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Abstract

Foveated sampling and representation of images is a powerful tool for various vision applications. However, there
are many inherent difficulties in implementing it. We present a simple and efficient mechanism to manipulate image
analysis operators directly on the foveated image; a single typed table-based structure is used to represent various
known operators. Using the complex log as our foveation method, we show how several operators such as edge de-
tection and Hough transform could be efficiently computed almost at frame rate, and discuss the complexity of our
approach. @ 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Foveated vision, which was originally biologi-
cally motivated, can be efficiently used for various
image processing and image understanding tasks
due to its inherent compressive and invariance
properties (Wallace et al., 1994; Tistarelli and
Sandini, 1993; Yamamoto et al.,, 1996). It is not
trivial, however, to efficiently implement it, since
we conceptualize and design algorithms for use in
a Cartesian environment. In this work, we propose
a method that enables implementation of image
operators on foveated images that is related to
Wallace et al. (1994), and show how it is efficiently
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used for direct implementation of feature detection
on foveated images. We achieve this efficiency by
taking the “lookup table” concept to its extreme,
and implementing, on top of the conmectivity
graph proposed in Wallace et al. (1994), a full di-
rect access space variant operator lookup table.
This approach requires a rather resource intensive
preprocessing stage for each operator (due to the
space variance), but this stage is carried only once
for each operator, and results in a real time im-
plementation of foveated operators on images.
Following the classification of Jain et al. (1995), we
show how local, global, and relational (edge de-
tection, Hough transform and symmetry detection,
respectively) are implemented using our method.
Both our source images and the feature maps
are foveated, based on Wilsons model (Yama-
moto et al., 1996; Wilson, 1983). To achieve rea-
sonable dimensions and compression rates, the
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model's parameters are set in a way that follows
biological findings—by imitating the mapping of
ganglions between the retina and V1. In order to
use camera-made Images as inputs, we reduced the
field of view and the foveal resolution. Our simu-
lations are done from initial uniform images with
1024 x 682 pixels, which are mapped to a logimage
L= thygay ¥ Oppge = 38 % 90 logpivels.

1. The complex log mapping

The complex log mapping is commonly used in
the literature as an approximation to the mapping
of visual information in the brain—see for exam-
ple Schwartz (1977, 1980} and others. The basic
complex-log function maps a polar coordinate to a
Cartesian point by (u(r, @), v(r, #1) = (logr, #). We
follow Tistarelli and Sandini (1992, 1993), Wilson
(1983), Yamamoto et al. (1996) and remove a small
circular area from the center of the source image.
We assume that this area, which corresponds to
the visual field of the fovea, is treated separately.

In addition to Wilson (1983) and Yamamoto
et al. (1996), we select the relevant constants in the
model in a way that follows biological findings. In
order to achieve meaningful dimensions and com-
pression rates, we follow the path and number of

sanglions.

2.1. Modeling the human retina

2.1.1. Choosing the sampling model

According to Wilson (1983) and Yamamoto
et al. (1996) the retinal surface is spanned by par-
tially overlapping, round shaped receptive fields,
Their centers form a complex log grid of (u x v)
elements. The foveal area i1s excluded from the
model. Using these assumptions—the eccentri-
city of the nth ring (0<n<u) R, is Ryexp(wn/
2p(1 — 0,)), where w= log{1 + (2{1 — o, )c./(2 —
(1 —o.)en)))s Ry is the radius of the fovea (in de-
grees), ¢, is the ratio between the diameter (in
degrees) of the receptive field and its eccentricity
(in degrees), o, is an overlap faclor and p is the
number of photoreceptors in a radius of one re-
ceptive field. The radius of the receptive field on
the nth ring is ¢, R, /2 and the number of receptive

fields per ring is v = 2n/(c,(l — 0,)). Ganglion
cells appear to obey these assumptions (Sakitt and
Barlow, 1982; Yamamoto et al., 1996). Follow-
ing Schwartz (1980) and others, and extrapolat-
ing the model towards the =>30° periphery. we
can use ganglions as the modeled elements and let
g, = 0.5,

2.1.2. Choosing the constants for the sampling
model

The retinal field of a single eye is 208° » 140°
(Rojer and Schwartz, 1990). The foveal area is a
circle with a radius of 2.6° in the center of this
field. We therefore let Ry = 2.6°, and note that
R, = 104°. (The number of ganglions in the ex-
treme periphery is very small, thus we neglect the
fact that the field of view is not really circular.)

There are =10° neurons in the main optic nerve,
75% of them are peripheral. The number of mod-
ules (halves of hypercolumns) in one hemifield of
V1 is 2500, 1875 of them represent the periphery
(Carlson, 1991),

Following Yamamoto et al. (1996) we first
model the spatial mapping of modules. For u and
¢, We solve R, = 104 and uv = 1875, which gives
u=33, and ¢, =022], or a grnid of 33 x 568
modules. If 750000 ganglions are equally divided
to the receptive fields, we get 400 cells per receptive
field. Roughly assuming that these cells are equally
distributed inside every field in a 20 x 20 matrix,
we pet a grid of 660 x 1136 ganglions for the
peripheral area.

2.2. Modeling joveaied images

We now adjust the constants we derived above
to fit data that resembles camera images. This is
done by reducing the size of the output—by se-
lecting a smaller portion of view, and by reducing
the size of the input—using a maximal (foveal)
resolution that is lower than the one used by
humans.

We first describe what the maximal resolution
of the human wvision is. Polyak’s cones density in
the foveaola matches Drasdo’s foveal resolution of
up to 30000 ganglions/deg”, assuming a ganglions/
cones ratio of 2 (Polyak, 1957; Drasdo, 1989). We
therefore define F = 28648 ganglions/deg” to be



E. Nautel, Y. Yeshurun | Pattern Recognition Letters 23 (2002) 1537-1548 1539

the maximal ganglions density (we ignore the
density of 22918 cones/deg” in the very central 20/
of the foveaola).

In practice images with a field of view of 208°
are rarely used. We wish to model a field of view
that corresponds to commonly used photo images,
vet we would like the view not to be too narrow.
Our suggested model uses the central 74° x 53° of
the human visual field. This extent has the same
field as a 24 mm camera lens, projected on a 35
mm film (Langford, 1978). It is wider than the
human eye's projected extent (around 39° x 26°,
achieved using a 50 mm lens), but not too wide to
create distortions.

If we view this extent with the resolution F we
get 12525 x 8970 pixels; Exclusion of the foveal
area leaves =1.11 x 10® pixels. The logarithmic
mapping of the extent yields u x v = 24 x 56.8
modules, or 480 x 1136 =~ 545280 ganglions. (The
v parameter remains the same and » is the mini-
mal » such that R, > 74/2.)

We now adjust the above extent to the dimen-
sions of a typical screen, which has a lower reso-
Iution. Dividing the uniform extent by 12.66 in
each dimension we fit it into 1024 x 682 pixels—a
reasonable size for input images. On a 14" monitor
such an image spans =74" x 53°, when wviewed
from about 20 cm. We also reduce the sampling
rate of the modules by the same factor—from 20°
ganglions to 1.6°. The 24 x 56.8 modules will now

2.3. Summary and example

Table 1 summarizes the dimensions of the
human retina and our model. The middle column
contains the information about the relevant extent
of the human mapping, and the right column
contains the data about the model itself (after the
reduction in the foveal resolution).

The following pictures (Fig. 1) illustrate the
sampling models we presented above. The top
images show our 780 x 674 input image (left) and
its 38 x 90 logimage (right). The center of the
image was chosen to be the origin for our map-
ping. The bottom image shows the reverse map-
ping of that logimage (the central black area is
the foveal area that was not mapped).

3. The structure of the logmap and operator tables

A logmap L is a table with upg,, > Upa, eDtries,
each containing a list of the uniform pixels that
constitute the receptive field of this logpixel entry.
Given that table, and if we assume (for simplicity)
that the receptive field kernel is just averaging,
we can transform a uniform image with pixel val-
ues z for each pixel = to a logimage. For every
logpixel ! with an attached list {z,...,z,}, we as-
sign the logpixel value [ to be (1/n) 3 7.

An aperator table Op,(I) is defined VI € L as

be composed of about 38 x 89.8 = 3408 ganglions. { [wr':LE*])}abi..N (1)

Table 1

Human and model’s numerical data
Parameter Human eye Eye's extent Maodel
Fov. resolution (unitsideg®) I8 648 28 648 180
Horzontal field (deg) 208 T4 74
Vertical field {deg) 140 53 53
Horizontal field in pixels (w,) 35205 12525 1024
Vertical field in pixels (h,) 23696 B9T0 682
Uniform units £.34 x 108 1.12 = 10* 706910
Uniform units (excluding fovea) £.33 x 10° 111 = 10* 703080
Log units (excluding fovea) 7 50 000 545230 3408
Logmap's width (excluding fovea) 660 48D 38
Logmap’s height 1136 1136 %08
Peripheral compression (x:1) 1o 203 03
P 10 0.8
Ry 104 37

Additional constants are; w = 0.11061, o, = 0.5, ¢, = 0221, Ry = 2.6,
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Fig. 1. Top left: an input image; top right: its logimage with a
visual angle of 74°; bottom: reverse logmap.

where LI = (8" .. 1" isa k-tuple of I € L, N
is the number of elements in I's operator table, and
k is constant.

These lists can be of different size (different
values of N) for different logpixels. Assuming that
L'* occurs unl}' once in such a list, N is bound by
T u-..mjl However in practice N is bound by
much smaller constants, as will be shown.

Suppose that F is a function of k& parameters.
For any | € L we define Apply(Op,({!)) as

ZWFUI“"' I-..N (2)
=l

For k=1 we use F(I!")=1'"". Applying is the
process of “instantiating” the operator on a source
logimage, resulting in a target logimage. Preparing
the tables can be done in a preprocessing stage,
leaving minimal work to be done at applying time.
Usually the preprocessing and applying stages can
be carried out in parallel for each logpixel.

An operator table of / can be normalized by
multiplying every weight in the list of Op,(/) by a
given constant. Since each ! has a different index
list, we can multiply each list by a different con-
stant, thus normalizing a global operator.

Two operator tables can be added. The result-
ing table for each [ will contain all the k-tuples
from the source tables; k-tuples that appeared in
both tables will appear once in the resulting table
with a summed weight.

L is an ordered k-tuple. In some operalors,
however, there is no meaning to the order of the
logpixels in the k-tuple. In these cases we can ac-
cumulate weights of equivalent k-tuples and fur-
ther decrease the size of the operator table.

4. Edge and phase maps

Let (up, 1) be an arbitrary logpixel, with a
corresponding field center of (xg, ) in the uniform
space. Let (s,7) = (@(x,y),¥(x,y)) be the trans-
formation defined by a translation of a Cartesian
coordinate by (—xp,—») and a rotation by
(— arctan(y/xq)) (see Fig. 5).

Projecting a logimage to the uniform space, we
can express the result as functions of both the x—v
and the s—¢ coordinate systems, by

Flx,y) = fo(x, ), ¥(x, )

It can be easily shown that (2F fox)® + (8F [dy)’ =
(8f /as)’ + (8f /or)*. Thus the magnitude of the
gradient vector VF can be approximated using the
s—i system as follows: we define &, G, and VL({u,v)
to be

G(u,v) ={u+1,0) - (u—1,0)
Glu,v) = (v + 1) = (0 —1) (3)
Vi(u,0) = (G +G)"

(G,/G,) approximates the tangent VF, relative to
the s coordinates. Since this system is rotated,
the phase of L will be

G, 2mv
gL, v) = arctan (E) + o (4)
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5. Spatial foveated mask operators

We suggest operators that use different masking
scales: logpixels that reside on peripheral areas will
have a larger effective neighborhood than central
logpixels (using fixed-scaled neighborhood yields
poor peripheral detection). Suppose that we are
given a spatial mask g with M x N = (2M + 1) x
(2N + 1) elements, and let A € ®* be an arbitrary
constant. We mark the rounded integer value of
x € R by [x], the set of pixels in I's receptive field
by R;, and iis size by |R,|. For any uniform pixel
{x,¥) we can find the closest matching logpixel /,
and define a neighborhood P around (x,y) as

{([x + maA/IRi(1, [y + ndv/ IR}

where |m| < M, |n| <N are reals.

Every p € P corresponds to a logpixel [, € L.
We add the logpixels /, to s operator list; Each
addition of /, that corresponds to a pixel (x+
mir/ IR/, ¥ + ni+/|R/]) will have a weight of

g([m], [n])

A:[R_I'l:

A is used to control our masking area (usually
4 =1). Normalizing the weight compensates for
our sampling method: |R;| compensates for the
several additions to the same I, that may occur
using different (x,v) pairs. An additional A*[R,]
compensates for the different sizes of £. Note: in
Wallace et al. (1994) this normalization is done
in the “applying™ stage.

The resulting table can be applied using the
standard applying mechanism (see Eq. (2)).

Mask building and applying can be viewed in
terms of translation tables (Wallace et al., 1994).
A translation by (x,y¥) can be viewed as a spa-
tial mask Tj,,), where T'(—x,—y) =1 and T(i,f) =
0 for every other (i,j). We build T, =
7 /T for each of the possible offsets. Any

mask operator & and its apply function can now
be defined as

M N

Glu, v) = Z Zg{m,n]?mm{u, v)

nrem = A i N

Apply(Glu,v))= Z Z 2(m,n) Apply (T mny(1e,))

mp==M =N

6. The foveated Hough transform

We construct a Hough map that detects lines in
a given edge-logimage. Let I' be a set of k angles,
I'={y|l<i<k,y, = (2=ifk)}, let z be an arbi-
trary pixel in a uniform image Z, and g the re-
spective logpixel in L.

For each z € £ we find the parameterization
of the k lines 4; passing through = and having an-
gles of y,, respectively. We define (p,, ;) (the co-
ordinates of the normal vector of 4; that passes
through 0) as these parameterizations. For an ar-
bitrary { we observe (ulp;, 0;),v(p;, 8;)). For wy <
f; =ty and @ there is a logpixel p € L with
these coordinates. Thus we can add the coordi-
nates of g to p’s operator table, which will function
as the voting plane of the Hough transform (see
Fig. 2). Note that the actual results of the voting
depend on the logpixels’ values. They can be cal-
culated once a logimage with the values g is given.

The operator table of a single p is made of a
series of logpixels which lie on a “band” in Z (see
Fig. 3). That band passes through its parameter-
izing source logpixel, and is orthogonal to the line
{p,. 8). We define the thickness of that band as the
number of pixels along (p,, 8 that intersect p. As

Fig. 2. Contribution of logpixels to the foveated Hough map.
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Fig. 3. Visualization of contributers to three logpixels in the
foveated Hough map.

the w-value of a logpixel p gets larger, more pa-
rameterizations fall into the same p: the number of
these contributers increases linearly with p’s thick-
ness, which can be shown to be proportional to the
diameter of its receptive field. We therefore nor-
malize the table during its construction, by divid-
ing every contribution to a logpixel p by p’s
diameter.

Fig. 2 shows an example of contributions to the
Hough map. The pixels that are in g,’s field can
participate in many lines that pass through many
logpixels. As an example, three pixels were chosen.
Through these pixels, three lines in one direction
and one line in a different direction are shown. The
parameterization of the three lines leads us to m:
the normal vector to these lines (also drawn in the
figure) intersects the lines at p;. The parameter-
ization of the other line poinis to p;. Thus the
operator table of g will contain the coordinates of
g1, and likewise, the operator table of p; will con-
tain the coordinates of g, too. The operator table
of p; will also contain the coordinates of ¢. and
g3, because the three drawn lines pass through
their fields as well.

Fig. 3 shows a visualization of the Hough op-
erator for three logpixels (marked 1...3). The fig-
ure shows the upper half of a uniform image, with
every logpixel projected back to this plane. The
three logpixels have the same value of v. Each
logpixel that is a member in the operator’s
weighted list (of one of 1...3s lists) is shown as a
dark dot in the figure. As can be seen, the operator
table of each of the logpixels 1...3 is made of a
serics of logpixels that lie on a band. That band
passes through its corresponding source logpixel,
and is orthogonal to the line that connects that
logpixel with the origin.

7. The foveated symmetry operator

The generalized symmetry transform (Reisfeld
et al., 1995) and other related mechanisms DiGesu
et al. (1997), use symmetry in order to detect re-
gions of interest. These operators specifically de-
tect corners or centers of objects. We implement
here the foveated version of Reisfeld et al. (1995).
As in the case of mask operators, our operator is
scale dependent; It detects both corners and cen-
ters, smaller near the fovea and larger in the pe-
riphery. Our input is a set of logpixels /; = (u, ry),
from which an edge logmap (r, ) = (log(l+
IV ()|}, arg(V(e))) can be obtained. We define
L-'(I) as the uniform pixel that corresponds to
the center of I's receptive field. Our operator table
for a logpixel [ will be of the form {w;, (/..
In) }izy v (assigning k = 2, F(L;, 1) = I 1y in Egs.
(1) and (2)).

For any logpixel [ we find all the pairs (1, ,) of
its circular neighborhood I'(!): we traverse all the
possible logpixels-pairs (/,, ), find mid(/,, [,) and
add this pair to Is list if mid(l,, I,) = I. mid(l,, I,)
is defined to be the closest matching logpixel to the
pixel ((L~'(Z,) +L""(1,))/2). When adding a pair,
we compute « and add a weight of @ to that pair
in I's list. # and %" are defined as

a(ls, Ip) = i\ﬂﬁnﬁdu..nﬂ

B -t )P
B* (L, L)=3¢¢e >l if it is > e
0 otherwise

A 15 a constant that acts as the symmetry radius
(similar to o in Reisfeld et al (1993)). After
the construction is done, we divide each weight by
the number of elemenis in its respective list. The
number of elements in each list is approximately
the same for all the lists in a single table. Thus the
normalization is done only to equalize weights of
tables with different 4 values.

Applying the symmetry operator for [ results
in

N
E wa{afr 'b.l'}ru.; rﬁ, 1

=]
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where «; i1s the angle between the x-axis and the
line (a;,b); and Pla;, b)) = (1 — cos(f, + 0,,—
2] )1 — cos(ll, — B,)) (for a detailed definition,
see Reisfeld et al. (1995)).

8. Complexity
8.1, Radial invariance

Suppose that we are given an arbitrary operator
Op,. We define the difference operator OpA,,(u, v)
as
Op; (u, v +n) — Shift(Op,(u, v), n)
where + stands for +ne40,,,.- We also define the
shift operator of Op, by n as

Shift(Op, (. ), n) = {(w,-, (e, 0+ (g, '-H"]:H) }J T

We say that Op, has radial invariance il for every
(u, v), the squared sum of weights in OpA.(u, v) is
< from the one of Op,. If an operator is radial
invariant, only one representative for each u in the
table needs to be stored. This cuts the storage
complexity and preprocessing time by a factor of
Unax- We usually choose a fixed vy and take all the
representatives to be of the form (w, o).

For example, it can be seen from Fig. 4 that the
symmetry operator 1s radial invarnant: the figure
shows a logpixel /; and a pair in its contributers
list ({14, ). If we rotate [, to the position of {5, the
contribution pair is rotated respectively (rotation
by the same angle) to (/. fm).

8.2, Operator complexities

Our operators are usually built iIn a prepro-
cessing stage by an exhaustive run over uniform
pixels, in order to produce tables that are small
and quick to traverse. As can be seen from Eq. (2),
the time complexity of applying an operator for
a single logpixel is equal to its space complexity.
We bind the number of logpixels n in the table of
an arbitrary logpixel by factors that are propor-
tional to the small size of the logimage (1 and v).
Using the radial invariance of operators, we re-
duce the number of logpixels whose tables we keep
in memory, resulting a total space complexity of
O mitpgax ) for an operator table. Time complexity is

Fig. 4. Contributers to the symmetry operators. See text inside.

therefore O(mipmaxtmay) if applying is done seri-
ally, and O(n) if tipmaetimas processors apply a table
simultaneously.

8.2.1. Hough operator

For the Hough operator, the preprocessing time
is O(|Z]"*), derived by naively taking all z € Z and
walking along the k parameterization lines for
each z.

To yield the operator’s space complexity we
note that a list with a length of ., + Usa:) 18
attached for each I for each of the logpixels, the
Hough table is produced by walking along a line
that corresponds to an arbitrary Hough value in [
We super-impose the line on the uniform image 2,
and count the number of times that the uniform
pixels moved to a different receptive field. We hold
two counters, charging the first one when the line
moves to a field with a different & coordinate, or
the second one when the line moves to a field with
a different v coordinate. It is clear that the line
cannot cause the first counter to grow more than
ity times, and cannot cause the second counter
to grow more than vy,, /2 times. The number of
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such Imes that will contribute to the list of [ de-
pends on u (which determines the thickness of the
contributing “band™ (see Fig. 3). However, since
this number is linearly proportional to w, the
change in the number of contributing logpixels as
u varies can be bound by a constant factor.

The space complexity of a list for a single log-
pixel / is therefore Oup,, + Upgay ). Since the Hough
operator is radial-invariant, the space complexity
of the whole operator is Ounu (tnax + Unax))-

In our model representation, the number of el-
ements in a single list of [ was bound by 140, with
an average number of 110, i.e. the binding com-
plexity constant is ==1.

8.2.2. Symmetry operator

Similarly, it can be shown that the total
space complexity for the symmetry operator is
O tpastax ). We first show that the number of
elements in each logpixel table can be bound by a
constant.

The operator table for each logpixel [ = (u, 1)
has a finite circular support § whose center is at
Fs center in the uniform space (because % is a
Gaussian with a finite support). Its radius in pixels
is ki\/|R;|, where k is constant. We now bind
the number of logpixels that cover S. Let | ; =
(u—i,v), for any 0<i<u, and let e=|R;_|/IR; .,
ic>1 1s a constant regardless of i and «). The ra-
dius of § with the maximal number of logpixels
resides along the line from [/ to the origin (because
the size of the logpixels’ receptive fields along this
radius will shrink in the fastest rate}—thus its re-
spective logpixels would be {l,/_,./_5,...}. Keep-
ing in mind that the fields partially overlap—we
sum the number of uniform pixels along this line
until it gets outside S:

|y | S 1
kd/{R| < (1 _ﬂr}'ﬂl? 1+E+§+---+F

e 18 constani, regardless of u. Therefore the number
of logpixels in a radius of § is bound by (u+ 1)
and therefore S is bound by a constant number of
logpixels (= m(u+ 1)°).

The symmetry operator is radial invariant, thus
it can be represented by (Nup,,) elements and the
bound on the preprocessing time can be tightened
to OMiinay ).

In our implementation the maximal number of
elements in a single table entry of the symmetry
operator i1s 89 for A =2 and 315 for 1 =4. The
average numbers are 72 and 290, respectively.

8.2.3. Mask operator

The preprocessing time for the mask operators
is large (computations for each mask element is
O(|Z])). However, by definition, the rectangular
neighborhood (in the uniform space) P of any
logpixel / can be covered by a constant number
(ZM2N) of logpixels. Therefore the resulting mask
operators require only Oy, uax) space.

In our model representation, a logpixel in a
5 »x 5 translation table had a maximum of 25 ele-
ments in its table. In an example of a 5 x 5 corner
operator (see Fig. 12}—the maximal number of
elements in a table of a single logpixel was 71 and
the average number was 64.

9. Results
9.1. Edge detection

Fig. 5 demonstrates our edge operator. We
transferred the upper left image to a logimage and
applied the edge operator. The back-projection of
the result is shown in the bottom right image, and
can be compared with the uniform equivalent
(bottom left). An example of an s-¢ system for a
specific logpixel [ (marked by 5) is shown on the
upper right side.

9.2, Hough operator

Fig. 6 shows the uniform visualizations of a
Hough logmap (middle image) of an input image
with a horizontal edge (left image). Note that the
centers of the images are positioned at the center
of the fovea’s hole. Thus the most prominent line
can be derived by taking the line that is orthogonal
to the vector between the origin and the marked
point (this normal is drawn in the right image),
The right image in Fig. 6 shows the superpositions
of the relevant edge with its Hough map. The
Hough map indeed points to the correct line.

Fig. 7 shows several input logimages (shown at
the left side in every triple) and their Hough maps.
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Fig. 5. Foveated edge detection.

The edge operator was applied on each logimage.
Each edge logimage corresponds to a uniform
image of a horizontal line in a different location.
The log-edges have different length and thickness,
although their uniform representations are similar.
The Hough operator was applied on the edge
logmaps (shown in the right side of every triple).
The logpixels that got the largest number of votes

(marked in each logmap) indeed point to the cor-
rect lines. They reside on the same orientation
(have an approximately equal v value), with de-
creasing w-values. The voting scores of the points
are similar.

Fig. 8 shows that different positions of segments
have the same contribution to the Hough map. The
left figures show segments that were taken from a

Image

Hough+Edge

Fig. 6. Example of an input image that contains a line and the resulting Hough map.
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Image Edge Hough
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4,

Fig. 7. Foveated Hough maps of horizontal lines-bazed log-
images.

single horizontal bar. The segments’ x position
begins at the near-left area of the image and ends
near the origin (the other half is symmetric). The
middle figures show the edges of the segments.
Note that segments that are closer to the fovea
have finer boundaries. The right figures show the

Image Edge

& - N

Hough

Fig. & Foveated Hough maps of ling segments,

Hough maps of the line segments, with the best
voting cells marked. The same line is detected for
all segments, although the difference in contribu-
tions causes different distribution of votes. The
total votes are very similar: 11939, 11901, 11 591.

The Hough operator is also demonstrated on an
image with five segments that was transferred into
logimages using two fixation points (Fig. 9, top).
The edge and Hough operators were applied
(middle) and the five highest local maxima were
marked. The derived lines are drawn over the
edge-logimage (bottom]}, they all had similar votes.

9.3, Symmetry operator

For symmetry extraction we created a uniform
image with six squares. The squares were placed at
different distances from the fovea, and their size
was proportional to their eccentricity. The applied
operators when 4 = 2 and 4 are shown in Figs. 10
and 11, respectively. The left images in each of
these fipures show the resulting logimages, the
right images show the projection along with the
source image. The symmeiry operators indeed
detect the corners of the sguares (for L1 =2) or
their centers (for i = 4).
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Fig. 9. The foveated Hough operator. See text for details.
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Fig. 10. Foveated corner detection using the symmelry opera-
tor. Highest peaks designated by their order.

. ¢ ©

Fig. 11. Foveated centers detection using the symmetry oper-
ator. Highest peaks designated by their order.

9.4, Spatial mask operators

To demonstrate a spatial mask detector, we set
a 5 x 5 mask that detects “I""-shaped corners. The
image in Fig. 12 (left) is used as our input; It is a
logmap of uniform squares with sizes that are
proportional to the eccentricity of their upper-left
COTNErs.

We constructed a set of translation operators
and used them Lo construct a corner-detector. The
result of applying the operator (along with the
original image) is shown in Fig. 12 (right).

Fig. 12. Corner detection using a foveated spatial mask.
Highest peaks designated by their order.
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10. Conclusions

In this paper we have presented an efficient
mechanism that can be used to implement various
image analysis operators directly on a foveated
image. The method is based on a space variant
weighted data structure, Using this approach, we
show how some common global and local opera-
tors can be implemented directly, at almost frame
rate, on the foveated image.
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