable
that accounts for most of the variance [F(1,898) 5 509.6,P ,
10215]. Other significant variables were the first plateau am-
plitude level, [F(1,897) 5 29.2,P , 1027]; the step amplitude
[F(1,896)5 11.5,P , 0.0007] and the step duration [F(1,895)5
11.07,P , 0.0009].

Mean results across all participants for the two experiments
are plotted in Fig. 14A. As expected from the regression
analysis, it is evident that plotting the probability data as a
function of the rate of peak pressure causes the data to align
along a typical psychometric function.

Evaluation of the neural model: psychoacoustic data

In the following section we will compare the model re-
sponses with the results of three psychoacoustical experiments.
These experiments include the experiment reported above that
tested the perception of amplitude discontinuity; an experiment
that tested the effect of amplitude transients on auditory seg-
regation (Bregman et al. 1994b); and a forward masking ex-
periment (Turner et al. 1994) that tested the effect of the probe
rise time on the degree of masking. Although these experi-
ments investigate different auditory phenomena, we demon-
strate that by identifying the psychoacoustical measures with
the responses of the neural model to the amplitude transients
presented in the experiments, the model is able to reasonably
reproduce the psychoacoustical results.

In two of these experiments (Bregman et al. 1994b and the
experiment reported here) the stimuli contained an amplitude
ramp rising above a pedestal. The invariant measure for these
stimuli is not the rate of rise of the amplitude ramp per se, but
rather the normalized rate of rise re the pedestal,P*/Dn, where
P* is the plateau peak pressure of the ramp normalized by the

FIG. 11. A: a typical wave-V brain stem auditory
evoked response (BAER) as response to a 60-dB nHL
1.25-ms rise-time noise burst replotted from Barth and
Burkard (1993).B: a differentiated membrane poten-
tial of the model edge detector neuron as a response to
the same stimulus without the addition of noise. The
response latency is measured with respect to the peak
of the BAER, and the response amplitude is measured
from the peak to the following trough, as illustrated
in A.

FIG. 12. A: replotting inferior colliculus potential
(ICP) response latencies (Phillips and Burkard 1999) as
a function of maximum acceleration of cosine-squared
onsets yields a good alignment of the latency data along
a curve that can be fitted by Heil’s (1997a) functional
form (Eq. 6). Our fit for the experimental ICP data yields
S 5 5.65 andLmin 5 3.46. The model reproduces these
results (B), with a fit of S 5 5.97 andLmin 5 1.18.C:
replotting wave-V latencies (Barth and Burkard 1993) as
a function of the rate of linear onsets reveals good
alignment along a curve that only moderately fits Heil’s
functional form (Eq. 5) with S5 5.65 andLmin 5 6.43.
The model matches the experimental results (D) but is
better fitted by the functional form (S5 6.17 andLmin 5
2.27). Note that both Barth and Burkard (1993) and
Phillips and Burkard (1999) used 0-ms rise time onsets.
To allow a valid calculation of the envelope maximum
acceleration and rate of change for these stimuli, we
replaced the zero rise time by a 0.185-ms value. This
value was found to best match the fitted curves for both
the ICP and the BAER latency data.
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ratio between the pedestal peak pressure andP0 (see Fig. 1B).
Intuitively, this follows from the fact that the essential opera-
tion of the model is differentiating the log-compressed ampli-
tude envelope. Therefore the output of the receptive field (Fig.
1D) is not changed by multiplying the input stimuli by a
constant factor. In consequence, the response to a ramp rising

above a pedestal is identical to the response to the onset of a
sound with the same size in dB reP0 and with the same shape.
Note that we arbitrarily set the value ofP0 to 0 dB SPL for
simplicity sake. Using differentP0 values can be compensated
by adjusting the threshold value of the edge detector neuron.P0
value is significant only when fitting the model responses with

FIG. 13. Response amplitude of ICP (A) replot-
ted from Phillips and Burkard (1999), and response
amplitude of wave-V BAER (B) replotted from
Barth and Burkard (1993) as a function of plateau
peak pressure. Note the resemblance between the 2
experimental findings in response to stimuli of
comparable parameters and between the experi-
mental and simulated data (B andD).

FIG. 14. A: mean results across all participants
for experiment 1(solid lines) andexperiment 2
(dashed lines). The probability for the amplitude
ramp to be perceived as a discontinuous change is
plotted as a function of the normalized rate of the
ramp peak pressure re the pedestal (see text). This
produces a good congruence of the data along a
typical psychometric curve. A plot of the simula-
tion results (B) shows a good fit with the psy-
choacoustic data.C: a replot of the discrimination
score from Bregman et al. (1994b) as a function
of the normalized rate of change of the incre-
mented partials. The model matches the data only
moderately (D).
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the responses of a specific neuron to both the onset of a sound
and to a ramp rising above a pedestal. In these casesP0 may be
adjusted to best fit the neural responses to both types of stimuli.

PERCEPTION OF AMPLITUDE DISCONTINUITY. To compare our
psychophysical results and the model predictions, a function of
the neural response compatible with the dichotic nature of the
psychophysical responses is required. As mentioned earlier, the
modeled neurons have low spontaneous activity, and their
responses to sound bursts consist of a short burst of 1–3 spikes.
Therefore it seemed plausible to define a response to a stimulus
as one or more spikes, and to identify the probability of
response as the probability that a participant would report a
discontinuous amplitude change in the psychophysical exper-
iment. This measure did in fact yield a good match between the
simulated (Fig. 14B) and the experimental results.

EFFECT OF AMPLITUDE TRANSIENTS ON AUDITORY SEGREGATION.

One of the few studies that tested the effect of both the duration
and magnitude of amplitude changes on auditory segregation
tasks has been reported in Bregman et al. (1994b). They
presented a 3.5-s long complex tone consisting of five harmon-
ics of 500 Hz. The amplitudes of an adjacent pair of the three
middle frequencies (1,000, 1,500, and 2,000 Hz) were incre-
mented in succession in random order. A sufficiently large
amplitude increment caused the partials to be segregated from
the complex tone, and to be perceived as separate tones. To
measure the degree of segregation, the participants had to
judge whether the perceived pitch pattern, caused by the seg-
regated partials, went up or down. Three levels of increments
were used (1, 3, and 6 dB) and six increment durations (30, 90,
270, 730, 910, and 970), resulting in a total of 18 experimental
conditions. The overall amplitude level of the complex tone in
its steady state was 65 dB SPL. Bregman et al. reported that
both the amplitude increment level and the increment duration
had a significant effect on the participants’ performance.
Longer increment duration resulted in poorer discrimination
performance, while larger increment levels led to better dis-
crimination. These results suggest that the gradient of the
increment had a dominant effect on discrimination perfor-
mance. However, Bregman et al. did not include the gradient of
the increment in their statistical analysis, and therefore it is
impossible to determine the exact influence of the amplitude
gradient of a tone on the ability to segregate it from a mixture
of tones. When the results of Bregman et al. are replotted as a
function of the normalized rate of peak pressure of the ampli-
tude increment, the data fall along a single curve (Fig. 14C).

Since Bregman et al. used a continuous measure ranging
from 0 to 5, we used the spike count of the model as the
simulated measure while using a linear transformation of the
spike count data that resulted in the best fit to the psychoacous-
tical results. Figure 14D shows that the model’s ability to
approximate the experimental results of Bregman et al. is only
moderate. Formally, the model responses do not align on a
single curve because of the use of extremely shallow ramps in
this experiment (see Fig. B1 and the accompanying discussion
in APPENDIX B). Interestingly, the experimental data of Bregman
et al. (1994b) are in fact invariant with respect to the normal-
ized rate of rise of the ramp, implying that the rate of rise is the
behaviorally relevant variable even under these extreme con-
ditions.

EFFECT OF AMPLITUDE TRANSIENTS ON RELEASE FROM

FORWARD MASKING. In forward masking, the masker (which
can be a tone or a noise burst) masks a target tone that appears
just after the masker ends. The degree of masking depends on
many factors such as masker level, bandwidth, duration, and
the inter-stimulus interval. Turner et al. (1994) studied the
effect of the target tone rise time and duration on forward
masking levels. They used two types of target tones, one with
a total duration of 25 ms including 2-ms cosine-squared rise/
fall ramps, and the second with a total duration of 22 ms
including 10-ms cosine-squared rise/fall ramps. Growth of
masking (GOM) functions were measured using noise maskers
at levels of 10–90 dB SPL. Their results show that targets with
10-ms rise time were masked more than targets of 2-ms rise
time. In addition, Turner et al. showed that in contrast with the
psychoacoustical results, there was no significant effect of the
target rise time on the amount of masking that was measured in
single auditory-nerve fibers of the chinchilla. This suggests
that, although some forward masking effects are apparent at the
level of the auditory periphery, the effect of target rise time
may involve higher auditory centers.

To put these results in the context of our model, we inter-
preted the forward masking paradigm as a method of assessing
the strength of response produced by the target tone; the higher
the response produced by the target, the louder the masker that
is needed to mask it. Therefore we interpreted the minimal
masker level needed to mask a target tone as a measure of the
response produced by the target. This measure is being com-
pared with the strength of response produced by the neural
model as response to the target tone alone. Figure 15A replots
the masker level as a function of the target level for the two
rise-time targets as calculated from the data of Turner et al.
Figure 15B demonstrates that these results are reproduced by
the spiking responses of the edge detector neuron in the model.
In addition, the data of Turner et al. remarkably resemble the
ICP amplitude data of Phillips and Burkard (1999). Figure 15C
replots Phillips and Burkard’s (1999) ICP responses at com-
parable parameter values, and the corresponding model re-
sponses (as already shown in Fig. 13) are plotted in Fig. 15D.
Thus the psychophysical data of Turner et al. can also be
interpreted by this version of the model.

D I S C U S S I O N

In the present study we describe a neural model for auditory
temporal edge detection. The core of the model is in the
formation of an auditory delay dimension. Sensitivity to am-
plitude edges is achieved by differentiating the stimulus along
this dimension. We demonstrate the ability of the model to
reproduce both the latency and magnitude of responses to
sound bursts, as recorded from single units of the cat primary
auditory cortex and posterior field (Heil 1997a,b; Heil and
Irvine 1996; Phillips 1988, 1998), inferior colliculus potential
of awake chinchilla (Phillips and Burkard 1999), and wave V
of human brain stem–evoked response (Barth and Burkard
1993). Moreover, we predict the response of cortical neurons to
a general family of sound bursts whose onset envelope is a
power function or the exponent of a power function. We
successfully verified these predictions for several of these
stimuli by recording from single units of the cat primary
auditory cortex and MGB.
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In addition, we tested the ability of the model to match
psychoacoustical findings for the sensitivity of human percep-
tion to amplitude transients. Our results show that the model is
capable of reproducing psychoacoustical results for the effect
of amplitude gradient on auditory segregation (Bregman et al.
1994b); the effect of amplitude gradient on the ability to
release a tone from a forward masker (Turner et al. 1994); and
the effect of amplitude gradient on the perception of the am-
plitude transient itself as measured in the experiments reported
here. The behavior of the model stems from its general oper-
ational principles and does not depend on the exact implemen-
tation or parameters of any of its components. This important
property of the model is established by a mathematical analysis
of the model’s operation.

Although the model usually follows the experimental data
very accurately, there is one prominent systematic deviation of
the simulated results from the experimental results. This devi-
ation occurs at relatively long rise times at near threshold levels
of plateau peak pressure. In these conditions the model spike
count and latency are smaller than the experimental ones (see
Figs. 4 and 9 for latency and spike-count data, respectively).
This deviation causes Heil’s fit for the latency data to produce
higherSvalues for the simulated data than for the experimental
data. However, the underestimation of both latency and spike
count in the simulated responses preserves the special latency–
spike count relationships, in line with the experimental data
(Fig. 10). The same effect causes the fit of the model to the data
of Bregman et al. (1994b) to be rather poor.

While all the elements of the model are simple and biolog-
ically plausible, the use of an auditory delay layer currently
lacks definite physiological or anatomical evidence. However,
there is some evidence that may validate the use of such an
auditory delay layer. Hattori and Suga (1997) measured the

latency of single and multiple neurons from the inferior col-
liculus (IC) of unanesthetized mustached bats as a response to
tone bursts. They found that the latency (ranging from 4 to 12
ms) is topographically organized orthogonally to the tonotopic
organization of the IC, forming a frequency versus latency
map. Similar organization of onset latencies in the cat IC was
reported by Schreiner and Langner (1988b). They reported that
the latency of response to CF tones at 60 dB above threshold
(ranging from 5 to 18 ms) systematically varied across a given
frequency band lamina. Both the range of values and the
topographic organization of the latency in the bat and in the cat
IC are consistent with the model’s delay layer. However, more
research is needed to establish a direct link between these
findings and the proposed model. Some organization of mini-
mal latency along the isofrequency contours is also present in
cat auditory cortex (Mendelson et al. 1997), possibly reflecting
a similar map in the cat IC.

The main contribution of the proposed model lies in its
ability to reproduce diverse physiological and psychophysical
findings on the sensitivity of the auditory system to amplitude
transients, especially since currently there is no theoretical
framework to which these experimental phenomena can be
associated. The motivation for our study stems from the con-
jecture that auditory transients could supply important cues for
the perceptual task of auditory source separation. The problem
of sensory source separation is an extremely difficult one,
especially when the input contains information that originates
from an unknown number of semsory sources of unknown type
and location. Since the solution space for almost any given
input is infinite, some assumptions regarding the nature of the
input need to be made. One basic assumption that is believed
to be used by the visual system is that the brightness gradient
within an object cannot be too large. This implies that when-

FIG. 15. A: forward masking data from Turner et
al. (1994). The minimal noise masker level needed
to mask a target tone is plotted as a function of the
target level. It is obvious that a more intense masker
is needed for targets with higher intensities and
shorter rise times.C: the results of Turner et al.
show great similarity to the experimental (C) and
simulated (D) ICP level of response to comparable
noise bursts (Phillips and Burkard 1999), as was
plotted in Fig. 13.B demonstrates that the model
also reproduces the data of Turner et al. when a
spike-count measure is used instead of the differen-
tiated membrane potential measure as inD.
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ever a sudden brightness change (visual edge) is observed, it is
interpreted as a border between adjacent objects. The existence
of neurons in the visual system that are sensitive to brightness
edges supports the conjecture that the visual system uses local
gradient constraints when interpreting visual images.

This visual example of a priori constraints that reduce the
solution space for the source separation problem led us to make
two assumptions that underlie the work presented here. First,
we assume that the local gradient constraint can be applied to
the perception process of acoustic signals. Second, we assume
that local gradients of acoustic properties can be computed
using neural circuitry that is similar to the one that is used to
compute local gradients of visual properties in sub-cortical
visual centers. These assumptions lead to two expectations.

First, we would expect to find units of the auditory system
that are sensitive to the gradient of the stimulus amplitude.
Indeed, as reviewed earlier, examination of the responses of
many cortical and sub-cortical neurons to amplitude transients
suggests that the neural response is sensitive to the derivative
of the stimulus intensity over time and therefore their response
may be interpreted as reflecting a temporal edge detection
computation.

Second, we would expect to find that amplitude gradients
affect auditory perception in general and auditory source seg-
regation phenomena in particular. Although many studies dem-
onstrate the importance of amplitude transients to speech in-
telligibility (Drullman et al. 1994a,b; Shannon et al. 1995) and
to the segregation process of a sinusoidal component from a
background of other sinusoidal tones (Bregman et al. 1994a),
the importance of the amplitude gradient cannot be directly
deduced from these observations. Only few psychophysical
studies (Bregman et al. 1994b; Turner et al. 1994) have ex-
plicitly manipulated both the duration and the size of the
amplitude change simultaneously, making it possible to isolate
the effect of the amplitude gradient on auditory perception. As
we have demonstrated earlier, the results of these studies are
consistent with the assumption that auditory perception is
sensitive to the gradient of amplitude transients and that a
larger gradient enables easier separation of auditory compo-
nents.

An alternative explanation for these physiological and psy-
choacoustical phenomena is that they reflect the sensitivity of
the auditory system to the frequency splatter that may be
caused by an amplitude transient, rather then by the transient
per se. However, this explanation is rendered implausible by
many experiments that demonstrate the effect of amplitude
transients using broad-band noise bursts (e.g., Barth and
Burkard 1993; Phillips and Burkard 1999; Turner et al. 1994;
and the psychoacoustical experiments reported here).

These physiological and psychophysical findings support
our assumption that the local gradient constraint may be ap-
plied to the perception process of acoustic signals. These
observations, and the assumption regarding the possible simi-
larity between neural mechanisms that perform visual and
auditory edge calculations, led us to suggest the proposed
model whose underlying principles are inspired by classical
models for visual edge detection neurons.

The ability of the model to account for numerous disparate
experimental findings suggests that the sensitivity of the audi-
tory system to amplitude transients is a realization of auditory
temporal edge calculation, and that this computation has a

primary role in neural auditory processing in general and in
auditory source separation in particular.

A P P E N D I X A

This section lists the mathematical equations and parameters of the
model.

Neural representation

The amplitude envelope,E(t), of the input stimulus is logarithmi-
cally compressed and low-pass filtered. When expressed in dB SPL
units, the neural representation is

N~t! 5
1

t 1
2E

0

t

E~x!~t 2 x!e2~t2x!/t1dx (A1)

wheret1 is set to 1 ms.

Delay layer

The operation of each unitU(t, hi) of the delay layer on its input,
N(t) is given by

U~t, hi! 5
1

hi
2E

0

t

N~x!~t 2 x!e2~t2x!/hidx (A2)

In our simulations we used 10 units withhi values equally spaced
between 3 and 5 ms. The output of the units is saturated using the
following sigmoidal transformation

Ũ~t, hi! 5 Fmax$2/@1 1 e2U~t,hi!/C# 2 1% (A3)

whereFmax is set to 225 spikes/s andC is a scaling parameter that is
used to adjust the degree of the spike-count monotonicity.

Receptive field and edge detection neuron

The delay layer units are connected to a single neuron. The neu-
ron’s input I(t) is given by

I~t! 5 O
i

WiŨ~t, hi! (A4)

where Wi 5 {0.0285, 0.1637, 0.5240, 0.8547, 0.4697,20.4697,
20.8547,20.5240,20.1637,20.0285}. The neuron is modeled as a
simple leaky integrator with a voltage threshold (T), with an absolute
refractoriness perioddabs5 1 ms, and a refractoriness function

w~t! 5 2Te2~t2dabs!/lS~t 2 dabs! 2 KS~t!S~dabs2 t! (A5)

with a constantK3 `, l 5 1.5 ms and whereS(t) is the positive step
function (Gerstner 1999a). The membrane potentialM(t) of the neuron
is given by

M~t! 5
1

t 3
2E

0

t

@I~x! 1 j~x!#~t 2 x!e2~t2x!/t3dx 1 O
fi[$f1, . . . ,fn%

w~t 2 fi! (A6)

where {f1, . . . , fn} are the set of firing times of the neuron, the
membrane time constantt3 is a parameter andj(x) is a random
gaussian noise with a zero mean and a standard deviations 5 0.2T.

A P P E N D I X B

Approximate expressions for the model components

In the following we derive approximate expressions for the oper-
ation of each of the model components on its input, as annotated in
Fig. 1. These expressions will be used throughout the appendix for
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analyzing some properties of the model. In our analysis we assume
that the amplitude envelope of the input stimulus onset,E(t), can be
approximated by a power function

E~t! 5 PS t

D
Dn

for 0 # t # D (B1)

wheren . 0, P denotes the plateau peak pressure in Pascal units and
D denotes the onset rise time in milliseconds. For now the analysis
will be restricted tot # D. The implications of this restriction for the
analysis of the first-spike latency phenomena have been discussed in
RESULTS, and the implications for the analysis of the spike-count
phenomena will be discussed in the following. The neural represen-
tation of the auditory input is achieved by low-pass filtering of the
stimulus envelope in dB SPL units

N~t! 5
A

t 1
2E

0

t

ln F1 1
P

P0
Sx

D
DnG~t 2 x!e2~t2x!/t1dx (B2)

whereA 5 20/ln (10) andP0 5 2e 2 5 Pa. The form of the argument
to the log transformation eases the analysis for near-zero values oft,
and has negligible effect fort @ 0.

The convolution integrals appearing at three levels of the model
(neural representation, delay layer, and edge detector neuron) do not
have closed analytical form. In the following, these integrals are
approximated as follows

1

t2 E
0

t

F~x!~t 2 x!e2~t2x!/tdx >
1

t2 F~t!E
0

t

~t 2 x!e2~t2x!/tdx (B3)

This approximation is valid whenF(x) is monotonic increasing, as it
is in all three cases, and whent is small enough so thatF(x) varies
slowly on an interval comparable tot around timet. These claims will
be proved at the end of this section.

Using this approximation for the neural representation gives rise to
the following expression

N~t! >
A

t 1
2 ln F1 1

P

P0
S t

D
DnG E

0

t

~t 2 x!e2~t2x!/t1dx

5 A ln F1 1
P

P0
S t

D
DnGF1 2 e2t/t1S1 1

t

t1
DG (B4)

The output of each unit of the delay layer is given by

U~t, t2! 5
1

t 2
2E

0

t

N~x!~t 2 x!e2~t2x!/t2dx

substituting the approximation ofN(x) according toEq. B4yields

U~t, t2! >
A

t 2
2E

0

t

ln F1 1
P

P0
Sx

D
DnGF1 2 e2x/t1S1 1

x

t1
DG~t 2 x!e2~t2x!/t2dx

which is approximated by

U~t, t2! > A ln F1 1
P

P0
S t

D
DnGH1 2 e2t/t2Ft 2

2~t2 2 3t1!

~t2 2 t1!
3 1 t

t2

~t2 2 t1!
2G

1 e2t/t1Ft 1
2~t1 2 3t2!

~t2 2 t1!
3 1 t

t1

~t2 2 t1!
2GJ (B5)

Biological constraints require thatt2 @ t1 5 1 ms. In this caseEq. B5
can be further simplified to

U~t, t2! > A ln F1 1
P

P0
S t

D
DnGF1 2 e2t/t2S1 1

t

t2
DG (B6)

The operation of the receptive filed is approximated by the negative of
the first-order derivative ofŨ(t, t2) with respect tot2 at the neigh-
borhood of some fixed value oft2. For the analytical treatment, the
sigmoidal saturation following the delay layer will be neglected (the
effects of saturation will be analyzed below). The degree of non-
monotonicity of the model depends on this transformation. Thus, only
monotonic neurons will be further analyzed using these approxima-
tions. Using these assumptions, it follows that

R~t! 5
dŨ~t, t2!

dt2

>
A

t2
3 ln F1 1

P

P0
S t

D
DnGt2e2t/t2 (B7)

The membrane potential of the edge detector neuron is therefore given
by

M~t! 5
A

t 2
3t 3

2E
0

t

ln F1 1
P

P0
Sx

D
DnGx2e2x/t2~t 2 x!e2~t2x!/t3dx

Given the realistic biological values fort2 andt3 time constants we
can assume thatt2 5 t3 and by using the same kind of approximation
used inEq. B4we get the following simplification

M~t! >
A

12t3
5 ln F1 1

P

P0
S t

D
DnGt4e2t/t3 (B8)

M(t) will be used to investigate the dependence of the first-spike
latency and spike count of the model on the parameters (P, D, andn)
of the input stimulus.

To justify the approximation described inEq. B3,we defineG(t)
andG̃(t) as follows

G~t! 5
1

t 2E
0

t

F~x!~t 2 x!e2~t2x!/tdx > G̃~t! 5
1

t 2 F~t!E
0

t

~t 2 x!e2~t2x!/tdx (B9)

where

F~x! 5 A ln F1 1
P

P0
Sx

D
DnG

and investigate the relative error [G̃(t) 2 G(t)]/G̃(t). Since

G̃~t! 2 G~t! 5E
0

t0

@F~t0! 2 F~x!#~t 2 x!e2~t2x!/tdx

1E
t0

t

@F~t! 2 F~x!#~t 2 x!e2~t2x!/tdx 0 # t0 # t

and since (t 2 x)e2(t2x)/t $ 0 for 0 # x # t, andF(x) is positive and
monotonically ascending, it holds that

G̃~t! 2 G~t! # @F~t0! 2 F~0!#E
0

t0

~t 2 x!e2~t2x!/tdx

1 @F~t! 2 F~t0!#E
t0

t

~t 2 x!e2~t2x!/tdx

and therefore

G̃~t! 2 G~t!

G̃~t!
# L~t0, t! 5

1 2 E~t 2 t0!

1 2 E~t!
2 FF~t0!

F~t!G 1 2 2E~t 2 t0! 1 E~t!

1 2 E~t!

whereE~t! 5 e2t/tS1 1
t

t
D

It is easy to see that for a fixed value oft, there ist̂0 such thatL(t̂0, t) #
L(t0, t) for every 0# t0 , t. Although we are unable to show a closed
analytic form for t̂0, there are some observations that can be made
regardingL(t0, t). If F(x) is a constant function such thatF(t0)/F(t) 5
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1 for everyt0 , t thent̂0 5 0 andL(t̂0, t) 5 0. Given the functionF(x)
that is being used inEq. B9,it holds that

lim
P3`

F~t0!

F~t!
5 1 for every 0, t0 , t # Df lim

P3`
L~t0, t! 5 0

and

lim
n30

F~t0!

F~t!
5 1 for every 0, t0 , t # Df lim

n30
L~t0, t! 5 0

On the other hand, limD30 F~t0!/F~t! and limD3` F~t0!/F~t! for every
0 , t0 , t # D depend on the exact form ofF. In the special case that
D 3 ` or t 3 0, thent0/t, t/t 3 `, and it holds that

lim
t0/t,t/t3`

L~t0, t! 5 1 2
F~t0!

F~t!
f t̂0 5 tf lim

t0/t,t/t3`
L~t̂0, t! 5 0

and whenD 3 0 or t 3 `, thent0/t, t/t 3 0, and it holds that

lim
t0/t,t/t30

L~t0, t! 5
~a 2 1!2

a2 2
~a 2 2!2 2 2

a2

F~t0!

F~t!
wherea 5

t

t0

which is always positive.
These observations show that the quality of the fit becomes better

as P and D becomes bigger andn and t becomes smaller. For
example, ifF(t) varies slowly enough such thatF(t)/F(t) . 0.95 for
t , t # D then

G̃~t! 2 G~t!

G̃~t!
# 0.157 fort . 4t, n 5 1

Proof for the compressive nature of the model’s latency as a
function of the rise time

As illustrated in Fig. 3G, it is assumed that the edge detector neuron
starts firing when its membrane potential hits a fixed threshold level,
T. Thus the time of the first spike,t*, satisfies the condition:M(t*) 5
T, whereM(x) is the edge detector membrane potential approximated
by Eq. B8.To prove the compressive nature oft*(D), we will show
that limD30 ~d/dD!t* ~D! 5 ` and limD3` t* ~D! , `. Since
limD30 t* ~D! 5 0 andt*(D) . 0 for everyD, the compressive nature
of t*(D) is proven.

To prove that limD30 ~d/dD!t* ~D! 5 `, we will differentiate both
sides of the following approximation with respect toD

d

dD
@M~t* !# >

d

dD H A

12t3
5 ln F1 1

P

P0
St*

D
DnGt* 4e2t*/t3J5

d

dD
T 5 0

To extract the following expression for (d/dD)t*

d

dD
t* 5

t3n@eg~t* ! 2 1#1/n

P

P0
H@t3n 1 4t3g~t* ! 2 t*g~t* !# 1

g~t* !

eg~t* ! 2 1
~4t3 2 t* !J
where g~t* ! 5

12Tt3
5

At* 4e2t*/t3

Since limD30 t* ~D! 5 0 and limt*30 g~t* ! 5 ` it holds that

lim
D,t*30

d

dD
t* 5 lim

D,t*30

t3n
1

g~t* !
@eg~t* ! 2 1#1/n

P

P0
HF t3n

g~t* !
1 4t3 2 t*G1

1

eg~t* ! 2 1
~4t3 2 t* !J5 `

In order to prove that limD3` t* ~D! , ` the following function is
defined

Z~D! 5 t̂ such that M~t̂! 5 max
t.0

$M~t!%

Z(D) is the time-to-peak of the membrane potential. It will be shown
below that

lim
D3`

Z~D! 5 ~4 1 n!t3 (B10)

From the definition ofZ(D) it holds that

lim
D3`

t* ~D! # lim
D3`

Z~D! 5 ~4 1 n!t3

To proveEq. B10,we solve the following equation

lim
D3`

d

dt
M~t! 5 0f lim

D3`
Ht3n

P

P0

tn13 1 Dn ln F1 1
P

P0
S t

D
DnG~4t3t

3 2 t4!J5 0

Dividing both sides of the equation byDn yields

P

P0

tn13@t3~n 1 4!# 2
P

P0

tn14 5 0f H t 5 0
t 5 t3~n 1 4!

The non-trivial solution of the equation provesEq. B10.Note that
these are asymptotic results; numerical analysis ofM(t) demonstrates
that for finite values ofD, the derivative oft*(D) with respect toD is
not proportional toÎn 1/P, in agreement with the experimental findings
of Heil and Irvine (1996) and of Phillips (1998).

Proof for the effect of the saturation on the monotonicity of
the model

To ease the analysis we consider the monotonicity of the pre-
synaptic input of the edge detector neuron,R(t) (Fig. 3, D andE),
instead of the monotonicity of the neuron membrane potential,
M(t) (Fig. 3, F andG). We show that for small enough value ofC
the total current that is being injected to the edge detector neuron
is a decreasing function ofP, i.e., d/dP *0

` R(t)dt , 0. Assuming
that the derivatives ofU(t, t2) with respect toP and t2 are
continuous, it holds that

d

dPE
0

`

R~t!dt 5 2
d

dPE
0

` d

dt2

Ũ~t, t2!dt 5 2E
0

` d2

dPdt2
F1 2 e2U~t, t2!/C

1 1 e2U~t,t2!/CGdt

(B11)

Using the derivative chain rule we can further simplifyEq. B11

d

dPE
0

`

R~t!dt >E
0

`

2 S d2

dPdt2

UDHdt

where H 5
2e2U/C

C2~1 1 e2U/C!2 SC 2 U
1 2 e2U/C

1 1 e2U/CD (B12)

Note that for simplifyingH we used the approximation forU(t, t2)
(Eq. B6), which justifies the following approximation

S d

dP
UDS d

dt2

UD > S d2

dPdt2

UDU

Since2d2U/dPdt2 is positive and bounded for 0# t , `, U does not
depend onC, limC30 H~U! 5 0, and limt3` H~U! 5 0 we can use the
following approximation

E
0

` d2U

dPdt2

Hdt >E
0

t1 d2U

dPdt2

Hdt such thatU~t1! 5 kC

where the degree of approximation is determined by the parameterk,
independently ofC. By using small enough value ofC and therefore
small enough value oft1, we can use the approximations

U~t! >
AP

2t 2
2P0D

n t n12 and
d

dt
U~t! >

~n 1 2!~AP!1/~n12!

~2t 2
2P0D

n!1/~n12! U @121/~n12!#~t!
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to transformEq. B12as follows

E
0

t1

2
d2U~t!

dPdt2

H@U~t!#dt 5
2

Pt2
E

0

t1

U~t!H@U~t!#dt

5 gE
0

t1

U1/~n12!~t!H@U~t!#
d

dt
U~t!dt 5 gE

0

kC

U1/~n12!H~U!dU (B13)

where

g 5
2~2t 2

2P0D
n!1/~n12!

Pt2~n 1 2!~AP!1/~n12! . 0

Since

H~U! . 0 0, U , u0 u0 > 1.54C

H~U! , 0 u0 , U

and

E
0

u0

H~U!dU 1E
u0

`

H~U!dU 5 0

and sinceU1/(n12) is monotonically increasing, it holds that

d

dPE
0

`

R~t!dt > gE
0

kC

U1/~n12!H~U!dU > gE
0

`

U1/~n12!H~U!dU , 0 (B14)

Analysis of the spike count as a function of the input
parameters

Two assumptions are made to analyze the model predictions re-
garding spike counts, as illustrated in Fig. 3G. First, it is assumed that
the neuron fires as long as its membrane potential is above the fixed
threshold level. Second, it is assumed that the firing rate is linearly
proportional to the level of the membrane potential above the thresh-
old. Formally, letM(t) denote the membrane potential of the edge
detector neuron andT denote the fixed threshold level, then the total
spike countS(P, D, n) is given by

S~P, D, n! 5E
L1

L2

@M~t! 2 T#dt where M~L1! 5 M~L2! 5 T (B15)

This approach to approximating the spike counts is valid only fort ,
D, since the expression forM(t) (Eq. B8) is valid only for t , D
(where D denotes the onset rise time). Therefore, ifL2 . D, the
approximation of the spike counts is invalid. These limitations restrict
further analysis to onsets of sufficiently long duration and large step
size.

Under these assumptions, the spike count of the model in response
to a power-function onset is a function ofP/Dn, sinceL1, L2, andM(t)
are all functions ofP/Dn.

The dependence of the spike count onP/Dn is consistent with
experimental (see Fig. B1A) and simulated findings. In particular,
since the proof for this relationship is based on the approximation
described inEq. B3,it is expected that the relationship would not hold
for parameter values that yield poor approximations. For example,
low P values yield poor approximation for these equations and result
in spike count that seems to be uncorrelated withP/Dn (e.g.,P # 20
dB, thick lines in Fig. B1A). This fact is the main reason for the failure
of the model to fit the data of Bregman et al. (1994b, see Fig. 14).

However, the above analysis does not explain the experimental and
simulated relationship between the spike count and the stimulus pressure
at the moment of first-spike generation. For the parameter ranges in
which the approximations hold, the first-spike latency is a monotonic
decreasing function ofP/Dn, the stimulus peak pressure at first-spike

latency is a decreasing function ofP, and therefore the dependence of the
spike counts onP/Dn can be transformed into a dependence of the spike
counts on the stimulus peak pressure at first-spike latency. To explain
why the spike counts are still approximate functions of the stimulus peak
pressure at first-spike latency even when the approximations fail, note
that the most obvious departures from the approximations occur whenP
is small. At these lower levels, the spike counts are no longer functions
of P/Dn. At these lower levels, the values ofP/Dn can vary over order of
magnitudes. For example, whenn 5 2 andD covers a range of 4.2:170,
P/Dn would cover, for the sameP, a range of 1:1,638 (see Fig. B1A). On
the other hand, the sound peak pressure at the time of first-spike gener-
ation varies much less withD (for example, in Fig. B1B it covers a range
of only 1:1.075). Thus plotting spike counts as a function of the sound
peak pressure at the time of first-spike generation causes the spike-count
curves to better overlap also at these lower values ofP (e.g.,P # 20, thick
lines in Fig. B1B), but is not an essential feature of the model.
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