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Abstract. The function of CNS sites is frequently
explored by an analysis of its input-output relation-
ships. However, such research are often confined to a
qualitative and subjective inspection of raw data.
System Identification methods can be used to formal-
ize the stimulus — response relations, and one of them,
the Volterra approach, is employed here in order to
define these relations in the MGB of the squirrel
monkey, natural vocalizations being the stimuli. In
order to validate the formal representation of the
system under study, the predictibility power of the
model is tested. Having the distances between re-
sponses (PSTH) and predicted response quantified, it is
found that the predictions made by the model are, in
general, “closer” to the actual responses then some
arbitrarily chosen responses. It is concluded that there
are cells in the MGB that can be characterized by their
Volterra kerncls, and further research on the cell's
functional role can be based on these kernels.

Introduction

Characterization of stimulus response relations in the
CNS is a central aspect in experimental neurobiology.
However, due to the complexity and apparent non-
linearities in these relationships, especially at higher
levels of the brain, experiments often do not go far
beyond the description of raw data or of fundamental
quantitative analyses.

In an attempt to disclose the role of primate MGB
in the processing of complex auditory stimuli, in
particular intraspecific communication sounds, we
have recently analyzed stimulus-response relation-
ships of single cells (Allon et al, 1981) located at
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different regions of that nucleus. Our model system
was a squirrel monkey (Saimiri sciureus) which was
selected for that purpose on the basis of its very rich
vocal repertoire which subserves this species for intra-
specific communication (Winter et al., 1966).

Among other observations we noticed that, in some
cases, the temporal distribution of “response peaks”
corresponded in time with some transients of the
stimulus (see also Creutzfeldt et al, 1980; Glass and
Wollberg, 1983). This “peak tracing” phenomenon,
which is best illustrated by the similarity between the
response pattern of the cell and the envelope of a
particular spectral component of the call correspond-
ing to the characteristic frequency of the cell (Fig. 1),
was, however, confined to a relatively small number of
cells. For most other cells this phenomenon was not
readily seen, and probably obscured by other compo-
nents of the response, even if existed.

These results fit very well with a spectro-temporal
model, suggested recently (Creutzfeldt et al., 1980) for
the detection of complex sounds by cell assemblies in
the thalamocortical segment of the auditory system.
Such relationships are also not totally unexpected in
the light of the well known filtering properties of single
cells along the auditory pathway, including the MGB
(Allon et al., 1981), but certainly call for a more formal
and quantitative description. The fact that for most
cells relationships of that kind are not readily ob-
served, argues strongly for a more sensitive method to
be applied, and for a quantitative description of the
transfer characteristics of stimuli into response signals.
This last aspect, which is often defined as “System
identification” is one of the basic goals in the present
study. Various approaches and techniques have been
suggested for the identification of biological systems,
among which the Volterra and the Wiener-Volterra
representations and their variants are most widely
applied both to peripheral (Marmarelis and Mar-
marelis, 1978) and central (Aertzen, 1981; Eggermont
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Fig. 1. An illustration of the “Peak tracing” phenomenon.
Response patlerns of 4 MGB cells elicited by the call “Peep”
(PL}yand its corresponding “Tlac™ (LP). Each cell is represented
(top to bottom) by: its characteristic frequency (BF); a raster
display of responses to pure tones (al an intensity of 80 dB SPL)
ranging between 0.5-32 kHz; envelope of the pure tonc burst;
response pattern to the call “peep” represented by a raster
display of 15 consecutive trials; envelope of a filtered frequency,
approximately corresponding the BF of the cell; response
pattern to the Hac (LP); envelope of the filtered frequency

et al, 1983) nmeurons. A detailed review of such
applications can be found in Hung and Stark (1977).

These methods formalize the input to output
transformation by obtaining a functional description
of the transformation as an operator on the functions
space. Volterra presented the main theory (1930), and
Wiener showed (1958) how the operator can practi-
cally be evaluated, using a white Gaussian noise as a
stimulus,

The requirement of the Wiener approach on the
input to be a white Gaussian noise is the main reason
we preferred the Volterra approach. This requirement
resides in the assumption that if the duration of the
stimulus is long enough, there is a finite probability
that any given stimulus waveform is represented by
some sample of the white noise, and thus it is conceiv-
ably the best representative stimulus and the most

effective one. This argument has proven to be valid for
some sensory systems, mainly for their peripheral
aspects (Marmarelis and Naka, 1972-1974).

However, it is not necessarily the case for higher
levels of the brain, where functional networks as-
sociated with the detection of sensory stimuli have
been developed and selected during evolution accord-
ing to the biological survival values of these stimuli.
With regard to the auditory system, other auditory
signals might be more effective than white noise.
Tentative candidates for that purpose are natural
vocalizations which are used by animals for inter- and
Intraspecific communications (Capranica, 1972; Art-
zen, 1981). Indeed, earlier studies with squirrel mon-
keys have proven that such vocalizations are more
effective in eliciting responses in single auditory cells
both in the MGB and the auditory cortex (Allon et al.,
in preparation; Newman and Wollberg, 1973; Winter
and Funkenstein, 1973).

Any attempt to formally describe input-output
relations of a biologic system faces a fundamental
problem concerning the determination of its bound-
aries. In our case, the most basic output function would
be a response of a single MGB cell. Since the input to
each cell is not at our disposal, the boundaries of the
“system” have to be extended. The most extreme
boundaries will thus be the peripheral aspect of the
auditory system (namely the ear) on the one extreme,
and the single MGB cell whose activity is recorded on
the other extreme. Such a system comprises a whole
functional network of cells culminating in a single
MGB cell. In this case we deal with as many “systems™
as the number of recorded MGB cells. However,
considering some redundancy, and assuming the
existence of functional cell assemblies for which the
total output represents the output of the system, we
hopefully cut by far the number of variants.

The Volterra representation of a system is formally
valid only when some conditions are fullfilled (Vol-
terra, 1930). Some of them, such as “causality” are
certainly satisfied, as we deal with a physical system.
However, it is not trivial to rigorously prove the
validity of other conditions such as the “Frechet
continuity”. Under such circumstances, namely when
some of the requirements are being met while it is
practically impossible to prove some others, a plau-
sible approach to test the validity of Volterra's repre-
sentation is to evaluate its predictibility power. For-
mally, such an approach provides an answer only if the
results are negative. That is, if the transfer functions of
the system, determined by a given set of input-output
relations, are unable to predict the output elicited by
an arbitrary input to a required degree of precision,
then this would mean that the system under investi-
gation cannot be represented by these transfer func-



tions. If, on the contrary, the system's output can be
predicted, then in spite of the fact that some conditions
were not formally met, it is plausible to characterize the
system by its Volterra representation, and further
conclusions may be derived from this representation, Tt
follows that the predictibility power of the model is a
necessary, though not sufficient, condition to be met.

In this study we investigate the predictibility power
of a certain approximate model to the Volterra
representation. First, we describe the input and output
to the “systems”, then we present our model and the
method of its identification. We conclude by a dis-
cussion of several tests of the prediction power of our
model.

System Input

The system inputs consisted of 7 natural vocalizations
of the squirrel monkey, representing 5 out of the 6 main
vocalization groups observed by Winter et al. (1966)
(see Fig. 2a).

The vocalizations were represented either normally
(denoted hereafter “calls™) or in reversed manner
("llacs™). The frequency range where most of the
vocalizations’ energy is concenirated is between 0.5
and 20 kHz. Techniques of recording and playback of
the vocalizations are described elsewhere (Glass and
Wollberg, 1983a),

Auditory stimuli can generally be represented in
terms of acoustic energy function P(t). However, if a
reasonable time resolution is required, then a digitized
vocalization will consist of some ten thousands values,
an amount too large to be numerically manipulated.

We preferred a more practical approach, referred
to as Short Time Power spectrum (Fano, 1950), where
acoustic input is represented by its spectral compo-
nents, each component having its temporal energy
distribution.

Since the operation of the peripheral aspect of the
Auditory pathway can be approximated by a bank of
overlapping 1/3 octave filters (Evans, 1977), a natural
choice of the spectral resolution of the frequency bands
would also be 1/3 octave.

In this case, the ear is excluded from the system
being identified, and the input is actually multi-input:
cach acoustic input is decomposed into spectral com-
ponents before entering the system’s boundaries.

Due to current computational limits (see Identifi-
cation Procedure), the spectral components we used
are based on | octave bandpass filters, but it is our
intention to refine the model to accommodate a 1/3
octave resolution.

The spectral components were obtained by means
of FFT, with time resolution of 3ms and frequency
resolution of 78 Hz. The results of the digital filtering
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Fig. 2A~C. An illustration of the multi input system_ A Envelopes
of the 7 species specific vocalization employed in this study: TT -
twitter, PL — peep, CI — chirp, CA - cackle, KE — kecker, SH -
shriek, NK — oink (Winter et al,, 1966). C Six frequency bands
filiered (digitally, one octave resolution) from the call peep,
yielding the envelopes from which the multi input representation
of that call is extracted. B Center frequencies of corresponding
filters. A similar procedure was conducted for all other calls and
llacs. Scale: (length of bar crossing all the vocalizations) 1.3 5

were combined to 1 octave components, yielding 6
spectral components for each vocalization (see Fig. 2).

During the experiments, pure tones ranging in
frequency (from 0.5 to 32kHz) and intensity (down
from 80 dB SPL to threshold) were also represented to
the monkeys in order to obtain tuning characteristics
of single MGB cells. [For further technical details see
Allon et al. (1981).]

These stimuli are naturally represented by a certain
spectral component, but as we are restricted to octave
resolution, only the 6 tones represented by the 6
octaves are used.

System Output

The output of the system resides on the responses of
single MGB cells elicited by various stimuli (system’s



Ill ll1lﬂ‘lmll
A II.IHI i ‘._r
:;"w.';ff‘ o
L

A T E Sy
i"".. %.. Lnflﬁ iy, l.r,"'. | 'ﬁ}ﬂ R ;-"
! h l‘. ¥ ouN ||l II “il ]

‘ Ilr 1II‘
L} h lll1.‘

Fig. 3A—C. An illustration of responses of a single MGB cell to
the vocalizations twitter (top) and chirp (bottom). A Raster
display of 15 consecutive presentations of the same call. B PSTH
with a 3ms bin width. C Smoothed histogram of the response.
Full scale - 25
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input). This output can be considered as a train of
action potentials (spikes).

This representation is adequate mainly when the
response is highly deterministic. Generally, some
averaging techniques are applied to the raw data, the
most common being the peristimulus time histogram
(PSTH). On that case, the unit’s response is acquired
several times following a given trigger, and a time
histogram is calculated out of the several pulse trains.

The bin duration and number of repetitions cer-
tainly effect the PSTH, and thus the output function is
not strictly unique. However, the PSTH is a well
agreed description method and it is beyond the scope
of this study to evaluate it as a valid and invariant
representation of the output.

In the present study each stimulus was repeated 15
consecutive times, and bin duration for the histogram
was 3 ms. In order to obtain a smooth output function,
a moving average was applied to the basic PSTH, with
windows of 3 ms. Figure 3 displays a cell's responses to
two different stimuli, along with the currespnndmg
P5THs and the smoothed PSTHs.

Identification Method

The system we analyse is a multi-input and single
output one: The inputs are the temporal energy
distributions of six spectral components, denoted by
x,(t) to xg4(r), and the output is the smoothed PSTH
denoted by Y(1).

Assuming the validity of the Volterra represen-
tation for this system, its functional aspect can be
described as

Y(O)=F{x,(t), ..., x4(t)} (1)
which up to a second order expansion with Volterra
kernels becomes

Y(o)= [ H(7)x (t—1)dr

|-=
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&
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r=1z=1 0
sx(t—1,)dr dty. (2)

Here H (1) is the linear kernel associated with the input
x,(t), and H,(t,,1,) is the “cross kernel” associated
with inputs x/(t) and x/(r) (Marmarelis and Naka,
1974), and M denotes the length of the systems’
memaory.

In order to compute the kernels, each one is
regarded as a series in {Q,(t)=e " "L{t)};Z o, where Li(t)
are the Laguerre polynomials, following the results of
Brandsteter et al. (1971). Then each kernel is appro-
ximated by a finite number of terms in its expansion:

k k
H, (7, 13)= ? ;EUHQ:{TI }Q;{T 1),

k
H/(t)= ?i:rﬂl{ﬂ: k=6. (3)
The system of equations which determines the un-
known coefficients in (3) is obtained as follows:
(i) The expressions in (3) for the kernels are sub-
stituted into (2) to yield the relation

Y= Z z aa () + z }; E %in IWHOTHOR (4)

where
M

a(t)= | x,(t—1)Q(x)dx.
(1]

The number of unknowns in (4) is 6k of the form e, and
21k* of the form a; These unknowns are formally
organized into a vector .

(ii) Each vocalization X%={x{, ..., x%¥} and the
corresponding smoothed PSTH ¥(t) are considered on
a discretized set of equidistant points in time O<t,
< .., <1, with the parameter n being limited by the
resolution of the measurements,



(iii) For each input-output pair, Eq. (4) is consid-
ered in times t,, ..., t,, with the integrals replaced by
numerical quadratures. Thus each such pair deter-
mines n linear equations for o

(iv) With the substitution of enough input-output
pairs the number of equations increases, while the
number of unknowns stays fixed. A sufficient number
of input-output pairs are included to yield a significant
overdetermined system, formally described as

Ax=Y. (3)

In (5), A is a matrix computed from the input x,"\(t;)
and the functions’ values Q.(t;), and Y consists of the
discrete values of Y“t). The row dimension of 4
depends on the total duration of the inputs included,
while the column dimension depends on the dimension
of &.. In order to enforce a strict overdetermined system,
we considered only “adjacent” cross kernels, ie. H;;
with i—j=1 and neglected the other cross kernels H;
with i —j=2. This led to a matrix of 1099 by 342.

The set (5) is solved by least squares for «, and the
kernels are determined by (3).

The numerical evaluation of & consumes a con-
siderable amount of computation time on a large scale
computer (CDC CYBER 855), and special software
was developed in order to efficiently handle the large
matrices involved.

A significant saving in the computation of the
kernels for several different cells is gained by the
observation that the matrix A depends only on the
inputs X'%(¢) and on the expansions (3), but is inde-
pendent of the output ¥Y't) of the cell. Therefore, as
long as the inputs used to determine the kernels are
fixed for all the cells, it is useful to calculate the pseudo
inverse of 4, 4, only once. Thereafter, computation of
the cell's kernels is simply a matter of computing AY,
with the vector ¥ characterizing the output of the cell.

Having the coefficients vector x= AY obtained for
a certain cell, it is possible to compute the output
predicted by our model to a given stimulus X'(¢)

={x}(1). ... (1)} by
Y'=An, (6)

Here A" is computed similarly to 4, but with respect to
the given input functions X (t) only.

The predicted output, ¥', is truncated to non
negative values, since the real output Y is non negative.

As was mentioned above, the available set of inputs
{along with the corresponding outputs) consisted of 7
calls, 7 llacs, and a restricted form of pure tones. For
each cell, the following procedures are applied:

1. The 7 calls with their corresponding PSTH’s are
used to obtain the kernels, by which a predicted output
to the 7 llacs is calculated.

a7

2. The 7 calls and one llac (“Kecker”) are similarly
used to predict the output to the remaining llacs.

3. The 7 llacs and one call (*Kecker”) are used to
predict the output to the remaining calls.

For several cells, the kernels computed by step 2
are used to predict the output to the corresponding
pure tones.

Prediction of Responses

The obvious question concerning the quality of a
prediction is to what extent is a real response “close”™ to
a predicted one. The responses of the system being
identified, namely the network culminating in an MGB
cell, as well as the predicted responses, are considered
here to the smoothed PSTH functions and the
smoothed versions of the predicted vectors ¥ in (6).

Any attempt to rigorously define similarity be-
tween such responses is closely related to the issue of
neural response quantification, and as such, is far from
being adequately solved. This especially holds for
complex response patterns, consisting of discrete time
locked inhibitory and excitatory components, fre-
quently encountered in the higher levels of the audi-
tory pathway.

Looking for a quantification to the similarity
between responses, we inevitably have to taylor a
specific formulation, and not count on conventional
measures, such as cross correlation. The measure we
employ is related to the temporal distribution of the
spikes along the response, and reflects the relative
deviation of time locked patterns in the responses. This
measure was found by trial and error process, in order
to fit our subjective judgement of the distance between
responses, and is formalized as follows:

Let the total activity of a response ¥ be defined by

Sr= E Y(t)de, _ : (7

where T is the duration of the response {only equal
length responses are compared). We aim at comparing
the temporal distribution of activity along the interval
[0, T] of two responses — ¥(t) and ¥(1).

To this end we compute for the response Y the
values fi,...,f, measuring the distribution of its
relative activity in m equal subintervals of [0, T]:

I Y(t)dt ; )
with I;= [’_—1 e ]

i 4
fi Sy m 'm

Erld similarly gy .. g areﬂcumputed for the response
Y(t). The “distance™ D(Y, Y) between Yand Y, is then
measured by

D(Y.9)= [ > —m“gﬂi}]m. (8)

Jj=1 max{_ﬂ:gj
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Fig. 4A and B, llustration of predictions of responses to vocalizations. A Predictions we consider as “good™ (distance values of 0.2-0.3).
Each example consists of raster display of the real responses (lower), PSTH of this response (middle) and a prediction to the response
{upper). Denoted below each exampls is the unit number and stimulus name (hames as in Fig. 2, llacs denoted by reversed names, excepl
for TR, which is the llac of TT). B Prediction we consider as fair (left) and poor (right). Distance values are denoted to the right of the

PSTH. Full time scale of raster display — 1 s

The parameter m determines the refinement of the
comparison. The bigger m is, finer temporal deviations
are taken into account. In our tests m=10.
NMaturally, the extent to which a prediction fits the
real response is expressed by the distance between
them: the prediction is better as the distance decreases.
However, classifying predictions as “good” or “poor™ is

subjectively done, by determining corresponding
ranges of distances,

Some examples of predictions along with the
corresponding responses are displayed in Fig. 4. If we
“predict” a response which was used in the identifica-
tion procedure, we generally have distances of 0.2-0.3
between the “prediction”™ and the real responses:



actually, this distance reflects the extent to which the
overdetermined system (5) can be satisfied for this
response. We therefore refer to predictions with dis-
tance values of approximately 0.2-0.3, 0.3-04, and
over 0.4 as good, fair, and poor, respectively.

MNotice that while some of the predictions displayed
(Fig. 4A) are good fits by any criterion, other (e.g.
EK 19011) are good predictions according our judge-
ment, although they might not be considered as such
by cross correlation.

As for responses to pure tones, due to the dif-
ferences in frequency resolution between the real
inputs (pure tones) and our octave filtered tones, and
since the stimuli were presented only once during the
experiments, quantitative comparisons are impract-
ical. Nevertheless, a qualitative comparison is possible.
Figure 5 displays a prediction which reveals quite
similar features to the real response.

In order to validate the predictibility power of the
model, we compared the quality of the predictions of
the model with the guality of another type of reason-
able “predictions”. A natural candidate to serve as a
predictor to a given response, is the envelope of the
vocalization by which it was elicited.

For each cell, the envelope of each vocalization was
tested as a “predicted” response to the same vocaliza-
tion, and the distances of these “predictions” from the
real response were compared with the distances of the
model’s predictions from the real responses.

As can be seen from the resulis of this comparison
(Fig. 6), the distances between the model’s predictions
and the real responses are consistently smaller than the
corresponding distances of the envelopes.

When procedure 2 ( of “identification method”) is
applied, about 75% of all the responses (218 out of 287)
are predicted better by the model, and this percentage
increases to 80% when procedure 3 is applied. Con-
sidering the cells, for 85% of them (by both procedures)
the model predicts better most (above 4 out of 7
vocalizations) of the responses.

The same comparisons, when performed not with
the envelopes, but with predictions to responses of an
arbitrarily chosen cell taken as “predictors”, yield
similar results, the only difference being a minor
decrease in the percentage predicted better by the
model.

The finding that there is no evident difference in the
quality between calls predictions and llacs predictions
(procedures 2 and 3) can be related to some of the
results of Glass and Wollberg (1983a), concerning
responses of Auditory Cortex cells to llacs and calls.

Another outcome of the comparison concern the
validity of the model. A valid Volterra representation
should yield better results as the number of input-
output pairs used for evaluating the kernels is in-

Fig.5A—C. A prediction of response of a certain cell to pure tones.
A Raster display of the real response (as in Fig. 1). C PSTH of
predicted response (o | octave bandpass filtered tones with center
frequency denoted in B. The corresponding bands are marked on
the horizontal bar to the left of B. Motice that the PSTH is
supposed to represent the response to its corresponding band
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B Number of cells for which n vocalizations are predicted better
by the model than by the envelopes (n denoted below the
columns). Blank and shaded columns as in A. Mote that in
prediction based on 8 pairs, only & predictions are made
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creased. As can be seen in Fig, 6, the results are indeed
better for predictions based on 8 pairs than those based
on 7 pairs. Obviously, other improving steps to be
tested are a further increase in the number of input-
output pairs, a refinement of the spectral resolution of
the input and an upgrading of the model to accommo-
date kernels of order 3 and/or more terms in the
expansions (3). These further steps are naturally
limited by the complexity of the computation involved.

It is clear, even by eye inspection (see Fig. 4), that
the predictions’ qualities are not uniform. Predictions
of responses of various cells to vocalizations differ in
quality, as well as predicted responses of the same cell
to different vocalizations. This is also evident as we
analyze the comparison of the “test predictions™ to the
model’s.

The factor behind these differences is yet unclear,
We cannot rule out the possibility that in the MGB
there exist some input to output transformations
which cannot be presented by a Volterra series, as the
requirements for this representation are not satisfied.
On the other hand, these differences might stem from
variations in the degree of the nonlinearities of the
transformations: the current expansion might well fit
some of the cells, while others can be represented only
by a refined model.

In both cases, physiological characteristics such as
tuning properties, latency and spontaneous activity
level may supply a more definite answer. All of these
are currently under further study, in order to shed
more light on the functional role of the MGB.

The predictibility power of our model, as demon-
strated here, leads us to the conclusion that there are
cells in the MGB for which the characterization of the
transfer functions by Volterra’s kernels is justified and
promising.
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